

Node Discovery Protocol
Final Protocol Review Report
Ethereum Foundation
Report Version: 25 October 2019

Table of Contents

Overview

Background

Project Dates

Review Team

Coverage

Target Specification and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Design and Documentation Approach

Identity Key Generation

Topic Subsystem Complexity

AES-GCM in the Wire Protocol

Specific Issues

Issue A: Intentional Lack of Proof-of-x Scheme for Identity Generation

Issue B: Lookup Operation Does Not Include Disjoint Paths

Issue C: Handshake Authentication is Broken

Suggestions

Suggestion 1: Better Documentation of Terms and Definitions

Suggestion 2: Handshake Tag can be used to Confirm Protocol

Suggestion 3: Make auth-tag the Output of an Approved RBG
Location

Recommendations

About Least Authority

Our Methodology

Manual Review

Vulnerability Analysis

Documenting Results

Suggested Solutions

Responsible Disclosure

Security Audit Report | Ethereum Foundation 1
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
The Ethereum Foundation requested that Least Authority perform a security audit of the next generation
node discovery protocol being developed for the Ethereum p2p network stack.

Project Dates
The following is the project schedule for this review and report:

● August 5 - 9: Documentation review completed (Completed)
● August 14: Delivery of Initial Protocol Review Report (Completed)
● September 12: Delivery of Initial Protocol Report V2 (Completed)
● September 16 - October 22: Report review, protocol changes and related consultation

(Completed)
● October 23 - 24: Verification completed (Completed)
● October 25: Delivery of Final Protocol Review Report (Completed)

Review Team
The following Least Authority team members participated in this review:

● Emery Rose Hall, Security Researcher and Engineer
● Dylan Lott, Security Researcher and Engineer
● Mirco Richter, Mathematician, Security Researcher and Engineer
● Jan Winkelmann, Security Researcher and Engineer

Coverage
Target Specification and Revision
For this audit, we performed research, investigation, and review of the discovery protocol followed by
issue reporting, along with mitigation and remediation instructions outlined in this report.

The following documentation repositories were considered in-scope for the review:
● Specification: https://github.com/ethereum/devp2p/blob/master/discv5/discv5.md
● Wire protocol: https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md
● Theory: https://github.com/ethereum/devp2p/blob/master/discv5/discv5-theory.md

Specifically, we examined the following Git revision for our initial review:

849619d2381e430c6fab9c2b7b7dc626a95eef08

For the verification, we examined the Git revision:

008f7ae4d73ad59e1c06de4495f07bdb36eda32f

All file references in this document use Unix-style paths relative to the project’s root directory.

Security Audit Report | Ethereum Foundation 2
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ethereum/devp2p/blob/master/discv5/discv5.md
https://github.com/ethereum/devp2p/blob/master/discv5/discv5.md
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-theory.md

Supporting Documentation
The following documentation was available to the review team:

● Devp2p: https://github.com/ethereum/devp2p
● EIP 778: Ethereum Node Records (ENR): https://eips.ethereum.org/EIPS/eip-778

Areas of Concern
Our investigation focused on the following areas:

● Considerations for individual nodes participating in the network
● Considerations for the collective network operations as a whole
● Potential attacks, such as:

○ Amplification attacks (e.g via spoofing make peers transmit data to a target),
○ Eclipse attacks (manipulate a target to connect only to malicious peers)
○ DoS attacks, such as:

■ With small effort, cause a peer to expend a large effort (cpu/memory etc),
■ With low bandwidth, cause a peer to utilize large bandwidth

○ Other possible attacks, as identified during the review
● The cryptography used by the protocol:

○ Suitability of the chosen algorithms
○ Correct use of the chosen algorithms

Findings
General Comments
These are overall findings that in most cases should be addressed holistically.

Design and Documentation Approach
We found the specification to be readable, well-explained and easy to understand, however, there were
terms in the specification that lacked proper definition and technical description. This presented certain
challenges for us and required some assumptions to be made in our audit, particularly around the Topic
registration system. It is commendable that many security concerns are already noted, including a
number of proposed mitigation strategies. This allowed us to identify leads early on in our investigation
and expand upon some of the known shortcomings.

Identity Key Generation
The primary concern resulting from our review is the lack of a proof scheme for identity key generation,
especially given that eclipse attacks have been a problem with the Ethereum network in the past. We
strongly recommend that an identity proof system, like the one proposed in this report, be employed in the
next iteration of the specification.

Topic Subsystem Complexity
In addition, we found that the specification did not adequately explain use-cases for the topic subsystem
in order to justify its relative complexity. There were no data or test cases identified to support the need
for its inclusion and, as a result, we were not able to properly evaluate the topic subsystem. We strongly
recommend a follow up evaluation after this aspect of the specification is more thoroughly documented.

Security Audit Report | Ethereum Foundation 3
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ethereum/devp2p
https://eips.ethereum.org/EIPS/eip-778

AES-GCM in the Wire Protocol
Overall, we found that in the wire protocol AES-GCM is used properly, and in accordance with best
practices. However, this is based on certain assumptions and we were not able to assess side channel
attacks due to the lack of code. Our assumption is that the implementation of aesgcm_(de/en)crypt
is in accordance with the specification
(https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf) and that the key
auth-resp-key is a one time key.

Since there was no mention of the strength of the authentication tag, we were not able to reason about
that particular component. However, it is worth noting that the use of short tag lengths will limit the
amount of the input data and the lifetime of each single key.

Our analysis found that 128bit key length is best practice for non quantum-computer attacks and, since
messages are not longer than 1280byte ~=~2^6*128= bit, weak key attacks as described in
https://eprint.iacr.org/2011/202.pdf, whether possible or not, can only lower the security to about 122bits,
which is acceptable.

We also reviewed the following list of steps with which aes_gcm is used in the wire protocol:

1. auth-response = aesgcm_encrypt(auth-resp-key, zero-nonce, auth-response-pt,
"")

2. message = aesgcm_encrypt(initiator-key, auth-tag, message-pt, tag ||
auth-header)

3. message = aesgcm_encrypt(initiator-key, auth-tag, message-pt, tag)
4. ticket = aesgcm_encrypt(ticket-key, ticket-nonce, ticket-pt, '')

For auth-response, the auth-resp-key&zero-nonce combination can only be used a single time. Since this
nonce is a protocol constant, we assume auth-resp-key can only be used a single time. A 96bit nonce is
best practice, although not strictly necessary in this context. Furthermore, auth-response-pt is at the max
limit of encryption bits: (2^39)−256 bits ([1] 5.2.1.1). We also note that is safe to be executed without any
authentication data.

For message(s) in auth-tag, the length of the random field is 96 bits fixed for the life of the key and this is
the RBG-based construction from ([1] 8.2.2), which is recommended. Since RBG mode is used, there are
constraints on the number of invocations, i.e the total number of invocations shall not exceed 2^32, w.r.t.
to any fixed initiator-key.

In message-pt, if the wire protocol limits message size to 1280bytes, the amount of encrypted and
authenticated data is way below the limit of (2^39)−256 bits ([1] 5.2.1.1) and auth-tag is a critical security
parameter as defined in FIPS Pub. 140-2.

However, we were not able to review ticket because ticket-key and ticket-nonce are not defined. (Please
see Suggestion 1).

References:

[1] https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

Security Audit Report | Ethereum Foundation 4
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://eprint.iacr.org/2011/202.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

Specific Issues
We list the issues we found in the specification in the order we reported them. In most cases, remediation
of an issue is preferable, but mitigation is suggested as another option for cases where a trade-off could
be required.

ISSUE / SUGGESTION STATUS

Issue A: Intentional Lack of Proof-of-x Scheme for Identity Generation Unresolved: In
Discussion

Issue B: Lookup Operation Does Not Include Disjoint Paths Resolved

Issue C: Handshake Authentication is Broken Resolved

Suggestion 1: Better Documentation of Terms and Definitions Resolved

Suggestion 2: Handshake Tag Can Be Used to Confirm Protocol Unresolved

Suggestion 3: Make auth-tag the Output of an Approved RBG Unresolved

Issue A: Intentional Lack of Proof-of-x Scheme for Identity Generation

Synopsis

The specification directly acknowledges the lack of employment of a proof scheme for node identity
generation, supporting this choice by citing hardware requirements posing a barrier to entry. This allows
nodes to freely choose their node fingerprint, making eclipse attacks trivial.

Impact

Critical. An attacker can assert control over parts of the network identity key space, thereby allowing them
to deny service, return invalid information, and poison the routing tables of other network participants.

Preconditions

Attacker must control a minimum of 16 IP addresses in order to fill one of a target’s buckets entirely with
nodes they control. Controlling more IP addresses increases the impact.

Feasibility

Trivial. This can be done for free using Amazon EC2 t2.micro instances.

Technical Details

Kademlia-based overlay networks use the XOR of two identity keys as a distance metric. This distance
determines the index of the K-bucket (a sorted peer list) in which a given peer will be placed. Since there
are always more identities that are very distant than very close, the Kademlia routing table contains
mostly peers that are very distant. The goal of an Eclipse attack is to generate identity keys that target a
specific bucket in order fill a victim’s peer list with nodes that are controlled by the attacker.

In a Kademlia network where nodes may freely select their identity key, this type of attack is trivial. The
DevP2P specification places the requirement that identities are validated - the key is the hash of the
public portion of a SECP256k1 pair. This has the side effect of preventing nodes from choosing any
arbitrary identity key. Since these keys are computationally cheap to generate, we have demonstrated that
eclipse attacks are still trivial.

Security Audit Report | Ethereum Foundation 5
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

In our proof of concept attack (which is shown in the accompanying repository), we took an arbitrary valid
target key and attempted to fill that target’s K-buckets (16 peers each) with valid identity keys derived in a
manner consistent with the specification. The code for this attack was intentionally left poorly optimized
such that it:

● Runs on a single CPU core, generating a single identity at a time
● Cracks buckets sequentially, starting at the furthest
● Discards keys found that do not belong in the bucket that is currently being cracked

This poor optimization is intended to demonstrate a sort of “best case scenario” - the attacker not having
access to capable hardware. Our results showed that over the course of a 7 hour test, we were able to fill
the target’s furthest 24 buckets completely (384 nodes). Perhaps more importantly, the first 19 of these
buckets were cracked within the first half hour or the test.

As the plot above shows, the time to crack each bucket takes roughly twice the time to crack the previous
bucket, which is consistent with how we understand Kademlia’s routing table. Since there are always
more nodes that are distant than close, eclipsing even the first 18 buckets (as is shown to be completed
within minutes) is more than sufficient to cause significant disruption to a given target(s). Given the very

Security Audit Report | Ethereum Foundation 6
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/devp2p-exploits

low barrier to this attack, we believe that it could be carried out trivially using free cloud infrastructure
such as Amazon t2.micro and that attackers with access to even modest hardware could cause critical
disruption in the network.

Mitigation

The specification acknowledges that a proof scheme is a well-accepted mitigation strategy for eclipse
attacks, yet dismisses the use of one citing that mobile devices would not be able to participate in the
network. This may be true for CPU intensive proof-of-work schemes, but is not necessarily the case for
RAM intensive schemes.

Requiring that identity keys are derived from an asymmetric proof like Equihash could prove to be a
strong mitigation strategy for these types of attacks. Memory hard proofs make for an excellent trade off.
Even lower end semi-modern mobile devices often have at least 3GB of RAM and can generate a network
identity without much burden or time. However, this baseline memory requirement excludes an entire
class of virtual private server offerings, such as free Amazon t2.micro instances. We ran our same attack,
this time doing so using our mitigation strategy for comparison.

Given the same test case, but with our mitigation strategy implemented, we were only able to fill the
furthest 5 buckets within the same 8 hour period. Even this was only achievable due to availability of

Security Audit Report | Ethereum Foundation 7
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

~4GB RAM, making this attack much harder to parallelize than the previous test. The critical difference
here is the difference between the initial time to crack the first bucket. On the first bucket, it took about 1
minute per identity, because most generated keys are valid for that bucket. We feel this is a reasonable
barrier for users upon first connecting (or rather first generating an identity key), but poses significant
burden on would-be attackers.

Of course, this strategy is not perfect and an attacker could generate the identities offline on other
hardware for use in a similar manner, acknowledging that doing so would prove to be significantly more
expensive. Furthering this scheme such that nodes are required to continually improve their proof over
time is a worthwhile research endeavour.

Remediation

Complete remediation of this vulnerability is an area of active research and there are no known strategies
that completely eliminate the possibility of a determined and capable attacker carrying out this type of
attack.

Status

The specification acknowledges that proof schemes for identity generation are well researched, yet still
opposes their use due to what the authors consider to be resource constraints. A ticket has been opened
for public comment on how to proceed.

Verification

Unresolved: In Discussion.

Issue B: Lookup Operation Does Not Include Disjoint Paths

Synopsis

The specification does not specify the use of disjoint lookup paths, which can make various identity and
malicious routing attacks far more effective

Impact

High. If an attacker manages to control multiple nodes in a lookup path, they can manipulate the
information delivered back to the lookup originator.

Preconditions

Attacker must control multiple nodes along a particular lookup path.

Feasibility

Trivial. This can be done very inexpensively using Amazon EC2 t3.nano instances or a similar offering
from any virtual private server provider.

Technical Details

The specification outlines a solution where Kademlia table buckets are limited to two nodes from every
/24 IP subnetwork and limits the entire table to 10 nodes per /24 IP subnetwork. This is susceptible to IP
spoofing and anonymizing protocols where IP addresses aren’t scarce or reliably related to a single node.
The handshake would not prevent this because according to the provided specification, the handshake
does not verify the IP address of the requesting node or the recipient node.

The specification does not provide an exact lookup algorithm for nodes. Instead, they simply define their
lookup as an “iterative lookup”, which is consistent with Kademlia. However, particularly in the case of a

Security Audit Report | Ethereum Foundation 8
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ethereum/devp2p/issues/122

moderate number of adversarial nodes, the lookup algorithm benefits significantly from implementing a
lookup that utilizes multiple disjoint paths to find nodes in the network.

Mitigation

Instead of limiting by IP address and subnets, we can rely on the mitigation previously outlined in Issue A
in combination with an improved lookup algorithm that utilizes multiple disjoint lookup paths. In the
original Kademlia specification, lookup requests iteratively query nodes, however the lookup fails if an
adversarial node is encountered.

To improve the lookup algorithm, we can implement multiple disjoint lookup paths. First, we break up the
`k` closest nodes into `d` independent buckets, and then we kick off `d` parallel FIND_NODE requests as
usual, with one difference: we ensure we only query each node once during all of these lookups. This
ensures that the lookup paths are truly disjoint and that encountering an adversarial node does not result
in a failure or in the adversarial node becoming a contact and possibly becoming a bucket entry of ours.

Remediation

Implement multiple disjoint lookup paths.

Status

The specification has been updated to include details around session state storage, which resolves the
issue where IP addresses are not verified in the handshake. In addition, the specification includes that
multiple disjoint paths should be used during lookups.

Verification

Resolved.

Issue C: Handshake Authentication is Broken

Location

https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#handshake

Synopsis

The handshake protocol allows an active attacker to undermine authentication.

Impact

High. Allows active attackers to impersonate other nodes.

Technical Details

The specification states

auth-response-pt = [version, id-nonce-sig, node-record]
version = 5
id-nonce-sig = sign(static-node-key, sha256("discovery-id-nonce" ||
id-nonce))
...

The id-nonce-sig proves liveness to the receiver of the packet, but since it does not sign the
ephemeral key of the initiator, an active attacker can simply replace the ephemeral key with one that they
know the secret to. Then, the responder will accept, and use a key that is known to the attacker (but not
the initiator).

Security Audit Report | Ethereum Foundation 9
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#handshake

Remediation

This class of protocols is very difficult to design and implement correctly. As a result, there have been
numerous attacks on TLS 1.2 in the last ten to twenty years.

We recommend learning from history by using a well-understood key exchange protocol such as DTLS,
preferably DTLS 1.3, even in its current draft version.

Mitigation

Another option is to include the ephemeral key in the computation of the signature:

id-nonce-sig = sign(static-node-key,
 sha256("discovery-id-nonce" || id-nonce || init-eph))

This way, the responder will notice that the adversary replaced the ephemeral key and the attack is
prevented.

Status

The mitigation strategy recommended has been included in the updated specification.

Verification

Resolved.

Suggestions

Suggestion 1: Better Documentation of Terms and Definitions

Location

https://github.com/ethereum/devp2p

Synopsis

There were several places in the protocol where terms were simply never defined or were insufficiently
detailed in their definition. This required us to make some assumptions around the basic workings of
some parts of the system.

For example, the Topic Registration system lacked any meaningful documentation which forced us to
make some assumptions around its purpose and mechanics in the protocol.

Mitigation

More thorough documentation and definition of terms in the protocol.

Status

The topic index and registration system details has been expanded in the updated specification.

Verification

Resolved.

Suggestion 2: Handshake Tag can be used to Confirm Protocol

Location

https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#handshake

Security Audit Report | Ethereum Foundation 10
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ethereum/devp2p/commit/de356a9a35421d01929dcae54bdc074c74c6573c
https://github.com/ethereum/devp2p
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#handshake

Synopsis

The tag part of handshake messages can be used to confirm that the node protocol is used. Consider
three nodes A, B and C. If all three nodes communicate with each other, the xor of their tags will result in
0:

tag-A-to-B = xor(sha256(B-node-id), A-node-id)
tag-A-to-C = xor(sha256(C-node-id), A-node-id)
tag-B-to-A = xor(sha256(A-node-id), B-node-id)
tag-B-to-C = xor(sha256(C-node-id), B-node-id)
tag-C-to-A = xor(sha256(A-node-id), C-node-id)
tag-C-to-B = xor(sha256(B-node-id), C-node-id)

xor1 = xor(tag-B-to-A, tag-C-to-A) = xor(B-node-id, C-node-id)
xor2 = xor(tag-A-to-B, tag-C-to-B) = xor(A-node-id, C-node-id)
xor3 = xor(tag-A-to-C, tag-B-to-C) = xor(A-node-id, B-node-id)

xor12 = xor(xor1, xor2) = xor(A-node-id, B-node-id) = xor3
xor(xor12, xor3) = 0

Since the attack is technically just out of scope, it is only added as a suggestion. Mostly, it shows that key
exchange protocols are complex and it is very easy to miss subtle issues.

Mitigation

Use a well-understood key exchange protocol.

Alternatively, this is preventable by including some randomness, such as the nonce, in the computation:

tag = xor(sha256(dst-node-id || id-nonce), src-node-id)

Status

The specification authors have not decided if or how to proceed with the mitigation of this issue.

Verification

Unresolved.

Suggestion 3: Make auth-tag the Output of an Approved RBG

Location
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#handshake

Synopsis
Since RBG mode is used, there are constraints on the number of invocations, i.e the total number of
invocations shall not exceed 2^32, w.r.t. to any fixed initiator-key. Also, auth-tag is a critical security
parameter as defined in FIPS Pub. 140-2 and the RGB generator must properly handle edge cases like loss
of power, etc.

Mitigation

The auth-tag must be the output of an approved RBG, which must be independently initiated on any
device.

Security Audit Report | Ethereum Foundation 11
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#handshake

Status

Mitigation strategy has not been included in the updated specification, but is planned for a future version.

Verification

Unresolved.

Recommendations
We strongly recommend that an identity proof system, like the one proposed in this report, be employed in
the next iteration of the specification.

We also recommend that the Ethereum team continue to provide well-documented and easy to
understand resources about the design and implementation of the node discovery protocol. Doing so will
best facilitate the continued assessment of their security by both the community and future security
auditors.

Lastly, we recommend that the Issues (A) and Suggestions (2 & 3) stated above are addressed as soon as
possible and followed up with verification by the auditing team. In addressing the items in this report, the
Least Authority team is available for discussion and consultation, as needed.

Security Audit Report | Ethereum Foundation 12
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Review
In manually reviewing all of the documentation and code, we look for any potential issues with design and
code logic, including error handling, protocol and header parsing, cryptographic errors, and random
number generators. We also watch for areas where more defensive programming could reduce the risk of
future mistakes and speed up future audits. Although our primary focus is on the in-scope documentation
and code, we examine dependency code and behavior when it is relevant to a particular line of
investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Ethereum Foundation 13
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Ethereum Foundation 14
2019 Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

