github.com/AESNooper/go/src@v0.0.0-20220218095104-b56a4ab1bbbb/crypto/ecdsa/ecdsa.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as 6 // defined in FIPS 186-3. 7 // 8 // This implementation derives the nonce from an AES-CTR CSPRNG keyed by: 9 // 10 // SHA2-512(priv.D || entropy || hash)[:32] 11 // 12 // The CSPRNG key is indifferentiable from a random oracle as shown in 13 // [Coron], the AES-CTR stream is indifferentiable from a random oracle 14 // under standard cryptographic assumptions (see [Larsson] for examples). 15 // 16 // References: 17 // [Coron] 18 // https://cs.nyu.edu/~dodis/ps/merkle.pdf 19 // [Larsson] 20 // https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf 21 package ecdsa 22 23 // Further references: 24 // [NSA]: Suite B implementer's guide to FIPS 186-3 25 // https://apps.nsa.gov/iaarchive/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/suite-b-implementers-guide-to-fips-186-3-ecdsa.cfm 26 // [SECG]: SECG, SEC1 27 // http://www.secg.org/sec1-v2.pdf 28 29 import ( 30 "crypto" 31 "crypto/aes" 32 "crypto/cipher" 33 "crypto/elliptic" 34 "crypto/internal/randutil" 35 "crypto/sha512" 36 "errors" 37 "io" 38 "math/big" 39 40 "golang.org/x/crypto/cryptobyte" 41 "golang.org/x/crypto/cryptobyte/asn1" 42 ) 43 44 // A invertible implements fast inverse mod Curve.Params().N 45 type invertible interface { 46 // Inverse returns the inverse of k in GF(P) 47 Inverse(k *big.Int) *big.Int 48 } 49 50 // combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point) 51 type combinedMult interface { 52 CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) 53 } 54 55 const ( 56 aesIV = "IV for ECDSA CTR" 57 ) 58 59 // PublicKey represents an ECDSA public key. 60 type PublicKey struct { 61 elliptic.Curve 62 X, Y *big.Int 63 } 64 65 // Any methods implemented on PublicKey might need to also be implemented on 66 // PrivateKey, as the latter embeds the former and will expose its methods. 67 68 // Equal reports whether pub and x have the same value. 69 // 70 // Two keys are only considered to have the same value if they have the same Curve value. 71 // Note that for example elliptic.P256() and elliptic.P256().Params() are different 72 // values, as the latter is a generic not constant time implementation. 73 func (pub *PublicKey) Equal(x crypto.PublicKey) bool { 74 xx, ok := x.(*PublicKey) 75 if !ok { 76 return false 77 } 78 return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 && 79 // Standard library Curve implementations are singletons, so this check 80 // will work for those. Other Curves might be equivalent even if not 81 // singletons, but there is no definitive way to check for that, and 82 // better to err on the side of safety. 83 pub.Curve == xx.Curve 84 } 85 86 // PrivateKey represents an ECDSA private key. 87 type PrivateKey struct { 88 PublicKey 89 D *big.Int 90 } 91 92 // Public returns the public key corresponding to priv. 93 func (priv *PrivateKey) Public() crypto.PublicKey { 94 return &priv.PublicKey 95 } 96 97 // Equal reports whether priv and x have the same value. 98 // 99 // See PublicKey.Equal for details on how Curve is compared. 100 func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { 101 xx, ok := x.(*PrivateKey) 102 if !ok { 103 return false 104 } 105 return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0 106 } 107 108 // Sign signs digest with priv, reading randomness from rand. The opts argument 109 // is not currently used but, in keeping with the crypto.Signer interface, 110 // should be the hash function used to digest the message. 111 // 112 // This method implements crypto.Signer, which is an interface to support keys 113 // where the private part is kept in, for example, a hardware module. Common 114 // uses should use the Sign function in this package directly. 115 func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { 116 r, s, err := Sign(rand, priv, digest) 117 if err != nil { 118 return nil, err 119 } 120 121 var b cryptobyte.Builder 122 b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { 123 b.AddASN1BigInt(r) 124 b.AddASN1BigInt(s) 125 }) 126 return b.Bytes() 127 } 128 129 var one = new(big.Int).SetInt64(1) 130 131 // randFieldElement returns a random element of the field underlying the given 132 // curve using the procedure given in [NSA] A.2.1. 133 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { 134 params := c.Params() 135 b := make([]byte, params.BitSize/8+8) 136 _, err = io.ReadFull(rand, b) 137 if err != nil { 138 return 139 } 140 141 k = new(big.Int).SetBytes(b) 142 n := new(big.Int).Sub(params.N, one) 143 k.Mod(k, n) 144 k.Add(k, one) 145 return 146 } 147 148 // GenerateKey generates a public and private key pair. 149 func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { 150 k, err := randFieldElement(c, rand) 151 if err != nil { 152 return nil, err 153 } 154 155 priv := new(PrivateKey) 156 priv.PublicKey.Curve = c 157 priv.D = k 158 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) 159 return priv, nil 160 } 161 162 // hashToInt converts a hash value to an integer. There is some disagreement 163 // about how this is done. [NSA] suggests that this is done in the obvious 164 // manner, but [SECG] truncates the hash to the bit-length of the curve order 165 // first. We follow [SECG] because that's what OpenSSL does. Additionally, 166 // OpenSSL right shifts excess bits from the number if the hash is too large 167 // and we mirror that too. 168 func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 169 orderBits := c.Params().N.BitLen() 170 orderBytes := (orderBits + 7) / 8 171 if len(hash) > orderBytes { 172 hash = hash[:orderBytes] 173 } 174 175 ret := new(big.Int).SetBytes(hash) 176 excess := len(hash)*8 - orderBits 177 if excess > 0 { 178 ret.Rsh(ret, uint(excess)) 179 } 180 return ret 181 } 182 183 // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. 184 // This has better constant-time properties than Euclid's method (implemented 185 // in math/big.Int.ModInverse) although math/big itself isn't strictly 186 // constant-time so it's not perfect. 187 func fermatInverse(k, N *big.Int) *big.Int { 188 two := big.NewInt(2) 189 nMinus2 := new(big.Int).Sub(N, two) 190 return new(big.Int).Exp(k, nMinus2, N) 191 } 192 193 var errZeroParam = errors.New("zero parameter") 194 195 // Sign signs a hash (which should be the result of hashing a larger message) 196 // using the private key, priv. If the hash is longer than the bit-length of the 197 // private key's curve order, the hash will be truncated to that length. It 198 // returns the signature as a pair of integers. The security of the private key 199 // depends on the entropy of rand. 200 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { 201 randutil.MaybeReadByte(rand) 202 203 // Get 256 bits of entropy from rand. 204 entropy := make([]byte, 32) 205 _, err = io.ReadFull(rand, entropy) 206 if err != nil { 207 return 208 } 209 210 // Initialize an SHA-512 hash context; digest ... 211 md := sha512.New() 212 md.Write(priv.D.Bytes()) // the private key, 213 md.Write(entropy) // the entropy, 214 md.Write(hash) // and the input hash; 215 key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), 216 // which is an indifferentiable MAC. 217 218 // Create an AES-CTR instance to use as a CSPRNG. 219 block, err := aes.NewCipher(key) 220 if err != nil { 221 return nil, nil, err 222 } 223 224 // Create a CSPRNG that xors a stream of zeros with 225 // the output of the AES-CTR instance. 226 csprng := cipher.StreamReader{ 227 R: zeroReader, 228 S: cipher.NewCTR(block, []byte(aesIV)), 229 } 230 231 // See [NSA] 3.4.1 232 c := priv.PublicKey.Curve 233 return sign(priv, &csprng, c, hash) 234 } 235 236 func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) { 237 N := c.Params().N 238 if N.Sign() == 0 { 239 return nil, nil, errZeroParam 240 } 241 var k, kInv *big.Int 242 for { 243 for { 244 k, err = randFieldElement(c, *csprng) 245 if err != nil { 246 r = nil 247 return 248 } 249 250 if in, ok := priv.Curve.(invertible); ok { 251 kInv = in.Inverse(k) 252 } else { 253 kInv = fermatInverse(k, N) // N != 0 254 } 255 256 r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) 257 r.Mod(r, N) 258 if r.Sign() != 0 { 259 break 260 } 261 } 262 263 e := hashToInt(hash, c) 264 s = new(big.Int).Mul(priv.D, r) 265 s.Add(s, e) 266 s.Mul(s, kInv) 267 s.Mod(s, N) // N != 0 268 if s.Sign() != 0 { 269 break 270 } 271 } 272 273 return 274 } 275 276 // SignASN1 signs a hash (which should be the result of hashing a larger message) 277 // using the private key, priv. If the hash is longer than the bit-length of the 278 // private key's curve order, the hash will be truncated to that length. It 279 // returns the ASN.1 encoded signature. The security of the private key 280 // depends on the entropy of rand. 281 func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) { 282 return priv.Sign(rand, hash, nil) 283 } 284 285 // Verify verifies the signature in r, s of hash using the public key, pub. Its 286 // return value records whether the signature is valid. 287 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { 288 // See [NSA] 3.4.2 289 c := pub.Curve 290 N := c.Params().N 291 292 if r.Sign() <= 0 || s.Sign() <= 0 { 293 return false 294 } 295 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { 296 return false 297 } 298 return verify(pub, c, hash, r, s) 299 } 300 301 func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool { 302 e := hashToInt(hash, c) 303 var w *big.Int 304 N := c.Params().N 305 if in, ok := c.(invertible); ok { 306 w = in.Inverse(s) 307 } else { 308 w = new(big.Int).ModInverse(s, N) 309 } 310 311 u1 := e.Mul(e, w) 312 u1.Mod(u1, N) 313 u2 := w.Mul(r, w) 314 u2.Mod(u2, N) 315 316 // Check if implements S1*g + S2*p 317 var x, y *big.Int 318 if opt, ok := c.(combinedMult); ok { 319 x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) 320 } else { 321 x1, y1 := c.ScalarBaseMult(u1.Bytes()) 322 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) 323 x, y = c.Add(x1, y1, x2, y2) 324 } 325 326 if x.Sign() == 0 && y.Sign() == 0 { 327 return false 328 } 329 x.Mod(x, N) 330 return x.Cmp(r) == 0 331 } 332 333 // VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the 334 // public key, pub. Its return value records whether the signature is valid. 335 func VerifyASN1(pub *PublicKey, hash, sig []byte) bool { 336 var ( 337 r, s = &big.Int{}, &big.Int{} 338 inner cryptobyte.String 339 ) 340 input := cryptobyte.String(sig) 341 if !input.ReadASN1(&inner, asn1.SEQUENCE) || 342 !input.Empty() || 343 !inner.ReadASN1Integer(r) || 344 !inner.ReadASN1Integer(s) || 345 !inner.Empty() { 346 return false 347 } 348 return Verify(pub, hash, r, s) 349 } 350 351 type zr struct { 352 io.Reader 353 } 354 355 // Read replaces the contents of dst with zeros. 356 func (z *zr) Read(dst []byte) (n int, err error) { 357 for i := range dst { 358 dst[i] = 0 359 } 360 return len(dst), nil 361 } 362 363 var zeroReader = &zr{}