github.com/AESNooper/go/src@v0.0.0-20220218095104-b56a4ab1bbbb/crypto/elliptic/internal/nistec/p224.go (about) 1 // Copyright 2021 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package nistec 6 7 import ( 8 "crypto/elliptic/internal/fiat" 9 "crypto/subtle" 10 "errors" 11 ) 12 13 var p224B, _ = new(fiat.P224Element).SetBytes([]byte{0xb4, 0x05, 0x0a, 0x85, 14 0x0c, 0x04, 0xb3, 0xab, 0xf5, 0x41, 0x32, 0x56, 0x50, 0x44, 0xb0, 0xb7, 15 0xd7, 0xbf, 0xd8, 0xba, 0x27, 0x0b, 0x39, 0x43, 0x23, 0x55, 0xff, 0xb4}) 16 17 var p224G, _ = NewP224Point().SetBytes([]byte{0x04, 18 0xb7, 0x0e, 0x0c, 0xbd, 0x6b, 0xb4, 0xbf, 0x7f, 0x32, 0x13, 0x90, 0xb9, 19 0x4a, 0x03, 0xc1, 0xd3, 0x56, 0xc2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xd6, 20 0x11, 0x5c, 0x1d, 0x21, 0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 21 0x4c, 0x22, 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 22 0x44, 0xd5, 0x81, 0x99, 0x85, 0x0, 0x7e, 0x34}) 23 24 const p224ElementLength = 28 25 26 // P224Point is a P-224 point. The zero value is NOT valid. 27 type P224Point struct { 28 // The point is represented in projective coordinates (X:Y:Z), 29 // where x = X/Z and y = Y/Z. 30 x, y, z *fiat.P224Element 31 } 32 33 // NewP224Point returns a new P224Point representing the point at infinity point. 34 func NewP224Point() *P224Point { 35 return &P224Point{ 36 x: new(fiat.P224Element), 37 y: new(fiat.P224Element).One(), 38 z: new(fiat.P224Element), 39 } 40 } 41 42 // NewP224Generator returns a new P224Point set to the canonical generator. 43 func NewP224Generator() *P224Point { 44 return (&P224Point{ 45 x: new(fiat.P224Element), 46 y: new(fiat.P224Element), 47 z: new(fiat.P224Element), 48 }).Set(p224G) 49 } 50 51 // Set sets p = q and returns p. 52 func (p *P224Point) Set(q *P224Point) *P224Point { 53 p.x.Set(q.x) 54 p.y.Set(q.y) 55 p.z.Set(q.z) 56 return p 57 } 58 59 // SetBytes sets p to the compressed, uncompressed, or infinity value encoded in 60 // b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on 61 // the curve, it returns nil and an error, and the receiver is unchanged. 62 // Otherwise, it returns p. 63 func (p *P224Point) SetBytes(b []byte) (*P224Point, error) { 64 switch { 65 // Point at infinity. 66 case len(b) == 1 && b[0] == 0: 67 return p.Set(NewP224Point()), nil 68 69 // Uncompressed form. 70 case len(b) == 1+2*p224ElementLength && b[0] == 4: 71 x, err := new(fiat.P224Element).SetBytes(b[1 : 1+p224ElementLength]) 72 if err != nil { 73 return nil, err 74 } 75 y, err := new(fiat.P224Element).SetBytes(b[1+p224ElementLength:]) 76 if err != nil { 77 return nil, err 78 } 79 if err := p224CheckOnCurve(x, y); err != nil { 80 return nil, err 81 } 82 p.x.Set(x) 83 p.y.Set(y) 84 p.z.One() 85 return p, nil 86 87 // Compressed form 88 case len(b) == 1+p224ElementLength && b[0] == 0: 89 return nil, errors.New("unimplemented") // TODO(filippo) 90 91 default: 92 return nil, errors.New("invalid P224 point encoding") 93 } 94 } 95 96 func p224CheckOnCurve(x, y *fiat.P224Element) error { 97 // x³ - 3x + b. 98 x3 := new(fiat.P224Element).Square(x) 99 x3.Mul(x3, x) 100 101 threeX := new(fiat.P224Element).Add(x, x) 102 threeX.Add(threeX, x) 103 104 x3.Sub(x3, threeX) 105 x3.Add(x3, p224B) 106 107 // y² = x³ - 3x + b 108 y2 := new(fiat.P224Element).Square(y) 109 110 if x3.Equal(y2) != 1 { 111 return errors.New("P224 point not on curve") 112 } 113 return nil 114 } 115 116 // Bytes returns the uncompressed or infinity encoding of p, as specified in 117 // SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at 118 // infinity is shorter than all other encodings. 119 func (p *P224Point) Bytes() []byte { 120 // This function is outlined to make the allocations inline in the caller 121 // rather than happen on the heap. 122 var out [133]byte 123 return p.bytes(&out) 124 } 125 126 func (p *P224Point) bytes(out *[133]byte) []byte { 127 if p.z.IsZero() == 1 { 128 return append(out[:0], 0) 129 } 130 131 zinv := new(fiat.P224Element).Invert(p.z) 132 xx := new(fiat.P224Element).Mul(p.x, zinv) 133 yy := new(fiat.P224Element).Mul(p.y, zinv) 134 135 buf := append(out[:0], 4) 136 buf = append(buf, xx.Bytes()...) 137 buf = append(buf, yy.Bytes()...) 138 return buf 139 } 140 141 // Add sets q = p1 + p2, and returns q. The points may overlap. 142 func (q *P224Point) Add(p1, p2 *P224Point) *P224Point { 143 // Complete addition formula for a = -3 from "Complete addition formulas for 144 // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. 145 146 t0 := new(fiat.P224Element).Mul(p1.x, p2.x) // t0 := X1 * X2 147 t1 := new(fiat.P224Element).Mul(p1.y, p2.y) // t1 := Y1 * Y2 148 t2 := new(fiat.P224Element).Mul(p1.z, p2.z) // t2 := Z1 * Z2 149 t3 := new(fiat.P224Element).Add(p1.x, p1.y) // t3 := X1 + Y1 150 t4 := new(fiat.P224Element).Add(p2.x, p2.y) // t4 := X2 + Y2 151 t3.Mul(t3, t4) // t3 := t3 * t4 152 t4.Add(t0, t1) // t4 := t0 + t1 153 t3.Sub(t3, t4) // t3 := t3 - t4 154 t4.Add(p1.y, p1.z) // t4 := Y1 + Z1 155 x3 := new(fiat.P224Element).Add(p2.y, p2.z) // X3 := Y2 + Z2 156 t4.Mul(t4, x3) // t4 := t4 * X3 157 x3.Add(t1, t2) // X3 := t1 + t2 158 t4.Sub(t4, x3) // t4 := t4 - X3 159 x3.Add(p1.x, p1.z) // X3 := X1 + Z1 160 y3 := new(fiat.P224Element).Add(p2.x, p2.z) // Y3 := X2 + Z2 161 x3.Mul(x3, y3) // X3 := X3 * Y3 162 y3.Add(t0, t2) // Y3 := t0 + t2 163 y3.Sub(x3, y3) // Y3 := X3 - Y3 164 z3 := new(fiat.P224Element).Mul(p224B, t2) // Z3 := b * t2 165 x3.Sub(y3, z3) // X3 := Y3 - Z3 166 z3.Add(x3, x3) // Z3 := X3 + X3 167 x3.Add(x3, z3) // X3 := X3 + Z3 168 z3.Sub(t1, x3) // Z3 := t1 - X3 169 x3.Add(t1, x3) // X3 := t1 + X3 170 y3.Mul(p224B, y3) // Y3 := b * Y3 171 t1.Add(t2, t2) // t1 := t2 + t2 172 t2.Add(t1, t2) // t2 := t1 + t2 173 y3.Sub(y3, t2) // Y3 := Y3 - t2 174 y3.Sub(y3, t0) // Y3 := Y3 - t0 175 t1.Add(y3, y3) // t1 := Y3 + Y3 176 y3.Add(t1, y3) // Y3 := t1 + Y3 177 t1.Add(t0, t0) // t1 := t0 + t0 178 t0.Add(t1, t0) // t0 := t1 + t0 179 t0.Sub(t0, t2) // t0 := t0 - t2 180 t1.Mul(t4, y3) // t1 := t4 * Y3 181 t2.Mul(t0, y3) // t2 := t0 * Y3 182 y3.Mul(x3, z3) // Y3 := X3 * Z3 183 y3.Add(y3, t2) // Y3 := Y3 + t2 184 x3.Mul(t3, x3) // X3 := t3 * X3 185 x3.Sub(x3, t1) // X3 := X3 - t1 186 z3.Mul(t4, z3) // Z3 := t4 * Z3 187 t1.Mul(t3, t0) // t1 := t3 * t0 188 z3.Add(z3, t1) // Z3 := Z3 + t1 189 190 q.x.Set(x3) 191 q.y.Set(y3) 192 q.z.Set(z3) 193 return q 194 } 195 196 // Double sets q = p + p, and returns q. The points may overlap. 197 func (q *P224Point) Double(p *P224Point) *P224Point { 198 // Complete addition formula for a = -3 from "Complete addition formulas for 199 // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. 200 201 t0 := new(fiat.P224Element).Square(p.x) // t0 := X ^ 2 202 t1 := new(fiat.P224Element).Square(p.y) // t1 := Y ^ 2 203 t2 := new(fiat.P224Element).Square(p.z) // t2 := Z ^ 2 204 t3 := new(fiat.P224Element).Mul(p.x, p.y) // t3 := X * Y 205 t3.Add(t3, t3) // t3 := t3 + t3 206 z3 := new(fiat.P224Element).Mul(p.x, p.z) // Z3 := X * Z 207 z3.Add(z3, z3) // Z3 := Z3 + Z3 208 y3 := new(fiat.P224Element).Mul(p224B, t2) // Y3 := b * t2 209 y3.Sub(y3, z3) // Y3 := Y3 - Z3 210 x3 := new(fiat.P224Element).Add(y3, y3) // X3 := Y3 + Y3 211 y3.Add(x3, y3) // Y3 := X3 + Y3 212 x3.Sub(t1, y3) // X3 := t1 - Y3 213 y3.Add(t1, y3) // Y3 := t1 + Y3 214 y3.Mul(x3, y3) // Y3 := X3 * Y3 215 x3.Mul(x3, t3) // X3 := X3 * t3 216 t3.Add(t2, t2) // t3 := t2 + t2 217 t2.Add(t2, t3) // t2 := t2 + t3 218 z3.Mul(p224B, z3) // Z3 := b * Z3 219 z3.Sub(z3, t2) // Z3 := Z3 - t2 220 z3.Sub(z3, t0) // Z3 := Z3 - t0 221 t3.Add(z3, z3) // t3 := Z3 + Z3 222 z3.Add(z3, t3) // Z3 := Z3 + t3 223 t3.Add(t0, t0) // t3 := t0 + t0 224 t0.Add(t3, t0) // t0 := t3 + t0 225 t0.Sub(t0, t2) // t0 := t0 - t2 226 t0.Mul(t0, z3) // t0 := t0 * Z3 227 y3.Add(y3, t0) // Y3 := Y3 + t0 228 t0.Mul(p.y, p.z) // t0 := Y * Z 229 t0.Add(t0, t0) // t0 := t0 + t0 230 z3.Mul(t0, z3) // Z3 := t0 * Z3 231 x3.Sub(x3, z3) // X3 := X3 - Z3 232 z3.Mul(t0, t1) // Z3 := t0 * t1 233 z3.Add(z3, z3) // Z3 := Z3 + Z3 234 z3.Add(z3, z3) // Z3 := Z3 + Z3 235 236 q.x.Set(x3) 237 q.y.Set(y3) 238 q.z.Set(z3) 239 return q 240 } 241 242 // Select sets q to p1 if cond == 1, and to p2 if cond == 0. 243 func (q *P224Point) Select(p1, p2 *P224Point, cond int) *P224Point { 244 q.x.Select(p1.x, p2.x, cond) 245 q.y.Select(p1.y, p2.y, cond) 246 q.z.Select(p1.z, p2.z, cond) 247 return q 248 } 249 250 // ScalarMult sets p = scalar * q, and returns p. 251 func (p *P224Point) ScalarMult(q *P224Point, scalar []byte) *P224Point { 252 // table holds the first 16 multiples of q. The explicit newP224Point calls 253 // get inlined, letting the allocations live on the stack. 254 var table = [16]*P224Point{ 255 NewP224Point(), NewP224Point(), NewP224Point(), NewP224Point(), 256 NewP224Point(), NewP224Point(), NewP224Point(), NewP224Point(), 257 NewP224Point(), NewP224Point(), NewP224Point(), NewP224Point(), 258 NewP224Point(), NewP224Point(), NewP224Point(), NewP224Point(), 259 } 260 for i := 1; i < 16; i++ { 261 table[i].Add(table[i-1], q) 262 } 263 264 // Instead of doing the classic double-and-add chain, we do it with a 265 // four-bit window: we double four times, and then add [0-15]P. 266 t := NewP224Point() 267 p.Set(NewP224Point()) 268 for _, byte := range scalar { 269 p.Double(p) 270 p.Double(p) 271 p.Double(p) 272 p.Double(p) 273 274 for i := uint8(0); i < 16; i++ { 275 cond := subtle.ConstantTimeByteEq(byte>>4, i) 276 t.Select(table[i], t, cond) 277 } 278 p.Add(p, t) 279 280 p.Double(p) 281 p.Double(p) 282 p.Double(p) 283 p.Double(p) 284 285 for i := uint8(0); i < 16; i++ { 286 cond := subtle.ConstantTimeByteEq(byte&0b1111, i) 287 t.Select(table[i], t, cond) 288 } 289 p.Add(p, t) 290 } 291 292 return p 293 }