github.com/AESNooper/go/src@v0.0.0-20220218095104-b56a4ab1bbbb/crypto/elliptic/internal/nistec/p384.go (about) 1 // Copyright 2021 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package nistec 6 7 import ( 8 "crypto/elliptic/internal/fiat" 9 "crypto/subtle" 10 "errors" 11 ) 12 13 var p384B, _ = new(fiat.P384Element).SetBytes([]byte{ 14 0xb3, 0x31, 0x2f, 0xa7, 0xe2, 0x3e, 0xe7, 0xe4, 0x98, 0x8e, 0x05, 0x6b, 15 0xe3, 0xf8, 0x2d, 0x19, 0x18, 0x1d, 0x9c, 0x6e, 0xfe, 0x81, 0x41, 0x12, 16 0x03, 0x14, 0x08, 0x8f, 0x50, 0x13, 0x87, 0x5a, 0xc6, 0x56, 0x39, 0x8d, 17 0x8a, 0x2e, 0xd1, 0x9d, 0x2a, 0x85, 0xc8, 0xed, 0xd3, 0xec, 0x2a, 0xef}) 18 19 var p384G, _ = NewP384Point().SetBytes([]byte{0x4, 20 0xaa, 0x87, 0xca, 0x22, 0xbe, 0x8b, 0x05, 0x37, 0x8e, 0xb1, 0xc7, 0x1e, 21 0xf3, 0x20, 0xad, 0x74, 0x6e, 0x1d, 0x3b, 0x62, 0x8b, 0xa7, 0x9b, 0x98, 22 0x59, 0xf7, 0x41, 0xe0, 0x82, 0x54, 0x2a, 0x38, 0x55, 0x02, 0xf2, 0x5d, 23 0xbf, 0x55, 0x29, 0x6c, 0x3a, 0x54, 0x5e, 0x38, 0x72, 0x76, 0x0a, 0xb7, 24 0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf, 25 0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c, 26 0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0x0a, 0x60, 0xb1, 0xce, 27 0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f}) 28 29 const p384ElementLength = 48 30 31 // P384Point is a P-384 point. The zero value is NOT valid. 32 type P384Point struct { 33 // The point is represented in projective coordinates (X:Y:Z), 34 // where x = X/Z and y = Y/Z. 35 x, y, z *fiat.P384Element 36 } 37 38 // NewP384Point returns a new P384Point representing the point at infinity point. 39 func NewP384Point() *P384Point { 40 return &P384Point{ 41 x: new(fiat.P384Element), 42 y: new(fiat.P384Element).One(), 43 z: new(fiat.P384Element), 44 } 45 } 46 47 // NewP384Generator returns a new P384Point set to the canonical generator. 48 func NewP384Generator() *P384Point { 49 return (&P384Point{ 50 x: new(fiat.P384Element), 51 y: new(fiat.P384Element), 52 z: new(fiat.P384Element), 53 }).Set(p384G) 54 } 55 56 // Set sets p = q and returns p. 57 func (p *P384Point) Set(q *P384Point) *P384Point { 58 p.x.Set(q.x) 59 p.y.Set(q.y) 60 p.z.Set(q.z) 61 return p 62 } 63 64 // SetBytes sets p to the compressed, uncompressed, or infinity value encoded in 65 // b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on 66 // the curve, it returns nil and an error, and the receiver is unchanged. 67 // Otherwise, it returns p. 68 func (p *P384Point) SetBytes(b []byte) (*P384Point, error) { 69 switch { 70 // Point at infinity. 71 case len(b) == 1 && b[0] == 0: 72 return p.Set(NewP384Point()), nil 73 74 // Uncompressed form. 75 case len(b) == 1+2*p384ElementLength && b[0] == 4: 76 x, err := new(fiat.P384Element).SetBytes(b[1 : 1+p384ElementLength]) 77 if err != nil { 78 return nil, err 79 } 80 y, err := new(fiat.P384Element).SetBytes(b[1+p384ElementLength:]) 81 if err != nil { 82 return nil, err 83 } 84 if err := p384CheckOnCurve(x, y); err != nil { 85 return nil, err 86 } 87 p.x.Set(x) 88 p.y.Set(y) 89 p.z.One() 90 return p, nil 91 92 // Compressed form 93 case len(b) == 1+p384ElementLength && b[0] == 0: 94 return nil, errors.New("unimplemented") // TODO(filippo) 95 96 default: 97 return nil, errors.New("invalid P384 point encoding") 98 } 99 } 100 101 func p384CheckOnCurve(x, y *fiat.P384Element) error { 102 // x³ - 3x + b. 103 x3 := new(fiat.P384Element).Square(x) 104 x3.Mul(x3, x) 105 106 threeX := new(fiat.P384Element).Add(x, x) 107 threeX.Add(threeX, x) 108 109 x3.Sub(x3, threeX) 110 x3.Add(x3, p384B) 111 112 // y² = x³ - 3x + b 113 y2 := new(fiat.P384Element).Square(y) 114 115 if x3.Equal(y2) != 1 { 116 return errors.New("P384 point not on curve") 117 } 118 return nil 119 } 120 121 // Bytes returns the uncompressed or infinity encoding of p, as specified in 122 // SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at 123 // infinity is shorter than all other encodings. 124 func (p *P384Point) Bytes() []byte { 125 // This function is outlined to make the allocations inline in the caller 126 // rather than happen on the heap. 127 var out [133]byte 128 return p.bytes(&out) 129 } 130 131 func (p *P384Point) bytes(out *[133]byte) []byte { 132 if p.z.IsZero() == 1 { 133 return append(out[:0], 0) 134 } 135 136 zinv := new(fiat.P384Element).Invert(p.z) 137 xx := new(fiat.P384Element).Mul(p.x, zinv) 138 yy := new(fiat.P384Element).Mul(p.y, zinv) 139 140 buf := append(out[:0], 4) 141 buf = append(buf, xx.Bytes()...) 142 buf = append(buf, yy.Bytes()...) 143 return buf 144 } 145 146 // Add sets q = p1 + p2, and returns q. The points may overlap. 147 func (q *P384Point) Add(p1, p2 *P384Point) *P384Point { 148 // Complete addition formula for a = -3 from "Complete addition formulas for 149 // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. 150 151 t0 := new(fiat.P384Element).Mul(p1.x, p2.x) // t0 := X1 * X2 152 t1 := new(fiat.P384Element).Mul(p1.y, p2.y) // t1 := Y1 * Y2 153 t2 := new(fiat.P384Element).Mul(p1.z, p2.z) // t2 := Z1 * Z2 154 t3 := new(fiat.P384Element).Add(p1.x, p1.y) // t3 := X1 + Y1 155 t4 := new(fiat.P384Element).Add(p2.x, p2.y) // t4 := X2 + Y2 156 t3.Mul(t3, t4) // t3 := t3 * t4 157 t4.Add(t0, t1) // t4 := t0 + t1 158 t3.Sub(t3, t4) // t3 := t3 - t4 159 t4.Add(p1.y, p1.z) // t4 := Y1 + Z1 160 x3 := new(fiat.P384Element).Add(p2.y, p2.z) // X3 := Y2 + Z2 161 t4.Mul(t4, x3) // t4 := t4 * X3 162 x3.Add(t1, t2) // X3 := t1 + t2 163 t4.Sub(t4, x3) // t4 := t4 - X3 164 x3.Add(p1.x, p1.z) // X3 := X1 + Z1 165 y3 := new(fiat.P384Element).Add(p2.x, p2.z) // Y3 := X2 + Z2 166 x3.Mul(x3, y3) // X3 := X3 * Y3 167 y3.Add(t0, t2) // Y3 := t0 + t2 168 y3.Sub(x3, y3) // Y3 := X3 - Y3 169 z3 := new(fiat.P384Element).Mul(p384B, t2) // Z3 := b * t2 170 x3.Sub(y3, z3) // X3 := Y3 - Z3 171 z3.Add(x3, x3) // Z3 := X3 + X3 172 x3.Add(x3, z3) // X3 := X3 + Z3 173 z3.Sub(t1, x3) // Z3 := t1 - X3 174 x3.Add(t1, x3) // X3 := t1 + X3 175 y3.Mul(p384B, y3) // Y3 := b * Y3 176 t1.Add(t2, t2) // t1 := t2 + t2 177 t2.Add(t1, t2) // t2 := t1 + t2 178 y3.Sub(y3, t2) // Y3 := Y3 - t2 179 y3.Sub(y3, t0) // Y3 := Y3 - t0 180 t1.Add(y3, y3) // t1 := Y3 + Y3 181 y3.Add(t1, y3) // Y3 := t1 + Y3 182 t1.Add(t0, t0) // t1 := t0 + t0 183 t0.Add(t1, t0) // t0 := t1 + t0 184 t0.Sub(t0, t2) // t0 := t0 - t2 185 t1.Mul(t4, y3) // t1 := t4 * Y3 186 t2.Mul(t0, y3) // t2 := t0 * Y3 187 y3.Mul(x3, z3) // Y3 := X3 * Z3 188 y3.Add(y3, t2) // Y3 := Y3 + t2 189 x3.Mul(t3, x3) // X3 := t3 * X3 190 x3.Sub(x3, t1) // X3 := X3 - t1 191 z3.Mul(t4, z3) // Z3 := t4 * Z3 192 t1.Mul(t3, t0) // t1 := t3 * t0 193 z3.Add(z3, t1) // Z3 := Z3 + t1 194 195 q.x.Set(x3) 196 q.y.Set(y3) 197 q.z.Set(z3) 198 return q 199 } 200 201 // Double sets q = p + p, and returns q. The points may overlap. 202 func (q *P384Point) Double(p *P384Point) *P384Point { 203 // Complete addition formula for a = -3 from "Complete addition formulas for 204 // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. 205 206 t0 := new(fiat.P384Element).Square(p.x) // t0 := X ^ 2 207 t1 := new(fiat.P384Element).Square(p.y) // t1 := Y ^ 2 208 t2 := new(fiat.P384Element).Square(p.z) // t2 := Z ^ 2 209 t3 := new(fiat.P384Element).Mul(p.x, p.y) // t3 := X * Y 210 t3.Add(t3, t3) // t3 := t3 + t3 211 z3 := new(fiat.P384Element).Mul(p.x, p.z) // Z3 := X * Z 212 z3.Add(z3, z3) // Z3 := Z3 + Z3 213 y3 := new(fiat.P384Element).Mul(p384B, t2) // Y3 := b * t2 214 y3.Sub(y3, z3) // Y3 := Y3 - Z3 215 x3 := new(fiat.P384Element).Add(y3, y3) // X3 := Y3 + Y3 216 y3.Add(x3, y3) // Y3 := X3 + Y3 217 x3.Sub(t1, y3) // X3 := t1 - Y3 218 y3.Add(t1, y3) // Y3 := t1 + Y3 219 y3.Mul(x3, y3) // Y3 := X3 * Y3 220 x3.Mul(x3, t3) // X3 := X3 * t3 221 t3.Add(t2, t2) // t3 := t2 + t2 222 t2.Add(t2, t3) // t2 := t2 + t3 223 z3.Mul(p384B, z3) // Z3 := b * Z3 224 z3.Sub(z3, t2) // Z3 := Z3 - t2 225 z3.Sub(z3, t0) // Z3 := Z3 - t0 226 t3.Add(z3, z3) // t3 := Z3 + Z3 227 z3.Add(z3, t3) // Z3 := Z3 + t3 228 t3.Add(t0, t0) // t3 := t0 + t0 229 t0.Add(t3, t0) // t0 := t3 + t0 230 t0.Sub(t0, t2) // t0 := t0 - t2 231 t0.Mul(t0, z3) // t0 := t0 * Z3 232 y3.Add(y3, t0) // Y3 := Y3 + t0 233 t0.Mul(p.y, p.z) // t0 := Y * Z 234 t0.Add(t0, t0) // t0 := t0 + t0 235 z3.Mul(t0, z3) // Z3 := t0 * Z3 236 x3.Sub(x3, z3) // X3 := X3 - Z3 237 z3.Mul(t0, t1) // Z3 := t0 * t1 238 z3.Add(z3, z3) // Z3 := Z3 + Z3 239 z3.Add(z3, z3) // Z3 := Z3 + Z3 240 241 q.x.Set(x3) 242 q.y.Set(y3) 243 q.z.Set(z3) 244 return q 245 } 246 247 // Select sets q to p1 if cond == 1, and to p2 if cond == 0. 248 func (q *P384Point) Select(p1, p2 *P384Point, cond int) *P384Point { 249 q.x.Select(p1.x, p2.x, cond) 250 q.y.Select(p1.y, p2.y, cond) 251 q.z.Select(p1.z, p2.z, cond) 252 return q 253 } 254 255 // ScalarMult sets p = scalar * q, and returns p. 256 func (p *P384Point) ScalarMult(q *P384Point, scalar []byte) *P384Point { 257 // table holds the first 16 multiples of q. The explicit newP384Point calls 258 // get inlined, letting the allocations live on the stack. 259 var table = [16]*P384Point{ 260 NewP384Point(), NewP384Point(), NewP384Point(), NewP384Point(), 261 NewP384Point(), NewP384Point(), NewP384Point(), NewP384Point(), 262 NewP384Point(), NewP384Point(), NewP384Point(), NewP384Point(), 263 NewP384Point(), NewP384Point(), NewP384Point(), NewP384Point(), 264 } 265 for i := 1; i < 16; i++ { 266 table[i].Add(table[i-1], q) 267 } 268 269 // Instead of doing the classic double-and-add chain, we do it with a 270 // four-bit window: we double four times, and then add [0-15]P. 271 t := NewP384Point() 272 p.Set(NewP384Point()) 273 for _, byte := range scalar { 274 p.Double(p) 275 p.Double(p) 276 p.Double(p) 277 p.Double(p) 278 279 for i := uint8(0); i < 16; i++ { 280 cond := subtle.ConstantTimeByteEq(byte>>4, i) 281 t.Select(table[i], t, cond) 282 } 283 p.Add(p, t) 284 285 p.Double(p) 286 p.Double(p) 287 p.Double(p) 288 p.Double(p) 289 290 for i := uint8(0); i < 16; i++ { 291 cond := subtle.ConstantTimeByteEq(byte&0b1111, i) 292 t.Select(table[i], t, cond) 293 } 294 p.Add(p, t) 295 } 296 297 return p 298 }