github.com/AESNooper/go/src@v0.0.0-20220218095104-b56a4ab1bbbb/crypto/elliptic/internal/nistec/p521.go (about) 1 // Copyright 2021 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package nistec implements the NIST P elliptic curves from FIPS 186-4. 6 // 7 // This package uses fiat-crypto for its backend field arithmetic (not math/big) 8 // and exposes constant-time, heap allocation-free, byte slice-based safe APIs. 9 // Group operations use modern and safe complete addition formulas. The point at 10 // infinity is handled and encoded according to SEC 1, Version 2.0, and invalid 11 // curve points can't be represented. 12 package nistec 13 14 import ( 15 "crypto/elliptic/internal/fiat" 16 "crypto/subtle" 17 "errors" 18 ) 19 20 var p521B, _ = new(fiat.P521Element).SetBytes([]byte{ 21 0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, 0x9a, 0x1f, 0x92, 0x9a, 22 0x21, 0xa0, 0xb6, 0x85, 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, 23 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, 0x09, 0xe1, 0x56, 0x19, 24 0x39, 0x51, 0xec, 0x7e, 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, 25 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, 0x34, 0xf1, 0xef, 0x45, 26 0x1f, 0xd4, 0x6b, 0x50, 0x3f, 0x00}) 27 28 var p521G, _ = NewP521Point().SetBytes([]byte{0x04, 29 0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, 0xe9, 0xcd, 0x9e, 0x3e, 30 0xcb, 0x66, 0x23, 0x95, 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, 31 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, 0x3d, 0xba, 0xa1, 0x4b, 32 0x5e, 0x77, 0xef, 0xe7, 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, 33 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, 0x42, 0x9b, 0xf9, 0x7e, 34 0x7e, 0x31, 0xc2, 0xe5, 0xbd, 0x66, 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 35 0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 36 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 37 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 38 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 39 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50}) 40 41 const p521ElementLength = 66 42 43 // P521Point is a P-521 point. The zero value is NOT valid. 44 type P521Point struct { 45 // The point is represented in projective coordinates (X:Y:Z), 46 // where x = X/Z and y = Y/Z. 47 x, y, z *fiat.P521Element 48 } 49 50 // NewP521Point returns a new P521Point representing the point at infinity point. 51 func NewP521Point() *P521Point { 52 return &P521Point{ 53 x: new(fiat.P521Element), 54 y: new(fiat.P521Element).One(), 55 z: new(fiat.P521Element), 56 } 57 } 58 59 // NewP521Generator returns a new P521Point set to the canonical generator. 60 func NewP521Generator() *P521Point { 61 return (&P521Point{ 62 x: new(fiat.P521Element), 63 y: new(fiat.P521Element), 64 z: new(fiat.P521Element), 65 }).Set(p521G) 66 } 67 68 // Set sets p = q and returns p. 69 func (p *P521Point) Set(q *P521Point) *P521Point { 70 p.x.Set(q.x) 71 p.y.Set(q.y) 72 p.z.Set(q.z) 73 return p 74 } 75 76 // SetBytes sets p to the compressed, uncompressed, or infinity value encoded in 77 // b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on 78 // the curve, it returns nil and an error, and the receiver is unchanged. 79 // Otherwise, it returns p. 80 func (p *P521Point) SetBytes(b []byte) (*P521Point, error) { 81 switch { 82 // Point at infinity. 83 case len(b) == 1 && b[0] == 0: 84 return p.Set(NewP521Point()), nil 85 86 // Uncompressed form. 87 case len(b) == 1+2*p521ElementLength && b[0] == 4: 88 x, err := new(fiat.P521Element).SetBytes(b[1 : 1+p521ElementLength]) 89 if err != nil { 90 return nil, err 91 } 92 y, err := new(fiat.P521Element).SetBytes(b[1+p521ElementLength:]) 93 if err != nil { 94 return nil, err 95 } 96 if err := p521CheckOnCurve(x, y); err != nil { 97 return nil, err 98 } 99 p.x.Set(x) 100 p.y.Set(y) 101 p.z.One() 102 return p, nil 103 104 // Compressed form 105 case len(b) == 1+p521ElementLength && b[0] == 0: 106 return nil, errors.New("unimplemented") // TODO(filippo) 107 108 default: 109 return nil, errors.New("invalid P521 point encoding") 110 } 111 } 112 113 func p521CheckOnCurve(x, y *fiat.P521Element) error { 114 // x³ - 3x + b. 115 x3 := new(fiat.P521Element).Square(x) 116 x3.Mul(x3, x) 117 118 threeX := new(fiat.P521Element).Add(x, x) 119 threeX.Add(threeX, x) 120 121 x3.Sub(x3, threeX) 122 x3.Add(x3, p521B) 123 124 // y² = x³ - 3x + b 125 y2 := new(fiat.P521Element).Square(y) 126 127 if x3.Equal(y2) != 1 { 128 return errors.New("P521 point not on curve") 129 } 130 return nil 131 } 132 133 // Bytes returns the uncompressed or infinity encoding of p, as specified in 134 // SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at 135 // infinity is shorter than all other encodings. 136 func (p *P521Point) Bytes() []byte { 137 // This function is outlined to make the allocations inline in the caller 138 // rather than happen on the heap. 139 var out [133]byte 140 return p.bytes(&out) 141 } 142 143 func (p *P521Point) bytes(out *[133]byte) []byte { 144 if p.z.IsZero() == 1 { 145 return append(out[:0], 0) 146 } 147 148 zinv := new(fiat.P521Element).Invert(p.z) 149 xx := new(fiat.P521Element).Mul(p.x, zinv) 150 yy := new(fiat.P521Element).Mul(p.y, zinv) 151 152 buf := append(out[:0], 4) 153 buf = append(buf, xx.Bytes()...) 154 buf = append(buf, yy.Bytes()...) 155 return buf 156 } 157 158 // Add sets q = p1 + p2, and returns q. The points may overlap. 159 func (q *P521Point) Add(p1, p2 *P521Point) *P521Point { 160 // Complete addition formula for a = -3 from "Complete addition formulas for 161 // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. 162 163 t0 := new(fiat.P521Element).Mul(p1.x, p2.x) // t0 := X1 * X2 164 t1 := new(fiat.P521Element).Mul(p1.y, p2.y) // t1 := Y1 * Y2 165 t2 := new(fiat.P521Element).Mul(p1.z, p2.z) // t2 := Z1 * Z2 166 t3 := new(fiat.P521Element).Add(p1.x, p1.y) // t3 := X1 + Y1 167 t4 := new(fiat.P521Element).Add(p2.x, p2.y) // t4 := X2 + Y2 168 t3.Mul(t3, t4) // t3 := t3 * t4 169 t4.Add(t0, t1) // t4 := t0 + t1 170 t3.Sub(t3, t4) // t3 := t3 - t4 171 t4.Add(p1.y, p1.z) // t4 := Y1 + Z1 172 x3 := new(fiat.P521Element).Add(p2.y, p2.z) // X3 := Y2 + Z2 173 t4.Mul(t4, x3) // t4 := t4 * X3 174 x3.Add(t1, t2) // X3 := t1 + t2 175 t4.Sub(t4, x3) // t4 := t4 - X3 176 x3.Add(p1.x, p1.z) // X3 := X1 + Z1 177 y3 := new(fiat.P521Element).Add(p2.x, p2.z) // Y3 := X2 + Z2 178 x3.Mul(x3, y3) // X3 := X3 * Y3 179 y3.Add(t0, t2) // Y3 := t0 + t2 180 y3.Sub(x3, y3) // Y3 := X3 - Y3 181 z3 := new(fiat.P521Element).Mul(p521B, t2) // Z3 := b * t2 182 x3.Sub(y3, z3) // X3 := Y3 - Z3 183 z3.Add(x3, x3) // Z3 := X3 + X3 184 x3.Add(x3, z3) // X3 := X3 + Z3 185 z3.Sub(t1, x3) // Z3 := t1 - X3 186 x3.Add(t1, x3) // X3 := t1 + X3 187 y3.Mul(p521B, y3) // Y3 := b * Y3 188 t1.Add(t2, t2) // t1 := t2 + t2 189 t2.Add(t1, t2) // t2 := t1 + t2 190 y3.Sub(y3, t2) // Y3 := Y3 - t2 191 y3.Sub(y3, t0) // Y3 := Y3 - t0 192 t1.Add(y3, y3) // t1 := Y3 + Y3 193 y3.Add(t1, y3) // Y3 := t1 + Y3 194 t1.Add(t0, t0) // t1 := t0 + t0 195 t0.Add(t1, t0) // t0 := t1 + t0 196 t0.Sub(t0, t2) // t0 := t0 - t2 197 t1.Mul(t4, y3) // t1 := t4 * Y3 198 t2.Mul(t0, y3) // t2 := t0 * Y3 199 y3.Mul(x3, z3) // Y3 := X3 * Z3 200 y3.Add(y3, t2) // Y3 := Y3 + t2 201 x3.Mul(t3, x3) // X3 := t3 * X3 202 x3.Sub(x3, t1) // X3 := X3 - t1 203 z3.Mul(t4, z3) // Z3 := t4 * Z3 204 t1.Mul(t3, t0) // t1 := t3 * t0 205 z3.Add(z3, t1) // Z3 := Z3 + t1 206 207 q.x.Set(x3) 208 q.y.Set(y3) 209 q.z.Set(z3) 210 return q 211 } 212 213 // Double sets q = p + p, and returns q. The points may overlap. 214 func (q *P521Point) Double(p *P521Point) *P521Point { 215 // Complete addition formula for a = -3 from "Complete addition formulas for 216 // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. 217 218 t0 := new(fiat.P521Element).Square(p.x) // t0 := X ^ 2 219 t1 := new(fiat.P521Element).Square(p.y) // t1 := Y ^ 2 220 t2 := new(fiat.P521Element).Square(p.z) // t2 := Z ^ 2 221 t3 := new(fiat.P521Element).Mul(p.x, p.y) // t3 := X * Y 222 t3.Add(t3, t3) // t3 := t3 + t3 223 z3 := new(fiat.P521Element).Mul(p.x, p.z) // Z3 := X * Z 224 z3.Add(z3, z3) // Z3 := Z3 + Z3 225 y3 := new(fiat.P521Element).Mul(p521B, t2) // Y3 := b * t2 226 y3.Sub(y3, z3) // Y3 := Y3 - Z3 227 x3 := new(fiat.P521Element).Add(y3, y3) // X3 := Y3 + Y3 228 y3.Add(x3, y3) // Y3 := X3 + Y3 229 x3.Sub(t1, y3) // X3 := t1 - Y3 230 y3.Add(t1, y3) // Y3 := t1 + Y3 231 y3.Mul(x3, y3) // Y3 := X3 * Y3 232 x3.Mul(x3, t3) // X3 := X3 * t3 233 t3.Add(t2, t2) // t3 := t2 + t2 234 t2.Add(t2, t3) // t2 := t2 + t3 235 z3.Mul(p521B, z3) // Z3 := b * Z3 236 z3.Sub(z3, t2) // Z3 := Z3 - t2 237 z3.Sub(z3, t0) // Z3 := Z3 - t0 238 t3.Add(z3, z3) // t3 := Z3 + Z3 239 z3.Add(z3, t3) // Z3 := Z3 + t3 240 t3.Add(t0, t0) // t3 := t0 + t0 241 t0.Add(t3, t0) // t0 := t3 + t0 242 t0.Sub(t0, t2) // t0 := t0 - t2 243 t0.Mul(t0, z3) // t0 := t0 * Z3 244 y3.Add(y3, t0) // Y3 := Y3 + t0 245 t0.Mul(p.y, p.z) // t0 := Y * Z 246 t0.Add(t0, t0) // t0 := t0 + t0 247 z3.Mul(t0, z3) // Z3 := t0 * Z3 248 x3.Sub(x3, z3) // X3 := X3 - Z3 249 z3.Mul(t0, t1) // Z3 := t0 * t1 250 z3.Add(z3, z3) // Z3 := Z3 + Z3 251 z3.Add(z3, z3) // Z3 := Z3 + Z3 252 253 q.x.Set(x3) 254 q.y.Set(y3) 255 q.z.Set(z3) 256 return q 257 } 258 259 // Select sets q to p1 if cond == 1, and to p2 if cond == 0. 260 func (q *P521Point) Select(p1, p2 *P521Point, cond int) *P521Point { 261 q.x.Select(p1.x, p2.x, cond) 262 q.y.Select(p1.y, p2.y, cond) 263 q.z.Select(p1.z, p2.z, cond) 264 return q 265 } 266 267 // ScalarMult sets p = scalar * q, and returns p. 268 func (p *P521Point) ScalarMult(q *P521Point, scalar []byte) *P521Point { 269 // table holds the first 16 multiples of q. The explicit newP521Point calls 270 // get inlined, letting the allocations live on the stack. 271 var table = [16]*P521Point{ 272 NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), 273 NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), 274 NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), 275 NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), 276 } 277 for i := 1; i < 16; i++ { 278 table[i].Add(table[i-1], q) 279 } 280 281 // Instead of doing the classic double-and-add chain, we do it with a 282 // four-bit window: we double four times, and then add [0-15]P. 283 t := NewP521Point() 284 p.Set(NewP521Point()) 285 for _, byte := range scalar { 286 p.Double(p) 287 p.Double(p) 288 p.Double(p) 289 p.Double(p) 290 291 for i := uint8(0); i < 16; i++ { 292 cond := subtle.ConstantTimeByteEq(byte>>4, i) 293 t.Select(table[i], t, cond) 294 } 295 p.Add(p, t) 296 297 p.Double(p) 298 p.Double(p) 299 p.Double(p) 300 p.Double(p) 301 302 for i := uint8(0); i < 16; i++ { 303 cond := subtle.ConstantTimeByteEq(byte&0b1111, i) 304 t.Select(table[i], t, cond) 305 } 306 p.Add(p, t) 307 } 308 309 return p 310 }