github.com/AESNooper/go/src@v0.0.0-20220218095104-b56a4ab1bbbb/image/draw/draw.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package draw provides image composition functions. 6 // 7 // See "The Go image/draw package" for an introduction to this package: 8 // https://golang.org/doc/articles/image_draw.html 9 package draw 10 11 import ( 12 "image" 13 "image/color" 14 "image/internal/imageutil" 15 ) 16 17 // m is the maximum color value returned by image.Color.RGBA. 18 const m = 1<<16 - 1 19 20 // Image is an image.Image with a Set method to change a single pixel. 21 type Image interface { 22 image.Image 23 Set(x, y int, c color.Color) 24 } 25 26 // RGBA64Image extends both the Image and image.RGBA64Image interfaces with a 27 // SetRGBA64 method to change a single pixel. SetRGBA64 is equivalent to 28 // calling Set, but it can avoid allocations from converting concrete color 29 // types to the color.Color interface type. 30 type RGBA64Image interface { 31 image.RGBA64Image 32 Set(x, y int, c color.Color) 33 SetRGBA64(x, y int, c color.RGBA64) 34 } 35 36 // Quantizer produces a palette for an image. 37 type Quantizer interface { 38 // Quantize appends up to cap(p) - len(p) colors to p and returns the 39 // updated palette suitable for converting m to a paletted image. 40 Quantize(p color.Palette, m image.Image) color.Palette 41 } 42 43 // Op is a Porter-Duff compositing operator. 44 type Op int 45 46 const ( 47 // Over specifies ``(src in mask) over dst''. 48 Over Op = iota 49 // Src specifies ``src in mask''. 50 Src 51 ) 52 53 // Draw implements the Drawer interface by calling the Draw function with this 54 // Op. 55 func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) { 56 DrawMask(dst, r, src, sp, nil, image.Point{}, op) 57 } 58 59 // Drawer contains the Draw method. 60 type Drawer interface { 61 // Draw aligns r.Min in dst with sp in src and then replaces the 62 // rectangle r in dst with the result of drawing src on dst. 63 Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) 64 } 65 66 // FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error 67 // diffusion. 68 var FloydSteinberg Drawer = floydSteinberg{} 69 70 type floydSteinberg struct{} 71 72 func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) { 73 clip(dst, &r, src, &sp, nil, nil) 74 if r.Empty() { 75 return 76 } 77 drawPaletted(dst, r, src, sp, true) 78 } 79 80 // clip clips r against each image's bounds (after translating into the 81 // destination image's coordinate space) and shifts the points sp and mp by 82 // the same amount as the change in r.Min. 83 func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) { 84 orig := r.Min 85 *r = r.Intersect(dst.Bounds()) 86 *r = r.Intersect(src.Bounds().Add(orig.Sub(*sp))) 87 if mask != nil { 88 *r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp))) 89 } 90 dx := r.Min.X - orig.X 91 dy := r.Min.Y - orig.Y 92 if dx == 0 && dy == 0 { 93 return 94 } 95 sp.X += dx 96 sp.Y += dy 97 if mp != nil { 98 mp.X += dx 99 mp.Y += dy 100 } 101 } 102 103 func processBackward(dst image.Image, r image.Rectangle, src image.Image, sp image.Point) bool { 104 return dst == src && 105 r.Overlaps(r.Add(sp.Sub(r.Min))) && 106 (sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X)) 107 } 108 109 // Draw calls DrawMask with a nil mask. 110 func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) { 111 DrawMask(dst, r, src, sp, nil, image.Point{}, op) 112 } 113 114 // DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r 115 // in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque. 116 func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) { 117 clip(dst, &r, src, &sp, mask, &mp) 118 if r.Empty() { 119 return 120 } 121 122 // Fast paths for special cases. If none of them apply, then we fall back 123 // to general but slower implementations. 124 switch dst0 := dst.(type) { 125 case *image.RGBA: 126 if op == Over { 127 if mask == nil { 128 switch src0 := src.(type) { 129 case *image.Uniform: 130 sr, sg, sb, sa := src0.RGBA() 131 if sa == 0xffff { 132 drawFillSrc(dst0, r, sr, sg, sb, sa) 133 } else { 134 drawFillOver(dst0, r, sr, sg, sb, sa) 135 } 136 return 137 case *image.RGBA: 138 drawCopyOver(dst0, r, src0, sp) 139 return 140 case *image.NRGBA: 141 drawNRGBAOver(dst0, r, src0, sp) 142 return 143 case *image.YCbCr: 144 // An image.YCbCr is always fully opaque, and so if the 145 // mask is nil (i.e. fully opaque) then the op is 146 // effectively always Src. Similarly for image.Gray and 147 // image.CMYK. 148 if imageutil.DrawYCbCr(dst0, r, src0, sp) { 149 return 150 } 151 case *image.Gray: 152 drawGray(dst0, r, src0, sp) 153 return 154 case *image.CMYK: 155 drawCMYK(dst0, r, src0, sp) 156 return 157 } 158 } else if mask0, ok := mask.(*image.Alpha); ok { 159 switch src0 := src.(type) { 160 case *image.Uniform: 161 drawGlyphOver(dst0, r, src0, mask0, mp) 162 return 163 case *image.RGBA: 164 drawRGBAMaskOver(dst0, r, src0, sp, mask0, mp) 165 return 166 case *image.Gray: 167 drawGrayMaskOver(dst0, r, src0, sp, mask0, mp) 168 return 169 // Case order matters. The next case (image.RGBA64Image) is an 170 // interface type that the concrete types above also implement. 171 case image.RGBA64Image: 172 drawRGBA64ImageMaskOver(dst0, r, src0, sp, mask0, mp) 173 return 174 } 175 } 176 } else { 177 if mask == nil { 178 switch src0 := src.(type) { 179 case *image.Uniform: 180 sr, sg, sb, sa := src0.RGBA() 181 drawFillSrc(dst0, r, sr, sg, sb, sa) 182 return 183 case *image.RGBA: 184 drawCopySrc(dst0, r, src0, sp) 185 return 186 case *image.NRGBA: 187 drawNRGBASrc(dst0, r, src0, sp) 188 return 189 case *image.YCbCr: 190 if imageutil.DrawYCbCr(dst0, r, src0, sp) { 191 return 192 } 193 case *image.Gray: 194 drawGray(dst0, r, src0, sp) 195 return 196 case *image.CMYK: 197 drawCMYK(dst0, r, src0, sp) 198 return 199 } 200 } 201 } 202 drawRGBA(dst0, r, src, sp, mask, mp, op) 203 return 204 case *image.Paletted: 205 if op == Src && mask == nil { 206 if src0, ok := src.(*image.Uniform); ok { 207 colorIndex := uint8(dst0.Palette.Index(src0.C)) 208 i0 := dst0.PixOffset(r.Min.X, r.Min.Y) 209 i1 := i0 + r.Dx() 210 for i := i0; i < i1; i++ { 211 dst0.Pix[i] = colorIndex 212 } 213 firstRow := dst0.Pix[i0:i1] 214 for y := r.Min.Y + 1; y < r.Max.Y; y++ { 215 i0 += dst0.Stride 216 i1 += dst0.Stride 217 copy(dst0.Pix[i0:i1], firstRow) 218 } 219 return 220 } else if !processBackward(dst, r, src, sp) { 221 drawPaletted(dst0, r, src, sp, false) 222 return 223 } 224 } 225 } 226 227 x0, x1, dx := r.Min.X, r.Max.X, 1 228 y0, y1, dy := r.Min.Y, r.Max.Y, 1 229 if processBackward(dst, r, src, sp) { 230 x0, x1, dx = x1-1, x0-1, -1 231 y0, y1, dy = y1-1, y0-1, -1 232 } 233 234 // FALLBACK1.17 235 // 236 // Try the draw.RGBA64Image and image.RGBA64Image interfaces, part of the 237 // standard library since Go 1.17. These are like the draw.Image and 238 // image.Image interfaces but they can avoid allocations from converting 239 // concrete color types to the color.Color interface type. 240 241 if dst0, _ := dst.(RGBA64Image); dst0 != nil { 242 if src0, _ := src.(image.RGBA64Image); src0 != nil { 243 if mask == nil { 244 sy := sp.Y + y0 - r.Min.Y 245 my := mp.Y + y0 - r.Min.Y 246 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 247 sx := sp.X + x0 - r.Min.X 248 mx := mp.X + x0 - r.Min.X 249 for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx { 250 if op == Src { 251 dst0.SetRGBA64(x, y, src0.RGBA64At(sx, sy)) 252 } else { 253 srgba := src0.RGBA64At(sx, sy) 254 a := m - uint32(srgba.A) 255 drgba := dst0.RGBA64At(x, y) 256 dst0.SetRGBA64(x, y, color.RGBA64{ 257 R: uint16((uint32(drgba.R)*a)/m) + srgba.R, 258 G: uint16((uint32(drgba.G)*a)/m) + srgba.G, 259 B: uint16((uint32(drgba.B)*a)/m) + srgba.B, 260 A: uint16((uint32(drgba.A)*a)/m) + srgba.A, 261 }) 262 } 263 } 264 } 265 return 266 267 } else if mask0, _ := mask.(image.RGBA64Image); mask0 != nil { 268 sy := sp.Y + y0 - r.Min.Y 269 my := mp.Y + y0 - r.Min.Y 270 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 271 sx := sp.X + x0 - r.Min.X 272 mx := mp.X + x0 - r.Min.X 273 for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx { 274 ma := uint32(mask0.RGBA64At(mx, my).A) 275 switch { 276 case ma == 0: 277 if op == Over { 278 // No-op. 279 } else { 280 dst0.SetRGBA64(x, y, color.RGBA64{}) 281 } 282 case ma == m && op == Src: 283 dst0.SetRGBA64(x, y, src0.RGBA64At(sx, sy)) 284 default: 285 srgba := src0.RGBA64At(sx, sy) 286 if op == Over { 287 drgba := dst0.RGBA64At(x, y) 288 a := m - (uint32(srgba.A) * ma / m) 289 dst0.SetRGBA64(x, y, color.RGBA64{ 290 R: uint16((uint32(drgba.R)*a + uint32(srgba.R)*ma) / m), 291 G: uint16((uint32(drgba.G)*a + uint32(srgba.G)*ma) / m), 292 B: uint16((uint32(drgba.B)*a + uint32(srgba.B)*ma) / m), 293 A: uint16((uint32(drgba.A)*a + uint32(srgba.A)*ma) / m), 294 }) 295 } else { 296 dst0.SetRGBA64(x, y, color.RGBA64{ 297 R: uint16(uint32(srgba.R) * ma / m), 298 G: uint16(uint32(srgba.G) * ma / m), 299 B: uint16(uint32(srgba.B) * ma / m), 300 A: uint16(uint32(srgba.A) * ma / m), 301 }) 302 } 303 } 304 } 305 } 306 return 307 } 308 } 309 } 310 311 // FALLBACK1.0 312 // 313 // If none of the faster code paths above apply, use the draw.Image and 314 // image.Image interfaces, part of the standard library since Go 1.0. 315 316 var out color.RGBA64 317 sy := sp.Y + y0 - r.Min.Y 318 my := mp.Y + y0 - r.Min.Y 319 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 320 sx := sp.X + x0 - r.Min.X 321 mx := mp.X + x0 - r.Min.X 322 for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx { 323 ma := uint32(m) 324 if mask != nil { 325 _, _, _, ma = mask.At(mx, my).RGBA() 326 } 327 switch { 328 case ma == 0: 329 if op == Over { 330 // No-op. 331 } else { 332 dst.Set(x, y, color.Transparent) 333 } 334 case ma == m && op == Src: 335 dst.Set(x, y, src.At(sx, sy)) 336 default: 337 sr, sg, sb, sa := src.At(sx, sy).RGBA() 338 if op == Over { 339 dr, dg, db, da := dst.At(x, y).RGBA() 340 a := m - (sa * ma / m) 341 out.R = uint16((dr*a + sr*ma) / m) 342 out.G = uint16((dg*a + sg*ma) / m) 343 out.B = uint16((db*a + sb*ma) / m) 344 out.A = uint16((da*a + sa*ma) / m) 345 } else { 346 out.R = uint16(sr * ma / m) 347 out.G = uint16(sg * ma / m) 348 out.B = uint16(sb * ma / m) 349 out.A = uint16(sa * ma / m) 350 } 351 // The third argument is &out instead of out (and out is 352 // declared outside of the inner loop) to avoid the implicit 353 // conversion to color.Color here allocating memory in the 354 // inner loop if sizeof(color.RGBA64) > sizeof(uintptr). 355 dst.Set(x, y, &out) 356 } 357 } 358 } 359 } 360 361 func drawFillOver(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) { 362 // The 0x101 is here for the same reason as in drawRGBA. 363 a := (m - sa) * 0x101 364 i0 := dst.PixOffset(r.Min.X, r.Min.Y) 365 i1 := i0 + r.Dx()*4 366 for y := r.Min.Y; y != r.Max.Y; y++ { 367 for i := i0; i < i1; i += 4 { 368 dr := &dst.Pix[i+0] 369 dg := &dst.Pix[i+1] 370 db := &dst.Pix[i+2] 371 da := &dst.Pix[i+3] 372 373 *dr = uint8((uint32(*dr)*a/m + sr) >> 8) 374 *dg = uint8((uint32(*dg)*a/m + sg) >> 8) 375 *db = uint8((uint32(*db)*a/m + sb) >> 8) 376 *da = uint8((uint32(*da)*a/m + sa) >> 8) 377 } 378 i0 += dst.Stride 379 i1 += dst.Stride 380 } 381 } 382 383 func drawFillSrc(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) { 384 sr8 := uint8(sr >> 8) 385 sg8 := uint8(sg >> 8) 386 sb8 := uint8(sb >> 8) 387 sa8 := uint8(sa >> 8) 388 // The built-in copy function is faster than a straightforward for loop to fill the destination with 389 // the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and 390 // then use the first row as the slice source for the remaining rows. 391 i0 := dst.PixOffset(r.Min.X, r.Min.Y) 392 i1 := i0 + r.Dx()*4 393 for i := i0; i < i1; i += 4 { 394 dst.Pix[i+0] = sr8 395 dst.Pix[i+1] = sg8 396 dst.Pix[i+2] = sb8 397 dst.Pix[i+3] = sa8 398 } 399 firstRow := dst.Pix[i0:i1] 400 for y := r.Min.Y + 1; y < r.Max.Y; y++ { 401 i0 += dst.Stride 402 i1 += dst.Stride 403 copy(dst.Pix[i0:i1], firstRow) 404 } 405 } 406 407 func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) { 408 dx, dy := r.Dx(), r.Dy() 409 d0 := dst.PixOffset(r.Min.X, r.Min.Y) 410 s0 := src.PixOffset(sp.X, sp.Y) 411 var ( 412 ddelta, sdelta int 413 i0, i1, idelta int 414 ) 415 if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X { 416 ddelta = dst.Stride 417 sdelta = src.Stride 418 i0, i1, idelta = 0, dx*4, +4 419 } else { 420 // If the source start point is higher than the destination start point, or equal height but to the left, 421 // then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down. 422 d0 += (dy - 1) * dst.Stride 423 s0 += (dy - 1) * src.Stride 424 ddelta = -dst.Stride 425 sdelta = -src.Stride 426 i0, i1, idelta = (dx-1)*4, -4, -4 427 } 428 for ; dy > 0; dy-- { 429 dpix := dst.Pix[d0:] 430 spix := src.Pix[s0:] 431 for i := i0; i != i1; i += idelta { 432 s := spix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 433 sr := uint32(s[0]) * 0x101 434 sg := uint32(s[1]) * 0x101 435 sb := uint32(s[2]) * 0x101 436 sa := uint32(s[3]) * 0x101 437 438 // The 0x101 is here for the same reason as in drawRGBA. 439 a := (m - sa) * 0x101 440 441 d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 442 d[0] = uint8((uint32(d[0])*a/m + sr) >> 8) 443 d[1] = uint8((uint32(d[1])*a/m + sg) >> 8) 444 d[2] = uint8((uint32(d[2])*a/m + sb) >> 8) 445 d[3] = uint8((uint32(d[3])*a/m + sa) >> 8) 446 } 447 d0 += ddelta 448 s0 += sdelta 449 } 450 } 451 452 func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) { 453 n, dy := 4*r.Dx(), r.Dy() 454 d0 := dst.PixOffset(r.Min.X, r.Min.Y) 455 s0 := src.PixOffset(sp.X, sp.Y) 456 var ddelta, sdelta int 457 if r.Min.Y <= sp.Y { 458 ddelta = dst.Stride 459 sdelta = src.Stride 460 } else { 461 // If the source start point is higher than the destination start 462 // point, then we compose the rows in bottom-up order instead of 463 // top-down. Unlike the drawCopyOver function, we don't have to check 464 // the x coordinates because the built-in copy function can handle 465 // overlapping slices. 466 d0 += (dy - 1) * dst.Stride 467 s0 += (dy - 1) * src.Stride 468 ddelta = -dst.Stride 469 sdelta = -src.Stride 470 } 471 for ; dy > 0; dy-- { 472 copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n]) 473 d0 += ddelta 474 s0 += sdelta 475 } 476 } 477 478 func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) { 479 i0 := (r.Min.X - dst.Rect.Min.X) * 4 480 i1 := (r.Max.X - dst.Rect.Min.X) * 4 481 si0 := (sp.X - src.Rect.Min.X) * 4 482 yMax := r.Max.Y - dst.Rect.Min.Y 483 484 y := r.Min.Y - dst.Rect.Min.Y 485 sy := sp.Y - src.Rect.Min.Y 486 for ; y != yMax; y, sy = y+1, sy+1 { 487 dpix := dst.Pix[y*dst.Stride:] 488 spix := src.Pix[sy*src.Stride:] 489 490 for i, si := i0, si0; i < i1; i, si = i+4, si+4 { 491 // Convert from non-premultiplied color to pre-multiplied color. 492 s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857 493 sa := uint32(s[3]) * 0x101 494 sr := uint32(s[0]) * sa / 0xff 495 sg := uint32(s[1]) * sa / 0xff 496 sb := uint32(s[2]) * sa / 0xff 497 498 d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 499 dr := uint32(d[0]) 500 dg := uint32(d[1]) 501 db := uint32(d[2]) 502 da := uint32(d[3]) 503 504 // The 0x101 is here for the same reason as in drawRGBA. 505 a := (m - sa) * 0x101 506 507 d[0] = uint8((dr*a/m + sr) >> 8) 508 d[1] = uint8((dg*a/m + sg) >> 8) 509 d[2] = uint8((db*a/m + sb) >> 8) 510 d[3] = uint8((da*a/m + sa) >> 8) 511 } 512 } 513 } 514 515 func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) { 516 i0 := (r.Min.X - dst.Rect.Min.X) * 4 517 i1 := (r.Max.X - dst.Rect.Min.X) * 4 518 si0 := (sp.X - src.Rect.Min.X) * 4 519 yMax := r.Max.Y - dst.Rect.Min.Y 520 521 y := r.Min.Y - dst.Rect.Min.Y 522 sy := sp.Y - src.Rect.Min.Y 523 for ; y != yMax; y, sy = y+1, sy+1 { 524 dpix := dst.Pix[y*dst.Stride:] 525 spix := src.Pix[sy*src.Stride:] 526 527 for i, si := i0, si0; i < i1; i, si = i+4, si+4 { 528 // Convert from non-premultiplied color to pre-multiplied color. 529 s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857 530 sa := uint32(s[3]) * 0x101 531 sr := uint32(s[0]) * sa / 0xff 532 sg := uint32(s[1]) * sa / 0xff 533 sb := uint32(s[2]) * sa / 0xff 534 535 d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 536 d[0] = uint8(sr >> 8) 537 d[1] = uint8(sg >> 8) 538 d[2] = uint8(sb >> 8) 539 d[3] = uint8(sa >> 8) 540 } 541 } 542 } 543 544 func drawGray(dst *image.RGBA, r image.Rectangle, src *image.Gray, sp image.Point) { 545 i0 := (r.Min.X - dst.Rect.Min.X) * 4 546 i1 := (r.Max.X - dst.Rect.Min.X) * 4 547 si0 := (sp.X - src.Rect.Min.X) * 1 548 yMax := r.Max.Y - dst.Rect.Min.Y 549 550 y := r.Min.Y - dst.Rect.Min.Y 551 sy := sp.Y - src.Rect.Min.Y 552 for ; y != yMax; y, sy = y+1, sy+1 { 553 dpix := dst.Pix[y*dst.Stride:] 554 spix := src.Pix[sy*src.Stride:] 555 556 for i, si := i0, si0; i < i1; i, si = i+4, si+1 { 557 p := spix[si] 558 d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 559 d[0] = p 560 d[1] = p 561 d[2] = p 562 d[3] = 255 563 } 564 } 565 } 566 567 func drawCMYK(dst *image.RGBA, r image.Rectangle, src *image.CMYK, sp image.Point) { 568 i0 := (r.Min.X - dst.Rect.Min.X) * 4 569 i1 := (r.Max.X - dst.Rect.Min.X) * 4 570 si0 := (sp.X - src.Rect.Min.X) * 4 571 yMax := r.Max.Y - dst.Rect.Min.Y 572 573 y := r.Min.Y - dst.Rect.Min.Y 574 sy := sp.Y - src.Rect.Min.Y 575 for ; y != yMax; y, sy = y+1, sy+1 { 576 dpix := dst.Pix[y*dst.Stride:] 577 spix := src.Pix[sy*src.Stride:] 578 579 for i, si := i0, si0; i < i1; i, si = i+4, si+4 { 580 s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857 581 d := dpix[i : i+4 : i+4] 582 d[0], d[1], d[2] = color.CMYKToRGB(s[0], s[1], s[2], s[3]) 583 d[3] = 255 584 } 585 } 586 } 587 588 func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) { 589 i0 := dst.PixOffset(r.Min.X, r.Min.Y) 590 i1 := i0 + r.Dx()*4 591 mi0 := mask.PixOffset(mp.X, mp.Y) 592 sr, sg, sb, sa := src.RGBA() 593 for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 { 594 for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 { 595 ma := uint32(mask.Pix[mi]) 596 if ma == 0 { 597 continue 598 } 599 ma |= ma << 8 600 601 // The 0x101 is here for the same reason as in drawRGBA. 602 a := (m - (sa * ma / m)) * 0x101 603 604 d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 605 d[0] = uint8((uint32(d[0])*a + sr*ma) / m >> 8) 606 d[1] = uint8((uint32(d[1])*a + sg*ma) / m >> 8) 607 d[2] = uint8((uint32(d[2])*a + sb*ma) / m >> 8) 608 d[3] = uint8((uint32(d[3])*a + sa*ma) / m >> 8) 609 } 610 i0 += dst.Stride 611 i1 += dst.Stride 612 mi0 += mask.Stride 613 } 614 } 615 616 func drawGrayMaskOver(dst *image.RGBA, r image.Rectangle, src *image.Gray, sp image.Point, mask *image.Alpha, mp image.Point) { 617 x0, x1, dx := r.Min.X, r.Max.X, 1 618 y0, y1, dy := r.Min.Y, r.Max.Y, 1 619 if r.Overlaps(r.Add(sp.Sub(r.Min))) { 620 if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X { 621 x0, x1, dx = x1-1, x0-1, -1 622 y0, y1, dy = y1-1, y0-1, -1 623 } 624 } 625 626 sy := sp.Y + y0 - r.Min.Y 627 my := mp.Y + y0 - r.Min.Y 628 sx0 := sp.X + x0 - r.Min.X 629 mx0 := mp.X + x0 - r.Min.X 630 sx1 := sx0 + (x1 - x0) 631 i0 := dst.PixOffset(x0, y0) 632 di := dx * 4 633 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 634 for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { 635 mi := mask.PixOffset(mx, my) 636 ma := uint32(mask.Pix[mi]) 637 ma |= ma << 8 638 si := src.PixOffset(sx, sy) 639 sy := uint32(src.Pix[si]) 640 sy |= sy << 8 641 sa := uint32(0xffff) 642 643 d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 644 dr := uint32(d[0]) 645 dg := uint32(d[1]) 646 db := uint32(d[2]) 647 da := uint32(d[3]) 648 649 // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. 650 // We work in 16-bit color, and so would normally do: 651 // dr |= dr << 8 652 // and similarly for dg, db and da, but instead we multiply a 653 // (which is a 16-bit color, ranging in [0,65535]) by 0x101. 654 // This yields the same result, but is fewer arithmetic operations. 655 a := (m - (sa * ma / m)) * 0x101 656 657 d[0] = uint8((dr*a + sy*ma) / m >> 8) 658 d[1] = uint8((dg*a + sy*ma) / m >> 8) 659 d[2] = uint8((db*a + sy*ma) / m >> 8) 660 d[3] = uint8((da*a + sa*ma) / m >> 8) 661 } 662 i0 += dy * dst.Stride 663 } 664 } 665 666 func drawRGBAMaskOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point, mask *image.Alpha, mp image.Point) { 667 x0, x1, dx := r.Min.X, r.Max.X, 1 668 y0, y1, dy := r.Min.Y, r.Max.Y, 1 669 if dst == src && r.Overlaps(r.Add(sp.Sub(r.Min))) { 670 if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X { 671 x0, x1, dx = x1-1, x0-1, -1 672 y0, y1, dy = y1-1, y0-1, -1 673 } 674 } 675 676 sy := sp.Y + y0 - r.Min.Y 677 my := mp.Y + y0 - r.Min.Y 678 sx0 := sp.X + x0 - r.Min.X 679 mx0 := mp.X + x0 - r.Min.X 680 sx1 := sx0 + (x1 - x0) 681 i0 := dst.PixOffset(x0, y0) 682 di := dx * 4 683 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 684 for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { 685 mi := mask.PixOffset(mx, my) 686 ma := uint32(mask.Pix[mi]) 687 ma |= ma << 8 688 si := src.PixOffset(sx, sy) 689 sr := uint32(src.Pix[si+0]) 690 sg := uint32(src.Pix[si+1]) 691 sb := uint32(src.Pix[si+2]) 692 sa := uint32(src.Pix[si+3]) 693 sr |= sr << 8 694 sg |= sg << 8 695 sb |= sb << 8 696 sa |= sa << 8 697 d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 698 dr := uint32(d[0]) 699 dg := uint32(d[1]) 700 db := uint32(d[2]) 701 da := uint32(d[3]) 702 703 // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. 704 // We work in 16-bit color, and so would normally do: 705 // dr |= dr << 8 706 // and similarly for dg, db and da, but instead we multiply a 707 // (which is a 16-bit color, ranging in [0,65535]) by 0x101. 708 // This yields the same result, but is fewer arithmetic operations. 709 a := (m - (sa * ma / m)) * 0x101 710 711 d[0] = uint8((dr*a + sr*ma) / m >> 8) 712 d[1] = uint8((dg*a + sg*ma) / m >> 8) 713 d[2] = uint8((db*a + sb*ma) / m >> 8) 714 d[3] = uint8((da*a + sa*ma) / m >> 8) 715 } 716 i0 += dy * dst.Stride 717 } 718 } 719 720 func drawRGBA64ImageMaskOver(dst *image.RGBA, r image.Rectangle, src image.RGBA64Image, sp image.Point, mask *image.Alpha, mp image.Point) { 721 x0, x1, dx := r.Min.X, r.Max.X, 1 722 y0, y1, dy := r.Min.Y, r.Max.Y, 1 723 if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) { 724 if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X { 725 x0, x1, dx = x1-1, x0-1, -1 726 y0, y1, dy = y1-1, y0-1, -1 727 } 728 } 729 730 sy := sp.Y + y0 - r.Min.Y 731 my := mp.Y + y0 - r.Min.Y 732 sx0 := sp.X + x0 - r.Min.X 733 mx0 := mp.X + x0 - r.Min.X 734 sx1 := sx0 + (x1 - x0) 735 i0 := dst.PixOffset(x0, y0) 736 di := dx * 4 737 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 738 for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { 739 mi := mask.PixOffset(mx, my) 740 ma := uint32(mask.Pix[mi]) 741 ma |= ma << 8 742 srgba := src.RGBA64At(sx, sy) 743 d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 744 dr := uint32(d[0]) 745 dg := uint32(d[1]) 746 db := uint32(d[2]) 747 da := uint32(d[3]) 748 749 // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. 750 // We work in 16-bit color, and so would normally do: 751 // dr |= dr << 8 752 // and similarly for dg, db and da, but instead we multiply a 753 // (which is a 16-bit color, ranging in [0,65535]) by 0x101. 754 // This yields the same result, but is fewer arithmetic operations. 755 a := (m - (uint32(srgba.A) * ma / m)) * 0x101 756 757 d[0] = uint8((dr*a + uint32(srgba.R)*ma) / m >> 8) 758 d[1] = uint8((dg*a + uint32(srgba.G)*ma) / m >> 8) 759 d[2] = uint8((db*a + uint32(srgba.B)*ma) / m >> 8) 760 d[3] = uint8((da*a + uint32(srgba.A)*ma) / m >> 8) 761 } 762 i0 += dy * dst.Stride 763 } 764 } 765 766 func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) { 767 x0, x1, dx := r.Min.X, r.Max.X, 1 768 y0, y1, dy := r.Min.Y, r.Max.Y, 1 769 if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) { 770 if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X { 771 x0, x1, dx = x1-1, x0-1, -1 772 y0, y1, dy = y1-1, y0-1, -1 773 } 774 } 775 776 sy := sp.Y + y0 - r.Min.Y 777 my := mp.Y + y0 - r.Min.Y 778 sx0 := sp.X + x0 - r.Min.X 779 mx0 := mp.X + x0 - r.Min.X 780 sx1 := sx0 + (x1 - x0) 781 i0 := dst.PixOffset(x0, y0) 782 di := dx * 4 783 784 // Try the image.RGBA64Image interface, part of the standard library since 785 // Go 1.17. 786 // 787 // This optimization is similar to how FALLBACK1.17 optimizes FALLBACK1.0 788 // in DrawMask, except here the concrete type of dst is known to be 789 // *image.RGBA. 790 if src0, _ := src.(image.RGBA64Image); src0 != nil { 791 if mask == nil { 792 if op == Over { 793 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 794 for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { 795 srgba := src0.RGBA64At(sx, sy) 796 d := dst.Pix[i : i+4 : i+4] 797 dr := uint32(d[0]) 798 dg := uint32(d[1]) 799 db := uint32(d[2]) 800 da := uint32(d[3]) 801 a := (m - uint32(srgba.A)) * 0x101 802 d[0] = uint8((dr*a/m + uint32(srgba.R)) >> 8) 803 d[1] = uint8((dg*a/m + uint32(srgba.G)) >> 8) 804 d[2] = uint8((db*a/m + uint32(srgba.B)) >> 8) 805 d[3] = uint8((da*a/m + uint32(srgba.A)) >> 8) 806 } 807 i0 += dy * dst.Stride 808 } 809 } else { 810 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 811 for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { 812 srgba := src0.RGBA64At(sx, sy) 813 d := dst.Pix[i : i+4 : i+4] 814 d[0] = uint8(srgba.R >> 8) 815 d[1] = uint8(srgba.G >> 8) 816 d[2] = uint8(srgba.B >> 8) 817 d[3] = uint8(srgba.A >> 8) 818 } 819 i0 += dy * dst.Stride 820 } 821 } 822 return 823 824 } else if mask0, _ := mask.(image.RGBA64Image); mask0 != nil { 825 if op == Over { 826 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 827 for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { 828 ma := uint32(mask0.RGBA64At(mx, my).A) 829 srgba := src0.RGBA64At(sx, sy) 830 d := dst.Pix[i : i+4 : i+4] 831 dr := uint32(d[0]) 832 dg := uint32(d[1]) 833 db := uint32(d[2]) 834 da := uint32(d[3]) 835 a := (m - (uint32(srgba.A) * ma / m)) * 0x101 836 d[0] = uint8((dr*a + uint32(srgba.R)*ma) / m >> 8) 837 d[1] = uint8((dg*a + uint32(srgba.G)*ma) / m >> 8) 838 d[2] = uint8((db*a + uint32(srgba.B)*ma) / m >> 8) 839 d[3] = uint8((da*a + uint32(srgba.A)*ma) / m >> 8) 840 } 841 i0 += dy * dst.Stride 842 } 843 } else { 844 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 845 for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { 846 ma := uint32(mask0.RGBA64At(mx, my).A) 847 srgba := src0.RGBA64At(sx, sy) 848 d := dst.Pix[i : i+4 : i+4] 849 d[0] = uint8(uint32(srgba.R) * ma / m >> 8) 850 d[1] = uint8(uint32(srgba.G) * ma / m >> 8) 851 d[2] = uint8(uint32(srgba.B) * ma / m >> 8) 852 d[3] = uint8(uint32(srgba.A) * ma / m >> 8) 853 } 854 i0 += dy * dst.Stride 855 } 856 } 857 return 858 } 859 } 860 861 // Use the image.Image interface, part of the standard library since Go 862 // 1.0. 863 // 864 // This is similar to FALLBACK1.0 in DrawMask, except here the concrete 865 // type of dst is known to be *image.RGBA. 866 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 867 for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { 868 ma := uint32(m) 869 if mask != nil { 870 _, _, _, ma = mask.At(mx, my).RGBA() 871 } 872 sr, sg, sb, sa := src.At(sx, sy).RGBA() 873 d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 874 if op == Over { 875 dr := uint32(d[0]) 876 dg := uint32(d[1]) 877 db := uint32(d[2]) 878 da := uint32(d[3]) 879 880 // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. 881 // We work in 16-bit color, and so would normally do: 882 // dr |= dr << 8 883 // and similarly for dg, db and da, but instead we multiply a 884 // (which is a 16-bit color, ranging in [0,65535]) by 0x101. 885 // This yields the same result, but is fewer arithmetic operations. 886 a := (m - (sa * ma / m)) * 0x101 887 888 d[0] = uint8((dr*a + sr*ma) / m >> 8) 889 d[1] = uint8((dg*a + sg*ma) / m >> 8) 890 d[2] = uint8((db*a + sb*ma) / m >> 8) 891 d[3] = uint8((da*a + sa*ma) / m >> 8) 892 893 } else { 894 d[0] = uint8(sr * ma / m >> 8) 895 d[1] = uint8(sg * ma / m >> 8) 896 d[2] = uint8(sb * ma / m >> 8) 897 d[3] = uint8(sa * ma / m >> 8) 898 } 899 } 900 i0 += dy * dst.Stride 901 } 902 } 903 904 // clamp clamps i to the interval [0, 0xffff]. 905 func clamp(i int32) int32 { 906 if i < 0 { 907 return 0 908 } 909 if i > 0xffff { 910 return 0xffff 911 } 912 return i 913 } 914 915 // sqDiff returns the squared-difference of x and y, shifted by 2 so that 916 // adding four of those won't overflow a uint32. 917 // 918 // x and y are both assumed to be in the range [0, 0xffff]. 919 func sqDiff(x, y int32) uint32 { 920 // This is an optimized code relying on the overflow/wrap around 921 // properties of unsigned integers operations guaranteed by the language 922 // spec. See sqDiff from the image/color package for more details. 923 d := uint32(x - y) 924 return (d * d) >> 2 925 } 926 927 func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) { 928 // TODO(nigeltao): handle the case where the dst and src overlap. 929 // Does it even make sense to try and do Floyd-Steinberg whilst 930 // walking the image backward (right-to-left bottom-to-top)? 931 932 // If dst is an *image.Paletted, we have a fast path for dst.Set and 933 // dst.At. The dst.Set equivalent is a batch version of the algorithm 934 // used by color.Palette's Index method in image/color/color.go, plus 935 // optional Floyd-Steinberg error diffusion. 936 palette, pix, stride := [][4]int32(nil), []byte(nil), 0 937 if p, ok := dst.(*image.Paletted); ok { 938 palette = make([][4]int32, len(p.Palette)) 939 for i, col := range p.Palette { 940 r, g, b, a := col.RGBA() 941 palette[i][0] = int32(r) 942 palette[i][1] = int32(g) 943 palette[i][2] = int32(b) 944 palette[i][3] = int32(a) 945 } 946 pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride 947 } 948 949 // quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization 950 // errors that have been propagated to the pixels in the current and next 951 // rows. The +2 simplifies calculation near the edges. 952 var quantErrorCurr, quantErrorNext [][4]int32 953 if floydSteinberg { 954 quantErrorCurr = make([][4]int32, r.Dx()+2) 955 quantErrorNext = make([][4]int32, r.Dx()+2) 956 } 957 pxRGBA := func(x, y int) (r, g, b, a uint32) { return src.At(x, y).RGBA() } 958 // Fast paths for special cases to avoid excessive use of the color.Color 959 // interface which escapes to the heap but need to be discovered for 960 // each pixel on r. See also https://golang.org/issues/15759. 961 switch src0 := src.(type) { 962 case *image.RGBA: 963 pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.RGBAAt(x, y).RGBA() } 964 case *image.NRGBA: 965 pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.NRGBAAt(x, y).RGBA() } 966 case *image.YCbCr: 967 pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.YCbCrAt(x, y).RGBA() } 968 } 969 970 // Loop over each source pixel. 971 out := color.RGBA64{A: 0xffff} 972 for y := 0; y != r.Dy(); y++ { 973 for x := 0; x != r.Dx(); x++ { 974 // er, eg and eb are the pixel's R,G,B values plus the 975 // optional Floyd-Steinberg error. 976 sr, sg, sb, sa := pxRGBA(sp.X+x, sp.Y+y) 977 er, eg, eb, ea := int32(sr), int32(sg), int32(sb), int32(sa) 978 if floydSteinberg { 979 er = clamp(er + quantErrorCurr[x+1][0]/16) 980 eg = clamp(eg + quantErrorCurr[x+1][1]/16) 981 eb = clamp(eb + quantErrorCurr[x+1][2]/16) 982 ea = clamp(ea + quantErrorCurr[x+1][3]/16) 983 } 984 985 if palette != nil { 986 // Find the closest palette color in Euclidean R,G,B,A space: 987 // the one that minimizes sum-squared-difference. 988 // TODO(nigeltao): consider smarter algorithms. 989 bestIndex, bestSum := 0, uint32(1<<32-1) 990 for index, p := range palette { 991 sum := sqDiff(er, p[0]) + sqDiff(eg, p[1]) + sqDiff(eb, p[2]) + sqDiff(ea, p[3]) 992 if sum < bestSum { 993 bestIndex, bestSum = index, sum 994 if sum == 0 { 995 break 996 } 997 } 998 } 999 pix[y*stride+x] = byte(bestIndex) 1000 1001 if !floydSteinberg { 1002 continue 1003 } 1004 er -= palette[bestIndex][0] 1005 eg -= palette[bestIndex][1] 1006 eb -= palette[bestIndex][2] 1007 ea -= palette[bestIndex][3] 1008 1009 } else { 1010 out.R = uint16(er) 1011 out.G = uint16(eg) 1012 out.B = uint16(eb) 1013 out.A = uint16(ea) 1014 // The third argument is &out instead of out (and out is 1015 // declared outside of the inner loop) to avoid the implicit 1016 // conversion to color.Color here allocating memory in the 1017 // inner loop if sizeof(color.RGBA64) > sizeof(uintptr). 1018 dst.Set(r.Min.X+x, r.Min.Y+y, &out) 1019 1020 if !floydSteinberg { 1021 continue 1022 } 1023 sr, sg, sb, sa = dst.At(r.Min.X+x, r.Min.Y+y).RGBA() 1024 er -= int32(sr) 1025 eg -= int32(sg) 1026 eb -= int32(sb) 1027 ea -= int32(sa) 1028 } 1029 1030 // Propagate the Floyd-Steinberg quantization error. 1031 quantErrorNext[x+0][0] += er * 3 1032 quantErrorNext[x+0][1] += eg * 3 1033 quantErrorNext[x+0][2] += eb * 3 1034 quantErrorNext[x+0][3] += ea * 3 1035 quantErrorNext[x+1][0] += er * 5 1036 quantErrorNext[x+1][1] += eg * 5 1037 quantErrorNext[x+1][2] += eb * 5 1038 quantErrorNext[x+1][3] += ea * 5 1039 quantErrorNext[x+2][0] += er * 1 1040 quantErrorNext[x+2][1] += eg * 1 1041 quantErrorNext[x+2][2] += eb * 1 1042 quantErrorNext[x+2][3] += ea * 1 1043 quantErrorCurr[x+2][0] += er * 7 1044 quantErrorCurr[x+2][1] += eg * 7 1045 quantErrorCurr[x+2][2] += eb * 7 1046 quantErrorCurr[x+2][3] += ea * 7 1047 } 1048 1049 // Recycle the quantization error buffers. 1050 if floydSteinberg { 1051 quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr 1052 for i := range quantErrorNext { 1053 quantErrorNext[i] = [4]int32{} 1054 } 1055 } 1056 } 1057 }