github.com/MikyChow/arbitrum-go-ethereum@v0.0.0-20230306102812-078da49636de/internal/ethapi/api.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package ethapi 18 19 import ( 20 "context" 21 "errors" 22 "fmt" 23 "math/big" 24 "strings" 25 "time" 26 27 "github.com/MikyChow/arbitrum-go-ethereum/accounts" 28 "github.com/MikyChow/arbitrum-go-ethereum/accounts/abi" 29 "github.com/MikyChow/arbitrum-go-ethereum/accounts/keystore" 30 "github.com/MikyChow/arbitrum-go-ethereum/accounts/scwallet" 31 "github.com/MikyChow/arbitrum-go-ethereum/common" 32 "github.com/MikyChow/arbitrum-go-ethereum/common/hexutil" 33 "github.com/MikyChow/arbitrum-go-ethereum/common/math" 34 "github.com/MikyChow/arbitrum-go-ethereum/consensus/ethash" 35 "github.com/MikyChow/arbitrum-go-ethereum/consensus/misc" 36 "github.com/MikyChow/arbitrum-go-ethereum/core" 37 "github.com/MikyChow/arbitrum-go-ethereum/core/state" 38 "github.com/MikyChow/arbitrum-go-ethereum/core/types" 39 "github.com/MikyChow/arbitrum-go-ethereum/core/vm" 40 "github.com/MikyChow/arbitrum-go-ethereum/crypto" 41 "github.com/MikyChow/arbitrum-go-ethereum/eth/tracers/logger" 42 "github.com/MikyChow/arbitrum-go-ethereum/log" 43 "github.com/MikyChow/arbitrum-go-ethereum/p2p" 44 "github.com/MikyChow/arbitrum-go-ethereum/params" 45 "github.com/MikyChow/arbitrum-go-ethereum/rlp" 46 "github.com/MikyChow/arbitrum-go-ethereum/rpc" 47 "github.com/davecgh/go-spew/spew" 48 "github.com/tyler-smith/go-bip39" 49 ) 50 51 func fallbackClientFor(b Backend, err error) types.FallbackClient { 52 if !errors.Is(err, types.ErrUseFallback) { 53 return nil 54 } 55 return b.FallbackClient() 56 } 57 58 // EthereumAPI provides an API to access Ethereum related information. 59 type EthereumAPI struct { 60 b Backend 61 } 62 63 // NewEthereumAPI creates a new Ethereum protocol API. 64 func NewEthereumAPI(b Backend) *EthereumAPI { 65 return &EthereumAPI{b} 66 } 67 68 // GasPrice returns a suggestion for a gas price for legacy transactions. 69 func (s *EthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) { 70 tipcap, err := s.b.SuggestGasTipCap(ctx) 71 if err != nil { 72 return nil, err 73 } 74 if head := s.b.CurrentHeader(); head.BaseFee != nil { 75 tipcap.Add(tipcap, head.BaseFee) 76 } 77 return (*hexutil.Big)(tipcap), err 78 } 79 80 // MaxPriorityFeePerGas returns a suggestion for a gas tip cap for dynamic fee transactions. 81 func (s *EthereumAPI) MaxPriorityFeePerGas(ctx context.Context) (*hexutil.Big, error) { 82 tipcap, err := s.b.SuggestGasTipCap(ctx) 83 if err != nil { 84 return nil, err 85 } 86 return (*hexutil.Big)(tipcap), err 87 } 88 89 type feeHistoryResult struct { 90 OldestBlock *hexutil.Big `json:"oldestBlock"` 91 Reward [][]*hexutil.Big `json:"reward,omitempty"` 92 BaseFee []*hexutil.Big `json:"baseFeePerGas,omitempty"` 93 GasUsedRatio []float64 `json:"gasUsedRatio"` 94 } 95 96 // FeeHistory returns the fee market history. 97 func (s *EthereumAPI) FeeHistory(ctx context.Context, blockCount rpc.DecimalOrHex, lastBlock rpc.BlockNumber, rewardPercentiles []float64) (*feeHistoryResult, error) { 98 oldest, reward, baseFee, gasUsed, err := s.b.FeeHistory(ctx, int(blockCount), lastBlock, rewardPercentiles) 99 if err != nil { 100 return nil, err 101 } 102 results := &feeHistoryResult{ 103 OldestBlock: (*hexutil.Big)(oldest), 104 GasUsedRatio: gasUsed, 105 } 106 if reward != nil { 107 results.Reward = make([][]*hexutil.Big, len(reward)) 108 for i, w := range reward { 109 results.Reward[i] = make([]*hexutil.Big, len(w)) 110 for j, v := range w { 111 results.Reward[i][j] = (*hexutil.Big)(v) 112 } 113 } 114 } 115 if baseFee != nil { 116 results.BaseFee = make([]*hexutil.Big, len(baseFee)) 117 for i, v := range baseFee { 118 results.BaseFee[i] = (*hexutil.Big)(v) 119 } 120 } 121 return results, nil 122 } 123 124 // Syncing returns false in case the node is currently not syncing with the network. It can be up to date or has not 125 // yet received the latest block headers from its pears. In case it is synchronizing: 126 // - startingBlock: block number this node started to synchronise from 127 // - currentBlock: block number this node is currently importing 128 // - highestBlock: block number of the highest block header this node has received from peers 129 // - pulledStates: number of state entries processed until now 130 // - knownStates: number of known state entries that still need to be pulled 131 func (s *EthereumAPI) Syncing() (interface{}, error) { 132 progress := s.b.SyncProgressMap() 133 134 if progress == nil || len(progress) == 0 { 135 return false, nil 136 } 137 return progress, nil 138 } 139 140 // TxPoolAPI offers and API for the transaction pool. It only operates on data that is non confidential. 141 type TxPoolAPI struct { 142 b Backend 143 } 144 145 // NewTxPoolAPI creates a new tx pool service that gives information about the transaction pool. 146 func NewTxPoolAPI(b Backend) *TxPoolAPI { 147 return &TxPoolAPI{b} 148 } 149 150 // Content returns the transactions contained within the transaction pool. 151 func (s *TxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction { 152 content := map[string]map[string]map[string]*RPCTransaction{ 153 "pending": make(map[string]map[string]*RPCTransaction), 154 "queued": make(map[string]map[string]*RPCTransaction), 155 } 156 pending, queue := s.b.TxPoolContent() 157 curHeader := s.b.CurrentHeader() 158 // Flatten the pending transactions 159 for account, txs := range pending { 160 dump := make(map[string]*RPCTransaction) 161 for _, tx := range txs { 162 dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 163 } 164 content["pending"][account.Hex()] = dump 165 } 166 // Flatten the queued transactions 167 for account, txs := range queue { 168 dump := make(map[string]*RPCTransaction) 169 for _, tx := range txs { 170 dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 171 } 172 content["queued"][account.Hex()] = dump 173 } 174 return content 175 } 176 177 // ContentFrom returns the transactions contained within the transaction pool. 178 func (s *TxPoolAPI) ContentFrom(addr common.Address) map[string]map[string]*RPCTransaction { 179 content := make(map[string]map[string]*RPCTransaction, 2) 180 pending, queue := s.b.TxPoolContentFrom(addr) 181 curHeader := s.b.CurrentHeader() 182 183 // Build the pending transactions 184 dump := make(map[string]*RPCTransaction, len(pending)) 185 for _, tx := range pending { 186 dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 187 } 188 content["pending"] = dump 189 190 // Build the queued transactions 191 dump = make(map[string]*RPCTransaction, len(queue)) 192 for _, tx := range queue { 193 dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 194 } 195 content["queued"] = dump 196 197 return content 198 } 199 200 // Status returns the number of pending and queued transaction in the pool. 201 func (s *TxPoolAPI) Status() map[string]hexutil.Uint { 202 pending, queue := s.b.Stats() 203 return map[string]hexutil.Uint{ 204 "pending": hexutil.Uint(pending), 205 "queued": hexutil.Uint(queue), 206 } 207 } 208 209 // Inspect retrieves the content of the transaction pool and flattens it into an 210 // easily inspectable list. 211 func (s *TxPoolAPI) Inspect() map[string]map[string]map[string]string { 212 content := map[string]map[string]map[string]string{ 213 "pending": make(map[string]map[string]string), 214 "queued": make(map[string]map[string]string), 215 } 216 pending, queue := s.b.TxPoolContent() 217 218 // Define a formatter to flatten a transaction into a string 219 var format = func(tx *types.Transaction) string { 220 if to := tx.To(); to != nil { 221 return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice()) 222 } 223 return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice()) 224 } 225 // Flatten the pending transactions 226 for account, txs := range pending { 227 dump := make(map[string]string) 228 for _, tx := range txs { 229 dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx) 230 } 231 content["pending"][account.Hex()] = dump 232 } 233 // Flatten the queued transactions 234 for account, txs := range queue { 235 dump := make(map[string]string) 236 for _, tx := range txs { 237 dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx) 238 } 239 content["queued"][account.Hex()] = dump 240 } 241 return content 242 } 243 244 // EthereumAccountAPI provides an API to access accounts managed by this node. 245 // It offers only methods that can retrieve accounts. 246 type EthereumAccountAPI struct { 247 am *accounts.Manager 248 } 249 250 // NewEthereumAccountAPI creates a new EthereumAccountAPI. 251 func NewEthereumAccountAPI(am *accounts.Manager) *EthereumAccountAPI { 252 return &EthereumAccountAPI{am: am} 253 } 254 255 // Accounts returns the collection of accounts this node manages. 256 func (s *EthereumAccountAPI) Accounts() []common.Address { 257 return s.am.Accounts() 258 } 259 260 // PersonalAccountAPI provides an API to access accounts managed by this node. 261 // It offers methods to create, (un)lock en list accounts. Some methods accept 262 // passwords and are therefore considered private by default. 263 type PersonalAccountAPI struct { 264 am *accounts.Manager 265 nonceLock *AddrLocker 266 b Backend 267 } 268 269 // NewPersonalAccountAPI create a new PersonalAccountAPI. 270 func NewPersonalAccountAPI(b Backend, nonceLock *AddrLocker) *PersonalAccountAPI { 271 return &PersonalAccountAPI{ 272 am: b.AccountManager(), 273 nonceLock: nonceLock, 274 b: b, 275 } 276 } 277 278 // ListAccounts will return a list of addresses for accounts this node manages. 279 func (s *PersonalAccountAPI) ListAccounts() []common.Address { 280 return s.am.Accounts() 281 } 282 283 // rawWallet is a JSON representation of an accounts.Wallet interface, with its 284 // data contents extracted into plain fields. 285 type rawWallet struct { 286 URL string `json:"url"` 287 Status string `json:"status"` 288 Failure string `json:"failure,omitempty"` 289 Accounts []accounts.Account `json:"accounts,omitempty"` 290 } 291 292 // ListWallets will return a list of wallets this node manages. 293 func (s *PersonalAccountAPI) ListWallets() []rawWallet { 294 wallets := make([]rawWallet, 0) // return [] instead of nil if empty 295 for _, wallet := range s.am.Wallets() { 296 status, failure := wallet.Status() 297 298 raw := rawWallet{ 299 URL: wallet.URL().String(), 300 Status: status, 301 Accounts: wallet.Accounts(), 302 } 303 if failure != nil { 304 raw.Failure = failure.Error() 305 } 306 wallets = append(wallets, raw) 307 } 308 return wallets 309 } 310 311 // OpenWallet initiates a hardware wallet opening procedure, establishing a USB 312 // connection and attempting to authenticate via the provided passphrase. Note, 313 // the method may return an extra challenge requiring a second open (e.g. the 314 // Trezor PIN matrix challenge). 315 func (s *PersonalAccountAPI) OpenWallet(url string, passphrase *string) error { 316 wallet, err := s.am.Wallet(url) 317 if err != nil { 318 return err 319 } 320 pass := "" 321 if passphrase != nil { 322 pass = *passphrase 323 } 324 return wallet.Open(pass) 325 } 326 327 // DeriveAccount requests a HD wallet to derive a new account, optionally pinning 328 // it for later reuse. 329 func (s *PersonalAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) { 330 wallet, err := s.am.Wallet(url) 331 if err != nil { 332 return accounts.Account{}, err 333 } 334 derivPath, err := accounts.ParseDerivationPath(path) 335 if err != nil { 336 return accounts.Account{}, err 337 } 338 if pin == nil { 339 pin = new(bool) 340 } 341 return wallet.Derive(derivPath, *pin) 342 } 343 344 // NewAccount will create a new account and returns the address for the new account. 345 func (s *PersonalAccountAPI) NewAccount(password string) (common.Address, error) { 346 ks, err := fetchKeystore(s.am) 347 if err != nil { 348 return common.Address{}, err 349 } 350 acc, err := ks.NewAccount(password) 351 if err == nil { 352 log.Info("Your new key was generated", "address", acc.Address) 353 log.Warn("Please backup your key file!", "path", acc.URL.Path) 354 log.Warn("Please remember your password!") 355 return acc.Address, nil 356 } 357 return common.Address{}, err 358 } 359 360 // fetchKeystore retrieves the encrypted keystore from the account manager. 361 func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) { 362 if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 { 363 return ks[0].(*keystore.KeyStore), nil 364 } 365 return nil, errors.New("local keystore not used") 366 } 367 368 // ImportRawKey stores the given hex encoded ECDSA key into the key directory, 369 // encrypting it with the passphrase. 370 func (s *PersonalAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) { 371 key, err := crypto.HexToECDSA(privkey) 372 if err != nil { 373 return common.Address{}, err 374 } 375 ks, err := fetchKeystore(s.am) 376 if err != nil { 377 return common.Address{}, err 378 } 379 acc, err := ks.ImportECDSA(key, password) 380 return acc.Address, err 381 } 382 383 // UnlockAccount will unlock the account associated with the given address with 384 // the given password for duration seconds. If duration is nil it will use a 385 // default of 300 seconds. It returns an indication if the account was unlocked. 386 func (s *PersonalAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) { 387 // When the API is exposed by external RPC(http, ws etc), unless the user 388 // explicitly specifies to allow the insecure account unlocking, otherwise 389 // it is disabled. 390 if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed { 391 return false, errors.New("account unlock with HTTP access is forbidden") 392 } 393 394 const max = uint64(time.Duration(math.MaxInt64) / time.Second) 395 var d time.Duration 396 if duration == nil { 397 d = 300 * time.Second 398 } else if *duration > max { 399 return false, errors.New("unlock duration too large") 400 } else { 401 d = time.Duration(*duration) * time.Second 402 } 403 ks, err := fetchKeystore(s.am) 404 if err != nil { 405 return false, err 406 } 407 err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d) 408 if err != nil { 409 log.Warn("Failed account unlock attempt", "address", addr, "err", err) 410 } 411 return err == nil, err 412 } 413 414 // LockAccount will lock the account associated with the given address when it's unlocked. 415 func (s *PersonalAccountAPI) LockAccount(addr common.Address) bool { 416 if ks, err := fetchKeystore(s.am); err == nil { 417 return ks.Lock(addr) == nil 418 } 419 return false 420 } 421 422 // signTransaction sets defaults and signs the given transaction 423 // NOTE: the caller needs to ensure that the nonceLock is held, if applicable, 424 // and release it after the transaction has been submitted to the tx pool 425 func (s *PersonalAccountAPI) signTransaction(ctx context.Context, args *TransactionArgs, passwd string) (*types.Transaction, error) { 426 // Look up the wallet containing the requested signer 427 account := accounts.Account{Address: args.from()} 428 wallet, err := s.am.Find(account) 429 if err != nil { 430 return nil, err 431 } 432 // Set some sanity defaults and terminate on failure 433 if err := args.setDefaults(ctx, s.b); err != nil { 434 return nil, err 435 } 436 // Assemble the transaction and sign with the wallet 437 tx := args.toTransaction() 438 439 return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID) 440 } 441 442 // SendTransaction will create a transaction from the given arguments and 443 // tries to sign it with the key associated with args.From. If the given 444 // passwd isn't able to decrypt the key it fails. 445 func (s *PersonalAccountAPI) SendTransaction(ctx context.Context, args TransactionArgs, passwd string) (common.Hash, error) { 446 if args.Nonce == nil { 447 // Hold the addresse's mutex around signing to prevent concurrent assignment of 448 // the same nonce to multiple accounts. 449 s.nonceLock.LockAddr(args.from()) 450 defer s.nonceLock.UnlockAddr(args.from()) 451 } 452 signed, err := s.signTransaction(ctx, &args, passwd) 453 if err != nil { 454 log.Warn("Failed transaction send attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err) 455 return common.Hash{}, err 456 } 457 return SubmitTransaction(ctx, s.b, signed) 458 } 459 460 // SignTransaction will create a transaction from the given arguments and 461 // tries to sign it with the key associated with args.From. If the given passwd isn't 462 // able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast 463 // to other nodes 464 func (s *PersonalAccountAPI) SignTransaction(ctx context.Context, args TransactionArgs, passwd string) (*SignTransactionResult, error) { 465 // No need to obtain the noncelock mutex, since we won't be sending this 466 // tx into the transaction pool, but right back to the user 467 if args.From == nil { 468 return nil, fmt.Errorf("sender not specified") 469 } 470 if args.Gas == nil { 471 return nil, fmt.Errorf("gas not specified") 472 } 473 if args.GasPrice == nil && (args.MaxFeePerGas == nil || args.MaxPriorityFeePerGas == nil) { 474 return nil, fmt.Errorf("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas") 475 } 476 if args.Nonce == nil { 477 return nil, fmt.Errorf("nonce not specified") 478 } 479 // Before actually signing the transaction, ensure the transaction fee is reasonable. 480 tx := args.toTransaction() 481 if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil { 482 return nil, err 483 } 484 signed, err := s.signTransaction(ctx, &args, passwd) 485 if err != nil { 486 log.Warn("Failed transaction sign attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err) 487 return nil, err 488 } 489 data, err := signed.MarshalBinary() 490 if err != nil { 491 return nil, err 492 } 493 return &SignTransactionResult{data, signed}, nil 494 } 495 496 // Sign calculates an Ethereum ECDSA signature for: 497 // keccak256("\x19Ethereum Signed Message:\n" + len(message) + message)) 498 // 499 // Note, the produced signature conforms to the secp256k1 curve R, S and V values, 500 // where the V value will be 27 or 28 for legacy reasons. 501 // 502 // The key used to calculate the signature is decrypted with the given password. 503 // 504 // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign 505 func (s *PersonalAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) { 506 // Look up the wallet containing the requested signer 507 account := accounts.Account{Address: addr} 508 509 wallet, err := s.b.AccountManager().Find(account) 510 if err != nil { 511 return nil, err 512 } 513 // Assemble sign the data with the wallet 514 signature, err := wallet.SignTextWithPassphrase(account, passwd, data) 515 if err != nil { 516 log.Warn("Failed data sign attempt", "address", addr, "err", err) 517 return nil, err 518 } 519 signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper 520 return signature, nil 521 } 522 523 // EcRecover returns the address for the account that was used to create the signature. 524 // Note, this function is compatible with eth_sign and personal_sign. As such it recovers 525 // the address of: 526 // hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message}) 527 // addr = ecrecover(hash, signature) 528 // 529 // Note, the signature must conform to the secp256k1 curve R, S and V values, where 530 // the V value must be 27 or 28 for legacy reasons. 531 // 532 // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover 533 func (s *PersonalAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) { 534 if len(sig) != crypto.SignatureLength { 535 return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength) 536 } 537 if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 { 538 return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)") 539 } 540 sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1 541 542 rpk, err := crypto.SigToPub(accounts.TextHash(data), sig) 543 if err != nil { 544 return common.Address{}, err 545 } 546 return crypto.PubkeyToAddress(*rpk), nil 547 } 548 549 // InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key. 550 func (s *PersonalAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) { 551 wallet, err := s.am.Wallet(url) 552 if err != nil { 553 return "", err 554 } 555 556 entropy, err := bip39.NewEntropy(256) 557 if err != nil { 558 return "", err 559 } 560 561 mnemonic, err := bip39.NewMnemonic(entropy) 562 if err != nil { 563 return "", err 564 } 565 566 seed := bip39.NewSeed(mnemonic, "") 567 568 switch wallet := wallet.(type) { 569 case *scwallet.Wallet: 570 return mnemonic, wallet.Initialize(seed) 571 default: 572 return "", fmt.Errorf("specified wallet does not support initialization") 573 } 574 } 575 576 // Unpair deletes a pairing between wallet and geth. 577 func (s *PersonalAccountAPI) Unpair(ctx context.Context, url string, pin string) error { 578 wallet, err := s.am.Wallet(url) 579 if err != nil { 580 return err 581 } 582 583 switch wallet := wallet.(type) { 584 case *scwallet.Wallet: 585 return wallet.Unpair([]byte(pin)) 586 default: 587 return fmt.Errorf("specified wallet does not support pairing") 588 } 589 } 590 591 // BlockChainAPI provides an API to access Ethereum blockchain data. 592 type BlockChainAPI struct { 593 b Backend 594 } 595 596 // NewBlockChainAPI creates a new Ethereum blockchain API. 597 func NewBlockChainAPI(b Backend) *BlockChainAPI { 598 return &BlockChainAPI{b} 599 } 600 601 // ChainId is the EIP-155 replay-protection chain id for the current Ethereum chain config. 602 // 603 // Note, this method does not conform to EIP-695 because the configured chain ID is always 604 // returned, regardless of the current head block. We used to return an error when the chain 605 // wasn't synced up to a block where EIP-155 is enabled, but this behavior caused issues 606 // in CL clients. 607 func (api *BlockChainAPI) ChainId() *hexutil.Big { 608 return (*hexutil.Big)(api.b.ChainConfig().ChainID) 609 } 610 611 // BlockNumber returns the block number of the chain head. 612 func (s *BlockChainAPI) BlockNumber() hexutil.Uint64 { 613 header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available 614 return hexutil.Uint64(header.Number.Uint64()) 615 } 616 617 // GetBalance returns the amount of wei for the given address in the state of the 618 // given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta 619 // block numbers are also allowed. 620 func (s *BlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) { 621 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 622 if state == nil || err != nil { 623 if client := fallbackClientFor(s.b, err); client != nil { 624 var res hexutil.Big 625 err := client.CallContext(ctx, &res, "eth_getBalance", address, blockNrOrHash) 626 return &res, err 627 } 628 return nil, err 629 } 630 return (*hexutil.Big)(state.GetBalance(address)), state.Error() 631 } 632 633 // Result structs for GetProof 634 type AccountResult struct { 635 Address common.Address `json:"address"` 636 AccountProof []string `json:"accountProof"` 637 Balance *hexutil.Big `json:"balance"` 638 CodeHash common.Hash `json:"codeHash"` 639 Nonce hexutil.Uint64 `json:"nonce"` 640 StorageHash common.Hash `json:"storageHash"` 641 StorageProof []StorageResult `json:"storageProof"` 642 } 643 644 type StorageResult struct { 645 Key string `json:"key"` 646 Value *hexutil.Big `json:"value"` 647 Proof []string `json:"proof"` 648 } 649 650 // GetProof returns the Merkle-proof for a given account and optionally some storage keys. 651 func (s *BlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNrOrHash rpc.BlockNumberOrHash) (*AccountResult, error) { 652 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 653 if state == nil || err != nil { 654 return nil, err 655 } 656 657 storageTrie := state.StorageTrie(address) 658 storageHash := types.EmptyRootHash 659 codeHash := state.GetCodeHash(address) 660 storageProof := make([]StorageResult, len(storageKeys)) 661 662 // if we have a storageTrie, (which means the account exists), we can update the storagehash 663 if storageTrie != nil { 664 storageHash = storageTrie.Hash() 665 } else { 666 // no storageTrie means the account does not exist, so the codeHash is the hash of an empty bytearray. 667 codeHash = crypto.Keccak256Hash(nil) 668 } 669 670 // create the proof for the storageKeys 671 for i, key := range storageKeys { 672 if storageTrie != nil { 673 proof, storageError := state.GetStorageProof(address, common.HexToHash(key)) 674 if storageError != nil { 675 return nil, storageError 676 } 677 storageProof[i] = StorageResult{key, (*hexutil.Big)(state.GetState(address, common.HexToHash(key)).Big()), toHexSlice(proof)} 678 } else { 679 storageProof[i] = StorageResult{key, &hexutil.Big{}, []string{}} 680 } 681 } 682 683 // create the accountProof 684 accountProof, proofErr := state.GetProof(address) 685 if proofErr != nil { 686 return nil, proofErr 687 } 688 689 return &AccountResult{ 690 Address: address, 691 AccountProof: toHexSlice(accountProof), 692 Balance: (*hexutil.Big)(state.GetBalance(address)), 693 CodeHash: codeHash, 694 Nonce: hexutil.Uint64(state.GetNonce(address)), 695 StorageHash: storageHash, 696 StorageProof: storageProof, 697 }, state.Error() 698 } 699 700 // GetHeaderByNumber returns the requested canonical block header. 701 // * When blockNr is -1 the chain head is returned. 702 // * When blockNr is -2 the pending chain head is returned. 703 func (s *BlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) { 704 header, err := s.b.HeaderByNumber(ctx, number) 705 if header != nil && err == nil { 706 response := s.rpcMarshalHeader(ctx, header) 707 if number == rpc.PendingBlockNumber { 708 // Pending header need to nil out a few fields 709 for _, field := range []string{"hash", "nonce", "miner"} { 710 response[field] = nil 711 } 712 } 713 return response, err 714 } 715 return nil, err 716 } 717 718 // GetHeaderByHash returns the requested header by hash. 719 func (s *BlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} { 720 header, _ := s.b.HeaderByHash(ctx, hash) 721 if header != nil { 722 return s.rpcMarshalHeader(ctx, header) 723 } 724 return nil 725 } 726 727 // GetBlockByNumber returns the requested canonical block. 728 // - When blockNr is -1 the chain head is returned. 729 // - When blockNr is -2 the pending chain head is returned. 730 // - When fullTx is true all transactions in the block are returned, otherwise 731 // only the transaction hash is returned. 732 func (s *BlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) { 733 block, err := s.b.BlockByNumber(ctx, number) 734 if block != nil && err == nil { 735 response, err := s.rpcMarshalBlock(ctx, block, true, fullTx) 736 if err == nil && number == rpc.PendingBlockNumber { 737 // Pending blocks need to nil out a few fields 738 for _, field := range []string{"hash", "nonce", "miner"} { 739 response[field] = nil 740 } 741 } 742 return response, err 743 } 744 return nil, err 745 } 746 747 // GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full 748 // detail, otherwise only the transaction hash is returned. 749 func (s *BlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) { 750 block, err := s.b.BlockByHash(ctx, hash) 751 if block != nil { 752 return s.rpcMarshalBlock(ctx, block, true, fullTx) 753 } 754 return nil, err 755 } 756 757 // GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index. 758 func (s *BlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) { 759 block, err := s.b.BlockByNumber(ctx, blockNr) 760 if block != nil { 761 uncles := block.Uncles() 762 if index >= hexutil.Uint(len(uncles)) { 763 log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index) 764 return nil, nil 765 } 766 block = types.NewBlockWithHeader(uncles[index]) 767 return s.rpcMarshalBlock(ctx, block, false, false) 768 } 769 return nil, err 770 } 771 772 // GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index. 773 func (s *BlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) { 774 block, err := s.b.BlockByHash(ctx, blockHash) 775 if block != nil { 776 uncles := block.Uncles() 777 if index >= hexutil.Uint(len(uncles)) { 778 log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index) 779 return nil, nil 780 } 781 block = types.NewBlockWithHeader(uncles[index]) 782 return s.rpcMarshalBlock(ctx, block, false, false) 783 } 784 return nil, err 785 } 786 787 // GetUncleCountByBlockNumber returns number of uncles in the block for the given block number 788 func (s *BlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint { 789 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 790 n := hexutil.Uint(len(block.Uncles())) 791 return &n 792 } 793 return nil 794 } 795 796 // GetUncleCountByBlockHash returns number of uncles in the block for the given block hash 797 func (s *BlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint { 798 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 799 n := hexutil.Uint(len(block.Uncles())) 800 return &n 801 } 802 return nil 803 } 804 805 // GetCode returns the code stored at the given address in the state for the given block number. 806 func (s *BlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { 807 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 808 if state == nil || err != nil { 809 if client := fallbackClientFor(s.b, err); client != nil { 810 var res hexutil.Bytes 811 err := client.CallContext(ctx, &res, "eth_getCode", address, blockNrOrHash) 812 return res, err 813 } 814 return nil, err 815 } 816 code := state.GetCode(address) 817 return code, state.Error() 818 } 819 820 // GetStorageAt returns the storage from the state at the given address, key and 821 // block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block 822 // numbers are also allowed. 823 func (s *BlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, key string, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { 824 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 825 if state == nil || err != nil { 826 if client := fallbackClientFor(s.b, err); client != nil { 827 var res hexutil.Bytes 828 err := client.CallContext(ctx, &res, "eth_getStorageAt", address, key, blockNrOrHash) 829 return res, err 830 } 831 return nil, err 832 } 833 res := state.GetState(address, common.HexToHash(key)) 834 return res[:], state.Error() 835 } 836 837 // OverrideAccount indicates the overriding fields of account during the execution 838 // of a message call. 839 // Note, state and stateDiff can't be specified at the same time. If state is 840 // set, message execution will only use the data in the given state. Otherwise 841 // if statDiff is set, all diff will be applied first and then execute the call 842 // message. 843 type OverrideAccount struct { 844 Nonce *hexutil.Uint64 `json:"nonce"` 845 Code *hexutil.Bytes `json:"code"` 846 Balance **hexutil.Big `json:"balance"` 847 State *map[common.Hash]common.Hash `json:"state"` 848 StateDiff *map[common.Hash]common.Hash `json:"stateDiff"` 849 } 850 851 // StateOverride is the collection of overridden accounts. 852 type StateOverride map[common.Address]OverrideAccount 853 854 // Apply overrides the fields of specified accounts into the given state. 855 func (diff *StateOverride) Apply(state *state.StateDB) error { 856 if diff == nil { 857 return nil 858 } 859 for addr, account := range *diff { 860 // Override account nonce. 861 if account.Nonce != nil { 862 state.SetNonce(addr, uint64(*account.Nonce)) 863 } 864 // Override account(contract) code. 865 if account.Code != nil { 866 state.SetCode(addr, *account.Code) 867 } 868 // Override account balance. 869 if account.Balance != nil { 870 state.SetBalance(addr, (*big.Int)(*account.Balance)) 871 } 872 if account.State != nil && account.StateDiff != nil { 873 return fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex()) 874 } 875 // Replace entire state if caller requires. 876 if account.State != nil { 877 state.SetStorage(addr, *account.State) 878 } 879 // Apply state diff into specified accounts. 880 if account.StateDiff != nil { 881 for key, value := range *account.StateDiff { 882 state.SetState(addr, key, value) 883 } 884 } 885 } 886 return nil 887 } 888 889 // BlockOverrides is a set of header fields to override. 890 type BlockOverrides struct { 891 Number *hexutil.Big 892 Difficulty *hexutil.Big 893 Time *hexutil.Big 894 GasLimit *hexutil.Uint64 895 Coinbase *common.Address 896 Random *common.Hash 897 BaseFee *hexutil.Big 898 } 899 900 // Apply overrides the given header fields into the given block context. 901 func (diff *BlockOverrides) Apply(blockCtx *vm.BlockContext) { 902 if diff == nil { 903 return 904 } 905 if diff.Number != nil { 906 blockCtx.BlockNumber = diff.Number.ToInt() 907 } 908 if diff.Difficulty != nil { 909 blockCtx.Difficulty = diff.Difficulty.ToInt() 910 } 911 if diff.Time != nil { 912 blockCtx.Time = diff.Time.ToInt() 913 } 914 if diff.GasLimit != nil { 915 blockCtx.GasLimit = uint64(*diff.GasLimit) 916 } 917 if diff.Coinbase != nil { 918 blockCtx.Coinbase = *diff.Coinbase 919 } 920 if diff.Random != nil { 921 blockCtx.Random = diff.Random 922 } 923 if diff.BaseFee != nil { 924 blockCtx.BaseFee = diff.BaseFee.ToInt() 925 } 926 } 927 928 func DoCall(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, timeout time.Duration, globalGasCap uint64, gasEstimation bool) (*core.ExecutionResult, error) { 929 defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now()) 930 931 state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 932 if state == nil || err != nil { 933 return nil, err 934 } 935 if err := overrides.Apply(state); err != nil { 936 return nil, err 937 } 938 // Setup context so it may be cancelled the call has completed 939 // or, in case of unmetered gas, setup a context with a timeout. 940 var cancel context.CancelFunc 941 if timeout > 0 { 942 ctx, cancel = context.WithTimeout(ctx, timeout) 943 } else { 944 ctx, cancel = context.WithCancel(ctx) 945 } 946 // Make sure the context is cancelled when the call has completed 947 // this makes sure resources are cleaned up. 948 defer cancel() 949 950 // Get a new instance of the EVM. 951 msg, err := args.ToMessage(globalGasCap, header, state) 952 if err != nil { 953 return nil, err 954 } 955 956 // Arbitrum: mark the reason for this call 957 var txRunMode types.MessageRunMode 958 if gasEstimation { 959 txRunMode = types.MessageGasEstimationMode 960 } else { 961 txRunMode = types.MessageEthcallMode 962 } 963 msg.TxRunMode = txRunMode 964 965 // Arbitrum: support NodeInterface.sol by swapping out the message if needed 966 var res *core.ExecutionResult 967 msg, res, err = core.InterceptRPCMessage(msg, ctx, state, header, b) 968 if err != nil || res != nil { 969 return res, err 970 } 971 msg.TxRunMode = txRunMode 972 973 evm, vmError, err := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}) 974 if err != nil { 975 return nil, err 976 } 977 // Wait for the context to be done and cancel the evm. Even if the 978 // EVM has finished, cancelling may be done (repeatedly) 979 go func() { 980 <-ctx.Done() 981 evm.Cancel() 982 }() 983 984 // Execute the message. 985 gp := new(core.GasPool).AddGas(math.MaxUint64) 986 result, err := core.ApplyMessage(evm, msg, gp) 987 if err := vmError(); err != nil { 988 return nil, err 989 } 990 991 // If the timer caused an abort, return an appropriate error message 992 if evm.Cancelled() { 993 return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout) 994 } 995 if err != nil { 996 return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.Gas()) 997 } 998 999 // Arbitrum: a tx can schedule another (see retryables) 1000 scheduled := result.ScheduledTxes 1001 for gasEstimation && len(scheduled) > 0 { 1002 // make a new EVM for the scheduled Tx (an EVM must never be reused) 1003 evm, vmError, err := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}) 1004 if err != nil { 1005 return nil, err 1006 } 1007 go func() { 1008 <-ctx.Done() 1009 evm.Cancel() 1010 }() 1011 1012 // This will panic if the scheduled tx is signed, but we only schedule unsigned ones 1013 msg, err := scheduled[0].AsMessage(types.NewArbitrumSigner(nil), header.BaseFee) 1014 if err != nil { 1015 return nil, err 1016 } 1017 scheduledTxResult, err := core.ApplyMessage(evm, msg, gp) 1018 if err != nil { 1019 return nil, err // Bail out 1020 } 1021 if err := vmError(); err != nil { 1022 return nil, err 1023 } 1024 if scheduledTxResult.Failed() { 1025 return scheduledTxResult, nil 1026 } 1027 scheduled = append(scheduled[1:], scheduledTxResult.ScheduledTxes...) 1028 } 1029 1030 return result, nil 1031 } 1032 1033 func newRevertError(result *core.ExecutionResult) *revertError { 1034 reason, errUnpack := abi.UnpackRevert(result.Revert()) 1035 err := errors.New("execution reverted") 1036 if errUnpack == nil { 1037 err = fmt.Errorf("execution reverted: %v", reason) 1038 } else if core.RenderRPCError != nil { 1039 if arbErr := core.RenderRPCError(result.Revert()); arbErr != nil { 1040 err = fmt.Errorf("execution reverted: %w", arbErr) 1041 } 1042 } 1043 return &revertError{ 1044 error: err, 1045 reason: hexutil.Encode(result.Revert()), 1046 } 1047 } 1048 1049 func NewRevertError(result *core.ExecutionResult) *revertError { 1050 return newRevertError(result) 1051 } 1052 1053 // revertError is an API error that encompasses an EVM revertal with JSON error 1054 // code and a binary data blob. 1055 type revertError struct { 1056 error 1057 reason string // revert reason hex encoded 1058 } 1059 1060 // ErrorCode returns the JSON error code for a revertal. 1061 // See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal 1062 func (e *revertError) ErrorCode() int { 1063 return 3 1064 } 1065 1066 // ErrorData returns the hex encoded revert reason. 1067 func (e *revertError) ErrorData() interface{} { 1068 return e.reason 1069 } 1070 1071 // Call executes the given transaction on the state for the given block number. 1072 // 1073 // Additionally, the caller can specify a batch of contract for fields overriding. 1074 // 1075 // Note, this function doesn't make and changes in the state/blockchain and is 1076 // useful to execute and retrieve values. 1077 func (s *BlockChainAPI) Call(ctx context.Context, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride) (hexutil.Bytes, error) { 1078 result, err := DoCall(ctx, s.b, args, blockNrOrHash, overrides, s.b.RPCEVMTimeout(), s.b.RPCGasCap(), false) 1079 if err != nil { 1080 if client := fallbackClientFor(s.b, err); client != nil { 1081 var res hexutil.Bytes 1082 err := client.CallContext(ctx, &res, "eth_call", args, blockNrOrHash, overrides) 1083 return res, err 1084 } 1085 return nil, err 1086 } 1087 // If the result contains a revert reason, try to unpack and return it. 1088 if len(result.Revert()) > 0 { 1089 return nil, newRevertError(result) 1090 } 1091 return result.Return(), result.Err 1092 } 1093 1094 func DoEstimateGas(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, gasCap uint64) (hexutil.Uint64, error) { 1095 // Binary search the gas requirement, as it may be higher than the amount used 1096 var ( 1097 lo uint64 = params.TxGas - 1 1098 hi uint64 1099 cap uint64 1100 ) 1101 // Use zero address if sender unspecified. 1102 if args.From == nil { 1103 args.From = new(common.Address) 1104 } 1105 // Determine the highest gas limit can be used during the estimation. 1106 if args.Gas != nil && uint64(*args.Gas) >= params.TxGas { 1107 hi = uint64(*args.Gas) 1108 } else { 1109 // Retrieve the block to act as the gas ceiling 1110 block, err := b.BlockByNumberOrHash(ctx, blockNrOrHash) 1111 if err != nil { 1112 return 0, err 1113 } 1114 if block == nil { 1115 return 0, errors.New("block not found") 1116 } 1117 hi = block.GasLimit() 1118 } 1119 // Normalize the max fee per gas the call is willing to spend. 1120 var feeCap *big.Int 1121 if args.GasPrice != nil && (args.MaxFeePerGas != nil || args.MaxPriorityFeePerGas != nil) { 1122 return 0, errors.New("both gasPrice and (maxFeePerGas or maxPriorityFeePerGas) specified") 1123 } else if args.GasPrice != nil { 1124 feeCap = args.GasPrice.ToInt() 1125 } else if args.MaxFeePerGas != nil { 1126 feeCap = args.MaxFeePerGas.ToInt() 1127 } else { 1128 feeCap = common.Big0 1129 } 1130 // Recap the highest gas limit with account's available balance. 1131 if feeCap.BitLen() != 0 { 1132 state, _, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1133 if err != nil { 1134 return 0, err 1135 } 1136 balance := state.GetBalance(*args.From) // from can't be nil 1137 available := new(big.Int).Set(balance) 1138 if args.Value != nil { 1139 if args.Value.ToInt().Cmp(available) >= 0 { 1140 return 0, errors.New("insufficient funds for transfer") 1141 } 1142 available.Sub(available, args.Value.ToInt()) 1143 } 1144 allowance := new(big.Int).Div(available, feeCap) 1145 1146 // If the allowance is larger than maximum uint64, skip checking 1147 if allowance.IsUint64() && hi > allowance.Uint64() { 1148 transfer := args.Value 1149 if transfer == nil { 1150 transfer = new(hexutil.Big) 1151 } 1152 log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance, 1153 "sent", transfer.ToInt(), "maxFeePerGas", feeCap, "fundable", allowance) 1154 hi = allowance.Uint64() 1155 } 1156 } 1157 1158 // Arbitrum: raise the gas cap to ignore L1 costs so that it's compute-only 1159 vanillaGasCap := gasCap 1160 { 1161 state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1162 if state == nil || err != nil { 1163 return 0, err 1164 } 1165 gasCap, err = args.L2OnlyGasCap(gasCap, header, state) 1166 if err != nil { 1167 return 0, err 1168 } 1169 } 1170 1171 // Recap the highest gas allowance with specified gascap. 1172 if gasCap != 0 && hi > gasCap { 1173 log.Warn("Caller gas above allowance, capping", "requested", hi, "cap", gasCap) 1174 hi = gasCap 1175 } 1176 cap = hi 1177 1178 // Create a helper to check if a gas allowance results in an executable transaction 1179 executable := func(gas uint64) (bool, *core.ExecutionResult, error) { 1180 args.Gas = (*hexutil.Uint64)(&gas) 1181 1182 result, err := DoCall(ctx, b, args, blockNrOrHash, nil, 0, vanillaGasCap, true) 1183 if err != nil { 1184 if errors.Is(err, core.ErrIntrinsicGas) { 1185 return true, nil, nil // Special case, raise gas limit 1186 } 1187 return true, nil, err // Bail out 1188 } 1189 return result.Failed(), result, nil 1190 } 1191 // Execute the binary search and hone in on an executable gas limit 1192 for lo+1 < hi { 1193 mid := (hi + lo) / 2 1194 failed, _, err := executable(mid) 1195 1196 // If the error is not nil(consensus error), it means the provided message 1197 // call or transaction will never be accepted no matter how much gas it is 1198 // assigned. Return the error directly, don't struggle any more. 1199 if err != nil { 1200 return 0, err 1201 } 1202 if failed { 1203 lo = mid 1204 } else { 1205 hi = mid 1206 } 1207 } 1208 // Reject the transaction as invalid if it still fails at the highest allowance 1209 if hi == cap { 1210 failed, result, err := executable(hi) 1211 if err != nil { 1212 return 0, err 1213 } 1214 if failed { 1215 if result != nil && result.Err != vm.ErrOutOfGas { 1216 if len(result.Revert()) > 0 { 1217 return 0, newRevertError(result) 1218 } 1219 return 0, result.Err 1220 } 1221 // Otherwise, the specified gas cap is too low 1222 return 0, fmt.Errorf("gas required exceeds allowance (%d)", cap) 1223 } 1224 } 1225 return hexutil.Uint64(hi), nil 1226 } 1227 1228 // EstimateGas returns an estimate of the amount of gas needed to execute the 1229 // given transaction against the current pending block. 1230 func (s *BlockChainAPI) EstimateGas(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (hexutil.Uint64, error) { 1231 bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber) 1232 if blockNrOrHash != nil { 1233 bNrOrHash = *blockNrOrHash 1234 } 1235 res, err := DoEstimateGas(ctx, s.b, args, bNrOrHash, s.b.RPCGasCap()) 1236 if client := fallbackClientFor(s.b, err); client != nil { 1237 var res hexutil.Uint64 1238 err := client.CallContext(ctx, &res, "eth_estimateGas", args, blockNrOrHash) 1239 return res, err 1240 } 1241 return res, err 1242 } 1243 1244 // RPCMarshalHeader converts the given header to the RPC output . 1245 func RPCMarshalHeader(head *types.Header) map[string]interface{} { 1246 result := map[string]interface{}{ 1247 "number": (*hexutil.Big)(head.Number), 1248 "hash": head.Hash(), 1249 "parentHash": head.ParentHash, 1250 "nonce": head.Nonce, 1251 "mixHash": head.MixDigest, 1252 "sha3Uncles": head.UncleHash, 1253 "logsBloom": head.Bloom, 1254 "stateRoot": head.Root, 1255 "miner": head.Coinbase, 1256 "difficulty": (*hexutil.Big)(head.Difficulty), 1257 "extraData": hexutil.Bytes(head.Extra), 1258 "size": hexutil.Uint64(head.Size()), 1259 "gasLimit": hexutil.Uint64(head.GasLimit), 1260 "gasUsed": hexutil.Uint64(head.GasUsed), 1261 "timestamp": hexutil.Uint64(head.Time), 1262 "transactionsRoot": head.TxHash, 1263 "receiptsRoot": head.ReceiptHash, 1264 } 1265 1266 if head.BaseFee != nil { 1267 result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee) 1268 } 1269 1270 return result 1271 } 1272 1273 // RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are 1274 // returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain 1275 // transaction hashes. 1276 func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool, config *params.ChainConfig) (map[string]interface{}, error) { 1277 fields := RPCMarshalHeader(block.Header()) 1278 fields["size"] = hexutil.Uint64(block.Size()) 1279 1280 if inclTx { 1281 formatTx := func(tx *types.Transaction) (interface{}, error) { 1282 return tx.Hash(), nil 1283 } 1284 if fullTx { 1285 formatTx = func(tx *types.Transaction) (interface{}, error) { 1286 return newRPCTransactionFromBlockHash(block, tx.Hash(), config), nil 1287 } 1288 } 1289 txs := block.Transactions() 1290 transactions := make([]interface{}, len(txs)) 1291 var err error 1292 for i, tx := range txs { 1293 if transactions[i], err = formatTx(tx); err != nil { 1294 return nil, err 1295 } 1296 } 1297 fields["transactions"] = transactions 1298 } 1299 uncles := block.Uncles() 1300 uncleHashes := make([]common.Hash, len(uncles)) 1301 for i, uncle := range uncles { 1302 uncleHashes[i] = uncle.Hash() 1303 } 1304 fields["uncles"] = uncleHashes 1305 1306 if config.IsArbitrumNitro(block.Header().Number) { 1307 fillArbitrumNitroHeaderInfo(block.Header(), fields) 1308 } 1309 1310 return fields, nil 1311 } 1312 1313 func fillArbitrumNitroHeaderInfo(header *types.Header, fields map[string]interface{}) { 1314 info, err := types.DeserializeHeaderExtraInformation(header) 1315 if err != nil { 1316 log.Error("Expected header to contain arbitrum data", "blockHash", header.Hash()) 1317 } else { 1318 fields["l1BlockNumber"] = hexutil.Uint64(info.L1BlockNumber) 1319 fields["sendRoot"] = info.SendRoot 1320 fields["sendCount"] = hexutil.Uint64(info.SendCount) 1321 } 1322 } 1323 1324 // rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires 1325 // a `BlockchainAPI`. 1326 func (s *BlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} { 1327 fields := RPCMarshalHeader(header) 1328 fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, header.Hash())) 1329 if s.b.ChainConfig().IsArbitrumNitro(header.Number) { 1330 fillArbitrumNitroHeaderInfo(header, fields) 1331 } 1332 return fields 1333 } 1334 1335 func (s *BlockChainAPI) arbClassicL1BlockNumber(ctx context.Context, block *types.Block) (hexutil.Uint64, error) { 1336 startBlockNum := block.Number().Int64() 1337 blockNum := startBlockNum 1338 i := int64(0) 1339 for { 1340 transactions := block.Transactions() 1341 if len(transactions) > 0 { 1342 legacyTx, ok := transactions[0].GetInner().(*types.ArbitrumLegacyTxData) 1343 if !ok { 1344 return 0, fmt.Errorf("couldn't read legacy transaction from block %d", blockNum) 1345 } 1346 return hexutil.Uint64(legacyTx.L1BlockNumber), nil 1347 } 1348 if blockNum == 0 { 1349 return 0, nil 1350 } 1351 i++ 1352 blockNum = startBlockNum - i 1353 if i > 5 { 1354 return 0, fmt.Errorf("couldn't find block with transactions. Reached %d", blockNum) 1355 } 1356 var err error 1357 block, err = s.b.BlockByNumber(ctx, rpc.BlockNumber(blockNum)) 1358 if err != nil { 1359 return 0, err 1360 } 1361 } 1362 } 1363 1364 // rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires 1365 // a `BlockchainAPI`. 1366 func (s *BlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) { 1367 chainConfig := s.b.ChainConfig() 1368 fields, err := RPCMarshalBlock(b, inclTx, fullTx, chainConfig) 1369 if err != nil { 1370 return nil, err 1371 } 1372 if inclTx { 1373 fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, b.Hash())) 1374 } 1375 if chainConfig.IsArbitrum() && !chainConfig.IsArbitrumNitro(b.Number()) { 1376 l1BlockNumber, err := s.arbClassicL1BlockNumber(ctx, b) 1377 if err != nil { 1378 log.Error("error trying to fill legacy l1BlockNumber", "err", err) 1379 } else { 1380 fields["l1BlockNumber"] = hexutil.Uint64(l1BlockNumber) 1381 } 1382 } 1383 return fields, err 1384 } 1385 1386 // RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction 1387 type RPCTransaction struct { 1388 BlockHash *common.Hash `json:"blockHash"` 1389 BlockNumber *hexutil.Big `json:"blockNumber"` 1390 From common.Address `json:"from"` 1391 Gas hexutil.Uint64 `json:"gas"` 1392 GasPrice *hexutil.Big `json:"gasPrice"` 1393 GasFeeCap *hexutil.Big `json:"maxFeePerGas,omitempty"` 1394 GasTipCap *hexutil.Big `json:"maxPriorityFeePerGas,omitempty"` 1395 Hash common.Hash `json:"hash"` 1396 Input hexutil.Bytes `json:"input"` 1397 Nonce hexutil.Uint64 `json:"nonce"` 1398 To *common.Address `json:"to"` 1399 TransactionIndex *hexutil.Uint64 `json:"transactionIndex"` 1400 Value *hexutil.Big `json:"value"` 1401 Type hexutil.Uint64 `json:"type"` 1402 Accesses *types.AccessList `json:"accessList,omitempty"` 1403 ChainID *hexutil.Big `json:"chainId,omitempty"` 1404 V *hexutil.Big `json:"v"` 1405 R *hexutil.Big `json:"r"` 1406 S *hexutil.Big `json:"s"` 1407 1408 // Arbitrum fields: 1409 RequestId *common.Hash `json:"requestId,omitempty"` // Contract SubmitRetryable Deposit 1410 TicketId *common.Hash `json:"ticketId,omitempty"` // Retry 1411 MaxRefund *hexutil.Big `json:"maxRefund,omitempty"` // Retry 1412 SubmissionFeeRefund *hexutil.Big `json:"submissionFeeRefund,omitempty"` // Retry 1413 RefundTo *common.Address `json:"refundTo,omitempty"` // SubmitRetryable Retry 1414 L1BaseFee *hexutil.Big `json:"l1BaseFee,omitempty"` // SubmitRetryable 1415 DepositValue *hexutil.Big `json:"depositValue,omitempty"` // SubmitRetryable 1416 RetryTo *common.Address `json:"retryTo,omitempty"` // SubmitRetryable 1417 RetryValue *hexutil.Big `json:"retryValue,omitempty"` // SubmitRetryable 1418 RetryData *hexutil.Bytes `json:"retryData,omitempty"` // SubmitRetryable 1419 Beneficiary *common.Address `json:"beneficiary,omitempty"` // SubmitRetryable 1420 MaxSubmissionFee *hexutil.Big `json:"maxSubmissionFee,omitempty"` // SubmitRetryable 1421 } 1422 1423 // newRPCTransaction returns a transaction that will serialize to the RPC 1424 // representation, with the given location metadata set (if available). 1425 func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, index uint64, baseFee *big.Int, config *params.ChainConfig) *RPCTransaction { 1426 signer := types.MakeSigner(config, new(big.Int).SetUint64(blockNumber)) 1427 from, _ := types.Sender(signer, tx) 1428 v, r, s := tx.RawSignatureValues() 1429 result := &RPCTransaction{ 1430 Type: hexutil.Uint64(tx.Type()), 1431 From: from, 1432 Gas: hexutil.Uint64(tx.Gas()), 1433 GasPrice: (*hexutil.Big)(tx.GasPrice()), 1434 Hash: tx.Hash(), 1435 Input: hexutil.Bytes(tx.Data()), 1436 Nonce: hexutil.Uint64(tx.Nonce()), 1437 To: tx.To(), 1438 Value: (*hexutil.Big)(tx.Value()), 1439 V: (*hexutil.Big)(v), 1440 R: (*hexutil.Big)(r), 1441 S: (*hexutil.Big)(s), 1442 } 1443 if blockHash != (common.Hash{}) { 1444 result.BlockHash = &blockHash 1445 result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber)) 1446 result.TransactionIndex = (*hexutil.Uint64)(&index) 1447 } 1448 switch tx.Type() { 1449 case types.LegacyTxType: 1450 // if a legacy transaction has an EIP-155 chain id, include it explicitly 1451 if id := tx.ChainId(); id.Sign() != 0 { 1452 result.ChainID = (*hexutil.Big)(id) 1453 } 1454 case types.AccessListTxType: 1455 al := tx.AccessList() 1456 result.Accesses = &al 1457 result.ChainID = (*hexutil.Big)(tx.ChainId()) 1458 case types.DynamicFeeTxType: 1459 al := tx.AccessList() 1460 result.Accesses = &al 1461 result.ChainID = (*hexutil.Big)(tx.ChainId()) 1462 result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap()) 1463 result.GasTipCap = (*hexutil.Big)(tx.GasTipCap()) 1464 // if the transaction has been mined, compute the effective gas price 1465 if baseFee != nil && blockHash != (common.Hash{}) { 1466 // price = min(tip, gasFeeCap - baseFee) + baseFee 1467 price := math.BigMin(new(big.Int).Add(tx.GasTipCap(), baseFee), tx.GasFeeCap()) 1468 result.GasPrice = (*hexutil.Big)(price) 1469 } else { 1470 result.GasPrice = (*hexutil.Big)(tx.GasFeeCap()) 1471 } 1472 } 1473 1474 // Arbitrum: support arbitrum-specific transaction types 1475 switch inner := tx.GetInner().(type) { 1476 case *types.ArbitrumInternalTx: 1477 result.ChainID = (*hexutil.Big)(inner.ChainId) 1478 case *types.ArbitrumDepositTx: 1479 result.RequestId = &inner.L1RequestId 1480 result.ChainID = (*hexutil.Big)(inner.ChainId) 1481 case *types.ArbitrumContractTx: 1482 result.RequestId = &inner.RequestId 1483 result.GasFeeCap = (*hexutil.Big)(inner.GasFeeCap) 1484 result.ChainID = (*hexutil.Big)(inner.ChainId) 1485 case *types.ArbitrumRetryTx: 1486 result.TicketId = &inner.TicketId 1487 result.RefundTo = &inner.RefundTo 1488 result.GasFeeCap = (*hexutil.Big)(inner.GasFeeCap) 1489 result.ChainID = (*hexutil.Big)(inner.ChainId) 1490 result.MaxRefund = (*hexutil.Big)(inner.MaxRefund) 1491 result.SubmissionFeeRefund = (*hexutil.Big)(inner.SubmissionFeeRefund) 1492 case *types.ArbitrumSubmitRetryableTx: 1493 result.RequestId = &inner.RequestId 1494 result.L1BaseFee = (*hexutil.Big)(inner.L1BaseFee) 1495 result.DepositValue = (*hexutil.Big)(inner.DepositValue) 1496 result.RetryTo = inner.RetryTo 1497 result.RetryValue = (*hexutil.Big)(inner.RetryValue) 1498 result.RetryData = (*hexutil.Bytes)(&inner.RetryData) 1499 result.Beneficiary = &inner.Beneficiary 1500 result.RefundTo = &inner.FeeRefundAddr 1501 result.MaxSubmissionFee = (*hexutil.Big)(inner.MaxSubmissionFee) 1502 result.GasFeeCap = (*hexutil.Big)(inner.GasFeeCap) 1503 result.ChainID = (*hexutil.Big)(inner.ChainId) 1504 } 1505 return result 1506 } 1507 1508 // newRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation 1509 func newRPCPendingTransaction(tx *types.Transaction, current *types.Header, config *params.ChainConfig) *RPCTransaction { 1510 var baseFee *big.Int 1511 blockNumber := uint64(0) 1512 if current != nil { 1513 baseFee = misc.CalcBaseFee(config, current) 1514 blockNumber = current.Number.Uint64() 1515 } 1516 return newRPCTransaction(tx, common.Hash{}, blockNumber, 0, baseFee, config) 1517 } 1518 1519 // newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation. 1520 func newRPCTransactionFromBlockIndex(b *types.Block, index uint64, config *params.ChainConfig) *RPCTransaction { 1521 txs := b.Transactions() 1522 if index >= uint64(len(txs)) { 1523 return nil 1524 } 1525 return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), index, b.BaseFee(), config) 1526 } 1527 1528 // newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index. 1529 func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes { 1530 txs := b.Transactions() 1531 if index >= uint64(len(txs)) { 1532 return nil 1533 } 1534 blob, _ := txs[index].MarshalBinary() 1535 return blob 1536 } 1537 1538 // newRPCTransactionFromBlockHash returns a transaction that will serialize to the RPC representation. 1539 func newRPCTransactionFromBlockHash(b *types.Block, hash common.Hash, config *params.ChainConfig) *RPCTransaction { 1540 for idx, tx := range b.Transactions() { 1541 if tx.Hash() == hash { 1542 return newRPCTransactionFromBlockIndex(b, uint64(idx), config) 1543 } 1544 } 1545 return nil 1546 } 1547 1548 // accessListResult returns an optional accesslist 1549 // Its the result of the `debug_createAccessList` RPC call. 1550 // It contains an error if the transaction itself failed. 1551 type accessListResult struct { 1552 Accesslist *types.AccessList `json:"accessList"` 1553 Error string `json:"error,omitempty"` 1554 GasUsed hexutil.Uint64 `json:"gasUsed"` 1555 } 1556 1557 // CreateAccessList creates a EIP-2930 type AccessList for the given transaction. 1558 // Reexec and BlockNrOrHash can be specified to create the accessList on top of a certain state. 1559 func (s *BlockChainAPI) CreateAccessList(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (*accessListResult, error) { 1560 bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber) 1561 if blockNrOrHash != nil { 1562 bNrOrHash = *blockNrOrHash 1563 } 1564 acl, gasUsed, vmerr, err := AccessList(ctx, s.b, bNrOrHash, args) 1565 if err != nil { 1566 return nil, err 1567 } 1568 result := &accessListResult{Accesslist: &acl, GasUsed: hexutil.Uint64(gasUsed)} 1569 if vmerr != nil { 1570 result.Error = vmerr.Error() 1571 } 1572 return result, nil 1573 } 1574 1575 // AccessList creates an access list for the given transaction. 1576 // If the accesslist creation fails an error is returned. 1577 // If the transaction itself fails, an vmErr is returned. 1578 func AccessList(ctx context.Context, b Backend, blockNrOrHash rpc.BlockNumberOrHash, args TransactionArgs) (acl types.AccessList, gasUsed uint64, vmErr error, err error) { 1579 // Retrieve the execution context 1580 db, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1581 if db == nil || err != nil { 1582 return nil, 0, nil, err 1583 } 1584 // If the gas amount is not set, default to RPC gas cap. 1585 if args.Gas == nil { 1586 tmp := hexutil.Uint64(b.RPCGasCap()) 1587 args.Gas = &tmp 1588 } 1589 1590 // Ensure any missing fields are filled, extract the recipient and input data 1591 if err := args.setDefaults(ctx, b); err != nil { 1592 return nil, 0, nil, err 1593 } 1594 var to common.Address 1595 if args.To != nil { 1596 to = *args.To 1597 } else { 1598 to = crypto.CreateAddress(args.from(), uint64(*args.Nonce)) 1599 } 1600 isPostMerge := header.Difficulty.Cmp(common.Big0) == 0 1601 // Retrieve the precompiles since they don't need to be added to the access list 1602 precompiles := vm.ActivePrecompiles(b.ChainConfig().Rules(header.Number, isPostMerge)) 1603 1604 // Create an initial tracer 1605 prevTracer := logger.NewAccessListTracer(nil, args.from(), to, precompiles) 1606 if args.AccessList != nil { 1607 prevTracer = logger.NewAccessListTracer(*args.AccessList, args.from(), to, precompiles) 1608 } 1609 for { 1610 // Retrieve the current access list to expand 1611 accessList := prevTracer.AccessList() 1612 log.Trace("Creating access list", "input", accessList) 1613 1614 // Copy the original db so we don't modify it 1615 statedb := db.Copy() 1616 // Set the accesslist to the last al 1617 args.AccessList = &accessList 1618 msg, err := args.ToMessage(b.RPCGasCap(), header, statedb) 1619 if err != nil { 1620 return nil, 0, nil, err 1621 } 1622 1623 // Apply the transaction with the access list tracer 1624 tracer := logger.NewAccessListTracer(accessList, args.from(), to, precompiles) 1625 config := vm.Config{Tracer: tracer, Debug: true, NoBaseFee: true} 1626 vmenv, _, err := b.GetEVM(ctx, msg, statedb, header, &config) 1627 if err != nil { 1628 return nil, 0, nil, err 1629 } 1630 res, err := core.ApplyMessage(vmenv, msg, new(core.GasPool).AddGas(msg.Gas())) 1631 if err != nil { 1632 return nil, 0, nil, fmt.Errorf("failed to apply transaction: %v err: %v", args.toTransaction().Hash(), err) 1633 } 1634 if tracer.Equal(prevTracer) { 1635 return accessList, res.UsedGas, res.Err, nil 1636 } 1637 prevTracer = tracer 1638 } 1639 } 1640 1641 // TransactionAPI exposes methods for reading and creating transaction data. 1642 type TransactionAPI struct { 1643 b Backend 1644 nonceLock *AddrLocker 1645 signer types.Signer 1646 } 1647 1648 // NewTransactionAPI creates a new RPC service with methods for interacting with transactions. 1649 func NewTransactionAPI(b Backend, nonceLock *AddrLocker) *TransactionAPI { 1650 // The signer used by the API should always be the 'latest' known one because we expect 1651 // signers to be backwards-compatible with old transactions. 1652 signer := types.LatestSigner(b.ChainConfig()) 1653 return &TransactionAPI{b, nonceLock, signer} 1654 } 1655 1656 // GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number. 1657 func (s *TransactionAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint { 1658 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 1659 n := hexutil.Uint(len(block.Transactions())) 1660 return &n 1661 } 1662 return nil 1663 } 1664 1665 // GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash. 1666 func (s *TransactionAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint { 1667 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 1668 n := hexutil.Uint(len(block.Transactions())) 1669 return &n 1670 } 1671 return nil 1672 } 1673 1674 // GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index. 1675 func (s *TransactionAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction { 1676 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 1677 return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig()) 1678 } 1679 return nil 1680 } 1681 1682 // GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index. 1683 func (s *TransactionAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction { 1684 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 1685 return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig()) 1686 } 1687 return nil 1688 } 1689 1690 // GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index. 1691 func (s *TransactionAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes { 1692 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 1693 return newRPCRawTransactionFromBlockIndex(block, uint64(index)) 1694 } 1695 return nil 1696 } 1697 1698 // GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index. 1699 func (s *TransactionAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes { 1700 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 1701 return newRPCRawTransactionFromBlockIndex(block, uint64(index)) 1702 } 1703 return nil 1704 } 1705 1706 // GetTransactionCount returns the number of transactions the given address has sent for the given block number 1707 func (s *TransactionAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) { 1708 // Ask transaction pool for the nonce which includes pending transactions 1709 if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber { 1710 nonce, err := s.b.GetPoolNonce(ctx, address) 1711 if err != nil { 1712 return nil, err 1713 } 1714 return (*hexutil.Uint64)(&nonce), nil 1715 } 1716 // Resolve block number and use its state to ask for the nonce 1717 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1718 if state == nil || err != nil { 1719 if client := fallbackClientFor(s.b, err); client != nil { 1720 var res hexutil.Uint64 1721 err := client.CallContext(ctx, &res, "eth_getTransactionCount", address, blockNrOrHash) 1722 return &res, err 1723 } 1724 return nil, err 1725 } 1726 nonce := state.GetNonce(address) 1727 return (*hexutil.Uint64)(&nonce), state.Error() 1728 } 1729 1730 // GetTransactionByHash returns the transaction for the given hash 1731 func (s *TransactionAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) { 1732 // Try to return an already finalized transaction 1733 tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash) 1734 if err != nil { 1735 return nil, err 1736 } 1737 if tx != nil { 1738 header, err := s.b.HeaderByHash(ctx, blockHash) 1739 if err != nil { 1740 return nil, err 1741 } 1742 return newRPCTransaction(tx, blockHash, blockNumber, index, header.BaseFee, s.b.ChainConfig()), nil 1743 } 1744 // No finalized transaction, try to retrieve it from the pool 1745 if tx := s.b.GetPoolTransaction(hash); tx != nil { 1746 return newRPCPendingTransaction(tx, s.b.CurrentHeader(), s.b.ChainConfig()), nil 1747 } 1748 1749 // Transaction unknown, return as such 1750 return nil, nil 1751 } 1752 1753 // GetRawTransactionByHash returns the bytes of the transaction for the given hash. 1754 func (s *TransactionAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) { 1755 // Retrieve a finalized transaction, or a pooled otherwise 1756 tx, _, _, _, err := s.b.GetTransaction(ctx, hash) 1757 if err != nil { 1758 return nil, err 1759 } 1760 if tx == nil { 1761 if tx = s.b.GetPoolTransaction(hash); tx == nil { 1762 // Transaction not found anywhere, abort 1763 return nil, nil 1764 } 1765 } 1766 // Serialize to RLP and return 1767 return tx.MarshalBinary() 1768 } 1769 1770 // GetTransactionReceipt returns the transaction receipt for the given transaction hash. 1771 func (s *TransactionAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) { 1772 tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash) 1773 if err != nil { 1774 // When the transaction doesn't exist, the RPC method should return JSON null 1775 // as per specification. 1776 return nil, nil 1777 } 1778 receipts, err := s.b.GetReceipts(ctx, blockHash) 1779 if err != nil { 1780 return nil, err 1781 } 1782 if len(receipts) <= int(index) { 1783 return nil, nil 1784 } 1785 receipt := receipts[index] 1786 1787 // Derive the sender. 1788 bigblock := new(big.Int).SetUint64(blockNumber) 1789 signer := types.MakeSigner(s.b.ChainConfig(), bigblock) 1790 from, _ := types.Sender(signer, tx) 1791 1792 fields := map[string]interface{}{ 1793 "blockHash": blockHash, 1794 "blockNumber": hexutil.Uint64(blockNumber), 1795 "transactionHash": hash, 1796 "transactionIndex": hexutil.Uint64(index), 1797 "from": from, 1798 "to": tx.To(), 1799 "gasUsed": hexutil.Uint64(receipt.GasUsed), 1800 "cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed), 1801 "contractAddress": nil, 1802 "logs": receipt.Logs, 1803 "logsBloom": receipt.Bloom, 1804 "type": hexutil.Uint(tx.Type()), 1805 } 1806 // Assign the effective gas price paid 1807 if !s.b.ChainConfig().IsLondon(bigblock) { 1808 fields["effectiveGasPrice"] = hexutil.Uint64(tx.GasPrice().Uint64()) 1809 } else { 1810 header, err := s.b.HeaderByHash(ctx, blockHash) 1811 if err != nil { 1812 return nil, err 1813 } 1814 gasPrice := new(big.Int).Add(header.BaseFee, tx.EffectiveGasTipValue(header.BaseFee)) 1815 fields["effectiveGasPrice"] = hexutil.Uint64(gasPrice.Uint64()) 1816 } 1817 // Assign receipt status or post state. 1818 if len(receipt.PostState) > 0 && tx.Type() != types.ArbitrumLegacyTxType { 1819 fields["root"] = hexutil.Bytes(receipt.PostState) 1820 } else { 1821 fields["status"] = hexutil.Uint(receipt.Status) 1822 } 1823 if receipt.Logs == nil { 1824 fields["logs"] = []*types.Log{} 1825 } 1826 // If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation 1827 if receipt.ContractAddress != (common.Address{}) { 1828 fields["contractAddress"] = receipt.ContractAddress 1829 } 1830 if s.b.ChainConfig().IsArbitrum() { 1831 fields["gasUsedForL1"] = hexutil.Uint64(receipt.GasUsedForL1) 1832 1833 header, err := s.b.HeaderByHash(ctx, blockHash) 1834 if err != nil { 1835 return nil, err 1836 } 1837 if s.b.ChainConfig().IsArbitrumNitro(header.Number) { 1838 fields["effectiveGasPrice"] = hexutil.Uint64(header.BaseFee.Uint64()) 1839 info, err := types.DeserializeHeaderExtraInformation(header) 1840 if err != nil { 1841 log.Error("Expected header to contain arbitrum data", "blockHash", blockHash) 1842 } else { 1843 fields["l1BlockNumber"] = hexutil.Uint64(info.L1BlockNumber) 1844 } 1845 } else { 1846 inner := tx.GetInner() 1847 arbTx, ok := inner.(*types.ArbitrumLegacyTxData) 1848 if !ok { 1849 log.Error("Expected transaction to contain arbitrum data", "txHash", tx.Hash()) 1850 } else { 1851 fields["effectiveGasPrice"] = hexutil.Uint64(arbTx.EffectiveGasPrice) 1852 fields["l1BlockNumber"] = hexutil.Uint64(arbTx.L1BlockNumber) 1853 } 1854 } 1855 } 1856 return fields, nil 1857 } 1858 1859 // sign is a helper function that signs a transaction with the private key of the given address. 1860 func (s *TransactionAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) { 1861 // Look up the wallet containing the requested signer 1862 account := accounts.Account{Address: addr} 1863 1864 wallet, err := s.b.AccountManager().Find(account) 1865 if err != nil { 1866 return nil, err 1867 } 1868 // Request the wallet to sign the transaction 1869 return wallet.SignTx(account, tx, s.b.ChainConfig().ChainID) 1870 } 1871 1872 // SubmitTransaction is a helper function that submits tx to txPool and logs a message. 1873 func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) { 1874 // If the transaction fee cap is already specified, ensure the 1875 // fee of the given transaction is _reasonable_. 1876 if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil { 1877 return common.Hash{}, err 1878 } 1879 if !b.UnprotectedAllowed() && !tx.Protected() { 1880 // Ensure only eip155 signed transactions are submitted if EIP155Required is set. 1881 return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC") 1882 } 1883 if err := b.SendTx(ctx, tx); err != nil { 1884 return common.Hash{}, err 1885 } 1886 // Print a log with full tx details for manual investigations and interventions 1887 signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number()) 1888 from, err := types.Sender(signer, tx) 1889 if err != nil { 1890 return common.Hash{}, err 1891 } 1892 1893 if tx.To() == nil { 1894 addr := crypto.CreateAddress(from, tx.Nonce()) 1895 log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "contract", addr.Hex(), "value", tx.Value()) 1896 } else { 1897 log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "recipient", tx.To(), "value", tx.Value()) 1898 } 1899 return tx.Hash(), nil 1900 } 1901 1902 // SendTransaction creates a transaction for the given argument, sign it and submit it to the 1903 // transaction pool. 1904 func (s *TransactionAPI) SendTransaction(ctx context.Context, args TransactionArgs) (common.Hash, error) { 1905 // Look up the wallet containing the requested signer 1906 account := accounts.Account{Address: args.from()} 1907 1908 wallet, err := s.b.AccountManager().Find(account) 1909 if err != nil { 1910 return common.Hash{}, err 1911 } 1912 1913 if args.Nonce == nil { 1914 // Hold the addresse's mutex around signing to prevent concurrent assignment of 1915 // the same nonce to multiple accounts. 1916 s.nonceLock.LockAddr(args.from()) 1917 defer s.nonceLock.UnlockAddr(args.from()) 1918 } 1919 1920 // Set some sanity defaults and terminate on failure 1921 if err := args.setDefaults(ctx, s.b); err != nil { 1922 return common.Hash{}, err 1923 } 1924 // Assemble the transaction and sign with the wallet 1925 tx := args.toTransaction() 1926 1927 signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID) 1928 if err != nil { 1929 return common.Hash{}, err 1930 } 1931 return SubmitTransaction(ctx, s.b, signed) 1932 } 1933 1934 // FillTransaction fills the defaults (nonce, gas, gasPrice or 1559 fields) 1935 // on a given unsigned transaction, and returns it to the caller for further 1936 // processing (signing + broadcast). 1937 func (s *TransactionAPI) FillTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) { 1938 // Set some sanity defaults and terminate on failure 1939 if err := args.setDefaults(ctx, s.b); err != nil { 1940 return nil, err 1941 } 1942 // Assemble the transaction and obtain rlp 1943 tx := args.toTransaction() 1944 data, err := tx.MarshalBinary() 1945 if err != nil { 1946 return nil, err 1947 } 1948 return &SignTransactionResult{data, tx}, nil 1949 } 1950 1951 // SendRawTransaction will add the signed transaction to the transaction pool. 1952 // The sender is responsible for signing the transaction and using the correct nonce. 1953 func (s *TransactionAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) { 1954 tx := new(types.Transaction) 1955 if err := tx.UnmarshalBinary(input); err != nil { 1956 return common.Hash{}, err 1957 } 1958 return SubmitTransaction(ctx, s.b, tx) 1959 } 1960 1961 // Sign calculates an ECDSA signature for: 1962 // keccak256("\x19Ethereum Signed Message:\n" + len(message) + message). 1963 // 1964 // Note, the produced signature conforms to the secp256k1 curve R, S and V values, 1965 // where the V value will be 27 or 28 for legacy reasons. 1966 // 1967 // The account associated with addr must be unlocked. 1968 // 1969 // https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign 1970 func (s *TransactionAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) { 1971 // Look up the wallet containing the requested signer 1972 account := accounts.Account{Address: addr} 1973 1974 wallet, err := s.b.AccountManager().Find(account) 1975 if err != nil { 1976 return nil, err 1977 } 1978 // Sign the requested hash with the wallet 1979 signature, err := wallet.SignText(account, data) 1980 if err == nil { 1981 signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper 1982 } 1983 return signature, err 1984 } 1985 1986 // SignTransactionResult represents a RLP encoded signed transaction. 1987 type SignTransactionResult struct { 1988 Raw hexutil.Bytes `json:"raw"` 1989 Tx *types.Transaction `json:"tx"` 1990 } 1991 1992 // SignTransaction will sign the given transaction with the from account. 1993 // The node needs to have the private key of the account corresponding with 1994 // the given from address and it needs to be unlocked. 1995 func (s *TransactionAPI) SignTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) { 1996 if args.Gas == nil { 1997 return nil, fmt.Errorf("gas not specified") 1998 } 1999 if args.GasPrice == nil && (args.MaxPriorityFeePerGas == nil || args.MaxFeePerGas == nil) { 2000 return nil, fmt.Errorf("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas") 2001 } 2002 if args.Nonce == nil { 2003 return nil, fmt.Errorf("nonce not specified") 2004 } 2005 if err := args.setDefaults(ctx, s.b); err != nil { 2006 return nil, err 2007 } 2008 // Before actually sign the transaction, ensure the transaction fee is reasonable. 2009 tx := args.toTransaction() 2010 if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil { 2011 return nil, err 2012 } 2013 signed, err := s.sign(args.from(), tx) 2014 if err != nil { 2015 return nil, err 2016 } 2017 data, err := signed.MarshalBinary() 2018 if err != nil { 2019 return nil, err 2020 } 2021 return &SignTransactionResult{data, signed}, nil 2022 } 2023 2024 // PendingTransactions returns the transactions that are in the transaction pool 2025 // and have a from address that is one of the accounts this node manages. 2026 func (s *TransactionAPI) PendingTransactions() ([]*RPCTransaction, error) { 2027 pending, err := s.b.GetPoolTransactions() 2028 if err != nil { 2029 return nil, err 2030 } 2031 accounts := make(map[common.Address]struct{}) 2032 for _, wallet := range s.b.AccountManager().Wallets() { 2033 for _, account := range wallet.Accounts() { 2034 accounts[account.Address] = struct{}{} 2035 } 2036 } 2037 curHeader := s.b.CurrentHeader() 2038 transactions := make([]*RPCTransaction, 0, len(pending)) 2039 for _, tx := range pending { 2040 from, _ := types.Sender(s.signer, tx) 2041 if _, exists := accounts[from]; exists { 2042 transactions = append(transactions, newRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())) 2043 } 2044 } 2045 return transactions, nil 2046 } 2047 2048 // Resend accepts an existing transaction and a new gas price and limit. It will remove 2049 // the given transaction from the pool and reinsert it with the new gas price and limit. 2050 func (s *TransactionAPI) Resend(ctx context.Context, sendArgs TransactionArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) { 2051 if sendArgs.Nonce == nil { 2052 return common.Hash{}, fmt.Errorf("missing transaction nonce in transaction spec") 2053 } 2054 if err := sendArgs.setDefaults(ctx, s.b); err != nil { 2055 return common.Hash{}, err 2056 } 2057 matchTx := sendArgs.toTransaction() 2058 2059 // Before replacing the old transaction, ensure the _new_ transaction fee is reasonable. 2060 var price = matchTx.GasPrice() 2061 if gasPrice != nil { 2062 price = gasPrice.ToInt() 2063 } 2064 var gas = matchTx.Gas() 2065 if gasLimit != nil { 2066 gas = uint64(*gasLimit) 2067 } 2068 if err := checkTxFee(price, gas, s.b.RPCTxFeeCap()); err != nil { 2069 return common.Hash{}, err 2070 } 2071 // Iterate the pending list for replacement 2072 pending, err := s.b.GetPoolTransactions() 2073 if err != nil { 2074 return common.Hash{}, err 2075 } 2076 for _, p := range pending { 2077 wantSigHash := s.signer.Hash(matchTx) 2078 pFrom, err := types.Sender(s.signer, p) 2079 if err == nil && pFrom == sendArgs.from() && s.signer.Hash(p) == wantSigHash { 2080 // Match. Re-sign and send the transaction. 2081 if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 { 2082 sendArgs.GasPrice = gasPrice 2083 } 2084 if gasLimit != nil && *gasLimit != 0 { 2085 sendArgs.Gas = gasLimit 2086 } 2087 signedTx, err := s.sign(sendArgs.from(), sendArgs.toTransaction()) 2088 if err != nil { 2089 return common.Hash{}, err 2090 } 2091 if err = s.b.SendTx(ctx, signedTx); err != nil { 2092 return common.Hash{}, err 2093 } 2094 return signedTx.Hash(), nil 2095 } 2096 } 2097 return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash()) 2098 } 2099 2100 // DebugAPI is the collection of Ethereum APIs exposed over the debugging 2101 // namespace. 2102 type DebugAPI struct { 2103 b Backend 2104 } 2105 2106 // NewDebugAPI creates a new instance of DebugAPI. 2107 func NewDebugAPI(b Backend) *DebugAPI { 2108 return &DebugAPI{b: b} 2109 } 2110 2111 // GetHeaderRlp retrieves the RLP encoded for of a single header. 2112 func (api *DebugAPI) GetHeaderRlp(ctx context.Context, number uint64) (hexutil.Bytes, error) { 2113 header, _ := api.b.HeaderByNumber(ctx, rpc.BlockNumber(number)) 2114 if header == nil { 2115 return nil, fmt.Errorf("header #%d not found", number) 2116 } 2117 return rlp.EncodeToBytes(header) 2118 } 2119 2120 // GetBlockRlp retrieves the RLP encoded for of a single block. 2121 func (api *DebugAPI) GetBlockRlp(ctx context.Context, number uint64) (hexutil.Bytes, error) { 2122 block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) 2123 if block == nil { 2124 return nil, fmt.Errorf("block #%d not found", number) 2125 } 2126 return rlp.EncodeToBytes(block) 2127 } 2128 2129 // GetRawReceipts retrieves the binary-encoded raw receipts of a single block. 2130 func (api *DebugAPI) GetRawReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]hexutil.Bytes, error) { 2131 var hash common.Hash 2132 if h, ok := blockNrOrHash.Hash(); ok { 2133 hash = h 2134 } else { 2135 block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash) 2136 if err != nil { 2137 return nil, err 2138 } 2139 hash = block.Hash() 2140 } 2141 receipts, err := api.b.GetReceipts(ctx, hash) 2142 if err != nil { 2143 return nil, err 2144 } 2145 result := make([]hexutil.Bytes, len(receipts)) 2146 for i, receipt := range receipts { 2147 b, err := receipt.MarshalBinary() 2148 if err != nil { 2149 return nil, err 2150 } 2151 result[i] = b 2152 } 2153 return result, nil 2154 } 2155 2156 // PrintBlock retrieves a block and returns its pretty printed form. 2157 func (api *DebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) { 2158 block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) 2159 if block == nil { 2160 return "", fmt.Errorf("block #%d not found", number) 2161 } 2162 return spew.Sdump(block), nil 2163 } 2164 2165 // SeedHash retrieves the seed hash of a block. 2166 func (api *DebugAPI) SeedHash(ctx context.Context, number uint64) (string, error) { 2167 block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) 2168 if block == nil { 2169 return "", fmt.Errorf("block #%d not found", number) 2170 } 2171 return fmt.Sprintf("%#x", ethash.SeedHash(number)), nil 2172 } 2173 2174 // ChaindbProperty returns leveldb properties of the key-value database. 2175 func (api *DebugAPI) ChaindbProperty(property string) (string, error) { 2176 if property == "" { 2177 property = "leveldb.stats" 2178 } else if !strings.HasPrefix(property, "leveldb.") { 2179 property = "leveldb." + property 2180 } 2181 return api.b.ChainDb().Stat(property) 2182 } 2183 2184 // ChaindbCompact flattens the entire key-value database into a single level, 2185 // removing all unused slots and merging all keys. 2186 func (api *DebugAPI) ChaindbCompact() error { 2187 for b := byte(0); b < 255; b++ { 2188 log.Info("Compacting chain database", "range", fmt.Sprintf("0x%0.2X-0x%0.2X", b, b+1)) 2189 if err := api.b.ChainDb().Compact([]byte{b}, []byte{b + 1}); err != nil { 2190 log.Error("Database compaction failed", "err", err) 2191 return err 2192 } 2193 } 2194 return nil 2195 } 2196 2197 // SetHead rewinds the head of the blockchain to a previous block. 2198 func (api *DebugAPI) SetHead(number hexutil.Uint64) { 2199 api.b.SetHead(uint64(number)) 2200 } 2201 2202 // NetAPI offers network related RPC methods 2203 type NetAPI struct { 2204 net *p2p.Server 2205 networkVersion uint64 2206 } 2207 2208 // NewNetAPI creates a new net API instance. 2209 func NewNetAPI(net *p2p.Server, networkVersion uint64) *NetAPI { 2210 return &NetAPI{net, networkVersion} 2211 } 2212 2213 // Listening returns an indication if the node is listening for network connections. 2214 func (s *NetAPI) Listening() bool { 2215 return true // always listening 2216 } 2217 2218 // PeerCount returns the number of connected peers 2219 func (s *NetAPI) PeerCount() hexutil.Uint { 2220 return hexutil.Uint(s.net.PeerCount()) 2221 } 2222 2223 // Version returns the current ethereum protocol version. 2224 func (s *NetAPI) Version() string { 2225 return fmt.Sprintf("%d", s.networkVersion) 2226 } 2227 2228 // checkTxFee is an internal function used to check whether the fee of 2229 // the given transaction is _reasonable_(under the cap). 2230 func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error { 2231 // Short circuit if there is no cap for transaction fee at all. 2232 if cap == 0 { 2233 return nil 2234 } 2235 feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether))) 2236 feeFloat, _ := feeEth.Float64() 2237 if feeFloat > cap { 2238 return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap) 2239 } 2240 return nil 2241 } 2242 2243 // toHexSlice creates a slice of hex-strings based on []byte. 2244 func toHexSlice(b [][]byte) []string { 2245 r := make([]string, len(b)) 2246 for i := range b { 2247 r[i] = hexutil.Encode(b[i]) 2248 } 2249 return r 2250 }