Present HRW algorithm with XXHash:

Proposed HRW algorithm with XXHash+Xoshiro256**:

More details about Xoshiro256**: <u>Click Here</u>

Important factors which need to be considered when changing the underlying hashing technique:

- 1. Performance
- Distribution of objects across targets if any approach allocates a large number of objects to one target then this could be a problem because now this target will exhaust its disk capacity faster than others causing LRU to be triggered. Also, this might cause a large amount of data to be rebalanced (if a large number of objects map to the newer target)

We compare three approaches - current algorithm, xorshift64* and xoshiro256**

Experiment 1: Compare the performance of the various approaches

- Vary the number of daemons {16, 32, 64}
- Vary the length of the object name which is given as input to HRW: {256, 512, 1024} bytes

The below graph describes by how much percentage is <u>HRW with XXhash + Xoshiro256**</u> faster than <u>HRW with XXHash</u>.

The below table contains the time taken (in nanoseconds) to find a daemon given the number of daemons and the length of the object name.

hash_algo-num_daemons	256 bytes	512 bytes	1024 bytes
xxhash-16	2030	3305	4361
Xoshiro256**-16	216	315	345
xxhash-32	5652	5920	8659
Xoshiro256**-32	381	360	525
xxhash-64	8233	11657	20945
Xoshiro256**-64	529	640	802

Conclusion: <u>HRW XXHash + Xoshiro256**</u> is roughly twice as faster than <u>HRW XXhash</u>.

Experiment 2: Measure the distribution of objects

- Vary the number of daemons: {16, 32, 64}
- Total number of objects: 1 billion

How to interpret the below plots?

The closer the plot is to the red line the more equal is the distribution.

