
Running Spark on Nomad
Spark supports using a Nomad cluster to run Spark applications. When running on nomad, the Spark executors that run Spark tasks
for your application, and optionally the application driver itself, run as Nomad tasks in a Nomad job.

Launching Spark on Nomad
Prerequisites

Installed JRE or Docker Image
Spark Distribution Location

Deployment Modes
Client Mode
Cluster Mode

Monitoring Output
Spark UI

Remote URLs
Nomad Job Customization

Using a Job Template
Resource Allocation

Memory
CPU
Network
Log Rotation

Logs
Dynamic Allocation of Executors
Python and R
Configuration Properties

Launching Spark on Nomad
To launch a Spark application on Nomad, set the Spark master to either “nomad:” followed by the URL for the Nomad HTTP API
(e.g. “nomad:http://nomad.example.com:4646”), or simply “nomad” to use the URL in NOMAD_ADDR environment variable or
“http://127.0.0.1:4646” when that variable is not set.

When using spark-submit, the master is set with the --master option. In general, your spark-submit invocation will have the form:

$ bin/spark-submit --master nomad[:<url>] [options] --class <main-class> <jar> [args]

When running your application directly (which limits you to client mode), you can set the master with the spark.master configuration
property, or using the SparkConf.setMaster on the configuration you create your SparkContext from.

Prerequisites
When running on Nomad, Spark creates Nomad tasks that run scripts from the Spark distribution on client agents in the Nomad
cluster. These tasks need access to a Java runtime environment (JRE), a Spark distribution built with Nomad support, and (in cluster
mode) the Spark application itself.

Installed JRE or Docker Image
By default, Spark will constrain the tasks it creates to run on Nomad client agents which have the java driver enabled and at least
Java 7. The tasks use Nomad’s exec driver to run Spark scripts on those nodes, and the scripts make use of the JRE that is installed
on the node.

Alternatively, you can set the spark.nomad.dockerImage configuration property to the name or URL of a docker image to use to run
Spark Nomad tasks. The tasks use Nomad’s docker driver to run Spark scripts in a container created from this image. The image
should contain a JRE, and optionally a Spark distribution (see below). When using this option, you can set the
spark.nomad.dockerAuth configuration property to a JSON object that provides authentication configuration for Nomad’s docker
driver.

Note that when using a Docker image, you may want to include the Spark distribution directly in the docker image, you may want to
include the Spark distribution (see the section below) and possibly even your application in the docker image and use local: URLs
when giving their locations to spark-submit.

https://nomadproject.io/
https://www.nomadproject.io/docs/drivers/docker.html#authentication

Spark Distribution Location
The Nomad tasks created by Spark need to have access to a Spark distribution, and the spark.nomad.sparkDistribution
configuration property must be set to a URL where the spark distribution can be found.

When a local: URL is provided, it must point to a directory containing a spark distribution. When spark.nomad.dockerImage is set
(see Installed JRE or Docker Image above), this designates a path inside the docker image. Otherwise it is a path on the Nomad
client node itself (meaning that Spark must be installed at this location on all clients in the Nomad cluster that have at least Java 7
and meet any additional constraints you specify).

E.g.:

$./bin/spark-submit \
 --master nomad \
 --conf spark.nomad.dockerImage=your-spark-image \
 --conf spark.nomad.sparkDistribution=local:///opt/spark \
 --class com.example.Main \
 example.jar

Alternatively, you can provide the remote URL of a Spark distribution archive. The archive will be downloaded and extracted into the
task’s allocation directory.

E.g.:

$./bin/spark-submit \
 --master nomad \
 --conf spark.nomad.sparkDistribution=http://example.com/spark.tgz \
 --class com.example.Main \
 example.jar

Deployment Modes
You can run a Spark application on Nomad in either “client” mode (the default) or “cluster” mode.

Client Mode
In client mode (the default deployment mode), the Spark application is either directly started by the user, or run directly by spark-
submit, so the application driver runs on a machine that is not necessarily in the Nomad cluster. The driver’s SparkContext creates a
Nomad job to run Spark executors. The executors connect to the driver and run Spark tasks on behalf of the application. When the
driver’s SparkContext is stopped, the executors are shut down.

Note that the machine running the driver or spark-submit needs to be reachable from the Nomad clients so that the executors can
connect to it.

In client mode, application resources need to start out present on the submitting machine, so jars (both the primary jar and those
added with the --jars option) can’t be specified using http: or https: URLs. You can either use files on the submitting machine

(either as raw paths or file: URLs), or use local: URLs to indicate that the files are independently available on both the submitting
machine and all of the Nomad clients where the executors might run.

In this mode, the spark-submit invocation doesn’t return until the application has finished running, and killing the spark-submit
process kills the application.

For example, to submit an application in client mode:

$./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master nomad \
 --conf spark.nomad.sparkDistribution=http://example.com/spark.tgz
 lib/spark-examples*.jar \
 10

Cluster Mode
In cluster mode, the spark-submit process creates a Nomad job to run the Spark application driver. The driver’s SparkContext then
adds Spark executors to the Nomad job. The executors connect to the driver and run Spark tasks on behalf of the application.
When the driver’s SparkContext is stopped, the executors are shut down.

In cluster mode, application resources need to be hosted somewhere accessible to the Nomad cluster, so jars (both the primary jar
and those added with the --jars option) can’t be specified using raw paths or file: URLs. You can either use http: or https:
URLs, or use local: URLs to indicate that the files are independently available all of the Nomad clients where the driver and
executors might run.

Note that in cluster mode, the nomad master URL needs to be routable from both the submitting machine and the Nomad client
node that runs the driver. If the Nomad cluster is integrated with Consul, you may want to use a DNS name for the Nomad service
served by Consul.

For example, to submit an application in cluster mode:

$./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master nomad \
 --deploy-mode cluster \
 --conf spark.nomad.sparkDistribution=http://example.com/spark.tgz
 http://example.com/spark-examples.jar \
 10

Monitoring Output

By default, spark-submit in cluster mode will simply submit your application to the Nomad cluster. You can use the
spark.nomad.cluster.expectImmediateScheduling and spark.nomad.cluster.monitorUntil configuration properties to have
spark-submit wait until the job is actually scheduled to run or tail its log until the job completes.

In any case, once the job has been submitted to Nomad, killing spark-submit won’t stop the spark application, as it runs
independently in the Nomad cluster.

Spark UI

In cluster mode, if spark.ui.enabled is true (as by default), the Spark UI will be dynamically allocated a port. The UI will be
exposed by Nomad as a service, and the UI’s URL will appear in the Spark driver’s log.

The Spark UI stops being served when the application finishes. This can sometimes be frustrating when debugging an application.
You can delay the stopping of the UI by setting spark.ui.stopDelay duration, e.g. “5m” for 5 minutes. Note that this will cause the
driver process to continue running. You can force a delayed stop to proceed immediately on the “Jobs” page of the web UI, or by
sending

Remote URLs
Nomad uses go-getter to download artifacts, which allows you to embed checksums in HTTP/S URLs. Using checksums is
recommended, as it allows Nomad to both verify the integrity of a file, and use the checksum as a cache key to avoid re-
downloading unchanged files. The checksums take the form of a query string parameter of the form checksum=type:value, where
type is a hash type and value is the checksum value. See the go-getter checksumming documentation for details.

Nomad Job Customization
By default, Nomad will start with a blank job, and starts adding to it. When running in cluster mode, it will add a task group for the
driver, containing a task (with a “spark.nomad.role” = “driver” meta value) to run the driver. The driver then adds a task group to the
job for each executor it wants to run. It will add a task (with a “spark.nomad.role” = “executor” meta value) to the executor’s task
group to run the executor, and if the shuffle service is enabled (as with dynamic allocation), a task (with a “spark.nomad.role” =
“shuffle” meta value) to run it.

The following incomplete HCL job specification gives an idea of the structure of a Nomad job created by Spark.

job "structure" {
 meta {
 "spark.nomad.role" = "application"
 }

 # A driver group is only added in cluster mode
 group "driver" {
 task "driver" {
 meta {
 "spark.nomad.role" = "driver"
 }
 }
 }

 group "executor 1" {
 task "executor" {
 meta {
 "spark.nomad.role" = "executor"
 }
 }

 # shuffle service tasks are only added when enabled (as it must be when using dynamic allocation)
 task "shuffle-service" {
 meta {
 "spark.nomad.role" = "shuffle"
 }
 }
 }

 group "executor 2" {
 task "executor" {
 meta {
 "spark.nomad.role" = "executor"
 }
 }

https://github.com/hashicorp/go-getter
https://github.com/hashicorp/go-getter#checksumming

 # shuffle service tasks are only added when enabled (as it must be when using dynamic allocation)
 task "shuffle-service" {
 meta {
 "spark.nomad.role" = "shuffle"
 }
 }
 }

 # …and so on for each executor

}

There are two ways to customize the Nomad job, task groups and tasks that Spark creates. You can provide a job template that
Spark will use as a starting point for creating its Nomad job, allowing you to customize almost any aspect of the job. You can also
set Spark configuration properties to override e.g. how many resources Spark should reserve for its Nomad tasks.

The order of precedence for settings is as follows:

1. Explicitly set configuration properties.
2. Settings in the job template if provided.
3. Default values of the configuration properties.

Using a Job Template
Rather than having Spark create a Nomad job from scratch to run your application, you can set the spark.nomad.job.template
configuration property to the path of the file containing the JSON job template. There are two important things to note here:

The template must be in the format of a JSON job specification. Nomad job specifications are normally written in HCL and
converted to JSON by the nomad command-line tool. You can convert an HCL jobspec to JSON by running nomad run -output
<job.nomad>.
spark.nomad.job.template should be set to a path on the submitting machine, not to a URL (even in cluster mode). The
template does not need to be accessible from driver or executors.

Using a job template you can override Spark’s default resource utilization, add additional metadata or constraints, set environment
variables, add sidecar tasks to the driver or executor task groups, add additional task groups of your own, etc.

When setting properties in the job Spark creates from your template, the value precedence is as follows:

1. Values from Spark properties
2. Values in the job template
3. Default values for Spark configuration properties

E.g. the job priority is controlled by the spark.nomad.priority configuration property, which has a default of 40. If a value is
specified for that property (e.g. on the commandline, in spark-defaults.conf, etc.), that value will be used. Otherwise if the
template contains a value for the priority, the template’s value will be used. If neither of these sources provides a value, the default of
40 will be used.

Conceptually, this is how Spark uses the job template:

1. Identify the template task group for Spark executors, of which there should be at most one, as a group containing tasks with a
“spark.nomad.role” meta value of “executor” or “shuffle”. If there is such a group, it is removed from the job and used as a
template for executors.

2. Identify the template task group for the Spark driver, of which there should be at most one, as a group containing a task with a
“spark.nomad.role” meta value of “driver”. If not running in cluster mode, this task group is removed from the job and discarded.

3. Proceed as normal, but using the provided job, driver task group, and executor task group template as the starting point for the
task groups that are normally generated.

Here’s an example of a small HCL template that sets a metadata value on the job and an environment variable for executors:

job "template" {
 meta {
 "foo" = "bar"
 }
 group "executor-group-name" {
 task "executor-task-name" {

https://www.nomadproject.io/docs/http/json-jobs.html
https://www.nomadproject.io/docs/job-specification/

 meta {
 "spark.nomad.role" = "executor"
 }
 env {
 BAZ = "something"
 }
 }
 }
}

Note that this is only a partial jobspec and not fully runnable. But it is a valid template, and can be converted to JSON with nomad
run -output <hcl-jobspec.nomad>. The job name is always set at runtime, so the “template” name is just a syntactically necessary
placeholder and will be overridden. Also note that it is the “spark.nomad.role” = “executor” meta value on the driver task that tells
Spark that the “driver-group-name” task group is the template for executors; the names of the group and task can be whatever you
like; when the executor task group is instantiated, the executor id will be appended to the name, resulting in “driver-group-name 1”,
“driver-group-name 2”, etc.

Resource Allocation
Resource allocation can be configured using a job template or through configuration properties.

Configuring resources using a template would look something like this (this HCL syntax; see the section above on converting this to
JSON):

job "template" {
 group "group-name" {
 task "task-name" {
 meta {
 "spark.nomad.role" = "role" # this would be "driver", "executor", or "shuffle", as appropriate
 }

 resources {
 cpu = 2000
 memory = 2048

 network {
 mbits = 100
 }
 }
 }
 }
}

Resource-related configuration properties are covered below:

Memory

The standard Spark memory properties will be propagated to Nomad to control task resource allocation: spark.driver.memory (set
by spark-submit’s --driver-memory flag) and spark.executor.memory (set by spark-submit’s --executor-memory flag). You can
additionally specify spark.nomad.shuffle.memory to control how much memory Nomad allocates to shuffle service tasks.

CPU

Spark sizes its thread pools and allocates tasks based on the number of CPU cores available. Nomad manages CPU allocation in
terms of processing speed rather than number of cores.

When running Spark on Nomad, you can control how much CPU share Nomad will allocate to tasks using spark.nomad.driver.cpu,
spark.nomad.executor.cpu and spark.nomad.shuffle.cpu.

When running on Nomad, executors will be configured to use one core by default, meaning they will only pull a single 1-core task at
a time. You can setting the spark.executor.cores property (or spark-submit’s --executor-cores flag) to allow more tasks to be
executed concurrently on a single executor.

Network

Nomad doesn’t restrict the network bandwidth of running tasks, bit it does allocate a non-zero number of Mbit/s to each task and
uses this when bin-packing task groups onto Nomad clients. Spark defaults to requesting the minimum of 1 Mbit/s per task, but you
can change this with the spark.nomad.driver.networkMBits, spark.nomad.executor.networkMBits, and
spark.nomad.shuffle.networkMBits properties.

Log Rotation

Nomad performs log rotation on the stdout and stderr of its tasks. You can configure the number number and size of log files it will
keep for driver and executor task groups using spark.nomad.driver.logMaxFiles and spark.nomad.executor.logMaxFiles.

Logs
Nomad clients collect the stderr and stdout of the tasks that they run, and the nomad CLI or API can be used to inspect them, as
documented in Nomad’s documentation on Accessing Logs.

Links to the stderr and stdout of the executors tab of the Spark UI. In cluster mode, the stderr and stdout of the driver application
can be found there as well.

The Log Shipper Pattern described in the “Accessing Logs” link above uses sidecar tasks to forward logs to a central location. This
can be done using a job template along the following lines:

job "template" {

 group "driver" {
 task "driver" {
 meta {
 "spark.nomad.role" = "driver"
 }
 }
 task "log-forwarding-sidecar" {
 # sidecar task definition here
 }
 }

 group "executor" {
 task "executor" {
 meta {
 "spark.nomad.role" = "executor"
 }
 }
 task "log-forwarding-sidecar" {
 # sidecar task definition here
 }
 }

}

Dynamic Allocation of Executors
By default, the Spark application will use a fixed number of executors. Setting spark.dynamicAllocation to true enables Spark to
add and remove executors during execution depending on the number of Spark tasks scheduled to run. As described in Dynamic
Resource Allocation, dynamic allocation requires that spark.shuffle.service.enabled be set to true.

On Nomad, setting spark.shuffle.service.enabled to true adds an additional shuffle serivce Nomad task to each executor’s task
group. This results in a one-to-one mapping of executors to shuffle services.

When the executor exits, the shuffle service continues running so that it can serve any results produced by the executor. Note that
due to the way resource allocation works in Nomad, the resources allocated to the executor Nomad task aren’t freed until the shuffle
service is also finished, meaning that they will remain allocated until the application has finished. This may improve in the future.

https://www.nomadproject.io/docs/operating-a-job/accessing-logs.html
http://spark.apache.org/docs/latest/job-scheduling.html#configuration-and-setup

Python and R
There is basic support for running Spark applications written in Python and R on Nomad, including the pyspark and sparkR
interactive modes.

For example, running a python Spark application on Nomad:

bin/spark-submit \
 --master nomad \
 --conf spark.nomad.sparkDistribution=http://example.com/spark.tgz \
 examples/src/main/python/pi.py

For example, running a sparkR interactive mode with executors on Nomad:

bin/sparkR \
 --master nomad \
 --conf spark.nomad.sparkDistribution=http://example.com/spark.tgz

Note that the python or R runtime must be installed on the Nomad clients; if these are only present on some client, you can use
constraints (documented above) to ensure your task groups run on these clients.

Configuration Properties
Most of the configs are the same for Spark on Nomad as for other deployment modes. See the configuration page for more
information on those. These are configs that are specific to running Spark on Nomad.

Property Name Default Meaning

spark.executor.instances 2 The number of executors for static allocation. With
spark.dynamicAllocation.enabled, the initial set of executors will be
at least this large.

spark.nomad.cluster.expectImmediateScheduling false When true, spark-submit will fail if Nomad isn't able to schedule the job
to run right away

spark.nomad.cluster.monitorUntil Specifies how long spark-submit should monitor a Spark application in
cluster mode. submitted (the default) causes spark-submit to return as
soon as the application has been submitted to the Nomad cluster.
scheduled causes spark-submit to return once the Nomad job has
been scheduled. complete causes spark-submit to tail the output from
the driver process and return when the job has completed.

spark.nomad.datacenters Comma-separated list of Nomad datacenters to use (defaults to the
datacenter of the first Nomad server contacted)

spark.nomad.docker.email Email address used when downloading the docker image specified by
spark.nomad.dockerImage from the docker registry.
(https://www.nomadproject.io/docs/drivers/docker.html#authentication)

spark.nomad.docker.password Password used when downloading the docker image specified by
spark.nomad.dockerImage from the docker registry.
(https://www.nomadproject.io/docs/drivers/docker.html#authentication)

spark.nomad.docker.serverAddress Server address (domain/IP without the protocol) used when
downloading the docker image specified by spark.nomad.dockerImage
from the docker registry. Docker Hub is used by default.
(https://www.nomadproject.io/docs/drivers/docker.html#authentication)

spark.nomad.docker.username Username used when downloading the docker image specified by
spark.nomad.dockerImage from the docker registry.
(https://www.nomadproject.io/docs/drivers/docker.html#authentication)

spark.nomad.dockerImage A [docker image]
(https://www.nomadproject.io/docs/drivers/docker.html#image) to use

file:///Users/bebarnar/professional/other/spark/docs/_site/configuration.html

to run Spark with Nomad's docker driver. When not specified, Nomad's
exec driver will be used instead.

spark.nomad.driver.cpu 1000 How many MHz of CPU power Nomad should reserve for driver tasks

spark.nomad.driver.logMaxFileSize 1m Maximum size that Nomad should keep in log files from driver tasks

spark.nomad.driver.logMaxFiles 5 Number of log files Nomad should keep from driver tasks

spark.nomad.driver.networkMBits 1 The network bandwidth Nomad should allocate to driver tasks during
bin packing

spark.nomad.driver.retryAttempts 5 The number of times Nomad should retry driver task groups if they fail

spark.nomad.driver.retryDelay 15s How long Nomad should wait before retrying driver task groups if they
fail

spark.nomad.driver.retryInterval 1d Nomad's retry interval for driver task groups

spark.nomad.executor.cpu 1000 How many MHz of CPU power Nomad should reserve for executor
tasks

spark.nomad.executor.logMaxFileSize 1m Maximum size that Nomad should keep in log files from executor tasks

spark.nomad.executor.logMaxFiles 5 Number of log files Nomad should keep from executor tasks

spark.nomad.executor.networkMBits 1 The network bandwidth Nomad should allocate to executor tasks
during bin packing

spark.nomad.executor.retryAttempts 5 The number of times Nomad should retry executor task groups if they
fail

spark.nomad.executor.retryDelay 15s How long Nomad should wait before retrying executor task groups if
they fail

spark.nomad.executor.retryInterval 1d Nomad's retry interval for executor task groups

spark.nomad.job The Nomad job name to use

spark.nomad.job.template The path to a JSON file containing a Nomad job to use as a template

spark.nomad.priority The priority of the Nomad job that runs the application or its executors

spark.nomad.region The Nomad region to use (defaults to the region of the first Nomad
server contacted)

spark.nomad.shuffle.cpu 1000 How many MHz of CPU power Nomad should reserve for shuffle
service tasks

spark.nomad.shuffle.logMaxFileSize 1m Maximum size that Nomad should keep in log files from shuffle service
tasks

spark.nomad.shuffle.logMaxFiles 5 Number of log files Nomad should keep from shuffle service tasks

spark.nomad.shuffle.memory 256m The amount of memory that Nomad should allocate for the shuffle
service tasks

spark.nomad.shuffle.networkMBits 1 The network bandwidth Nomad should allocate to shuffle service tasks
during bin packing

spark.nomad.sparkDistribution The location of the spark distribution tgz file to use.

spark.nomad.tls.caCert Path to a .pem file containing the certificate authority to validate the
Nomad server's TLS certificate against

spark.nomad.tls.cert Path to a .pem file containing the TLS certificate to present to the
Nomad server

spark.nomad.tls.trustStorePassword Path to a .pem file containing the private key corresponding to the
certificate in spark.nomad.tls.cert

