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Abstrac t  

Conventional algorithms to implement an Operating 
System timer module take O(n) time to start or main- 
rain a timer, where n is the number of outstanding 
timers: this is expensive for large n. This paper be- 
gins by exploring the relationship between timer algo- 
rithms, time flow mechanisms used in discrete event 
simulations, and sorting techniques. Next a timer 
algorithm for small timer intervals is presented that 
is similar to the timing wheel technique used in logic 
sinmlators. By using a circular buffer or timing wheel, 
it takes O(1) time to start, stop, and maintain timers 
within the range of the wheel. 

Two extensions for larger values of the interval are de- 
scribed. In the first, the timer interval is hashed into 
a slot on the timing wheel. In the second, a hierarchy 
of timing wheels with different granularities is used to 
span a greater range of intervals. The performance of 
these two schemes and various implementation trade- 
offs are discussed. 

1 I n t r o d u c t i o n  

In a centralized or distributed operating system, we 
need timers for: 

• Failure Recovery: Several kinds of failures can- 
not be detected asynchronously. Some can 
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be detected by periodic checking (e.g. mem- 
ory corruption) and such timers always expire. 
Other failures can be only be inferred by the 
lack of some positive action (e.g. message ac- 
knowledgment) within a specified period. If 
failures are infrequent these timers rarely ex- 
pire. 

Algorithms in which the notion of time or rel- 
ative time is integral: Examples include algo- 
rithms that control the rate of production of 
some entity (process control, rate-based flow 
control in communications), scheduling algo- 
rithms, and algorithms to control packet life- 
times in computer networks. These timers al- 
most always expire. 

The performance of algorithms to implement a timer 
module becomes an issue when any of the following 
are true: 

• The algorithm is implemented by a processor 
that is interrupted each time a hardware clock 
ticks, and the interrupt overhead is substantial. 

• Fine granularity timers are required. 

• The average number of outstanding timers is 
large. 

As an example, consider communications between 
members of a distributed system. Since messages can 
be lost in the underlying network, timers are needed 
at some level to trigger retransmissions. A host in a 
distributed system can have several timers outstand- 
ing. Consider for example a server with 200 connec- 
tions and 3 timers per connection. Further, as net- 
works scale to higher speeds (> 100 Mbit/sec), both 
the required resolution and the rate at which timers 
are started and stopped will increase. 
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If the hardware clock interrupts the host every tick, 
and the interval between ticks is in the order of mi- 
croseconds, then the interrupt overhead is substan- 
tial. Most host operating systems offer timers of 
coarse (milliseconds or seconds) granularity. Alter- 
nately, in some systems finer granularity timers re- 
side in special purpose hardware. In either case, the 
performance of the t imer algorithms will be an issue 
as they determine the latency incurred in start ing or 
stopping a t imer and the number  of timers that  can 
be simultaneously outstanding. 

2 M o d e l  a n d  P e r f o r m a n c e  M e a s u r e s  

Our model of a t imer module has four component  
routines: 

START_TIMER(Interval ,  Request_ID, Expiry_ 
Action): The client calls this routine to s tar t  a t imer 
that  will expire after "Interval" units of time. The 
client supplies a Request_ID which is used to distin- 
guish this t imer from other timers that  the client has 
outstanding. Finally, the client can specify what  ac- 
tion must be taken on expiry: for instance, calling a 
client-specified routine, or setting an event flag. 

STOP_TIMER(Request_ID):  This routine uses its 
knowledge of the client and Request_ID to locate the 
t imer and stop it. 

PER_TICK_BOOKKEEPING:  Let the granularity of 
the timer-be T units. Then every T units this routine 
checks whether any outstanding timers have expired; 
if so, it calls STOP_TIMER,  which in turn calls the 
next routine. 

EXPIRY_PROCESSING: This routine does the Ex- 
piry_Action specified in the START_TIMER call. 

The first two routines are activated on client calls 
while the last two are invoked on t imer ticks. The 
timer is often an external hardware clock. 

The following two performance measures can be used 
to choose between the various algorithms described 
in the rest of this paper. Both of them are parame- 
terized by n, the average (or worst-case) number  of 
outstanding timers. 

1. SPACE: The memory  required for the da ta  
structures used by the t imer module. 

2. LATENCY: The time between the invoking of a 
routine in the t imer module and its completion, 

assuming that  the caller of the routine blocks 
until the routine completes. Both the average 
and worst case latency are of interest. 

For example, a client application that  implements a 
t ransport  protocol may find tha t  space is cheap and 
the critical parameters  for each routine in the t imer 
module are as shown in Figure 1. 

The performance measures impor tan t  for the client 
applications should be used to choose among timer 
algorithms. 

3 C u r r e n t l y  U s e d  T i m e r  S c h e m e s  

There are two schemes we know of: 

3 . 1  S c h e m e  1 - -  S t r a i g h t f o r w a r d  

Here [3] START_TIMER finds a memory  location and 
sets that  location to the specified t imer interval. Ev- 
ery T units, P E R _ T I C K _ B O O K K E E P I N G  will decre- 
ment each outstanding timer; if any t imer becomes 
zero, EXPIRY_PROCESSING is called. 

This scheme is extremely fast 
for all but PER_TICK_BOOKKEEPING.  It also uses 
one record per outstanding timer, the minimum space 
possible. Its performance is summarized in Figure 4. 
It is appropriate  if: 

* there are only a few outstanding timers. 

• most timers are stopped within a few ticks of 
the clock. 

• PER_TICK_PROCESSING is done with suit- 
able performance by special-purpose hardware. 

Note that  instead of doing a D E C R E M E N T ,  we can 
store the absolute t ime at which timers expire and 
do a COMPARE.  This option is valid for all t imer 
schemes we describe; the choice between them will 
depend on the size of the time-of-day field, the cost 
of each instruction, and the hardware on the machine 
implementing these algorithms. In this paper  we will 
use the D E C R E M E N T  option, except when describ- 
ing Scheme 2. 
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3.2 S c h e m e  2 - -  O R D E R E D  L I S T / T I M E R  
Q U E U E S  

Here [3] PER_TICK_BOOKKEEPING latency is re- 
duced at the expense of START_TIMER. Timers are 
stored ill an ordered list. Unlike Scheme 1, we will 
store the absolute time at which the timer expires, 
and not the interval before expiry. 

The timer that is due to expire at the earliest time is 
stored at the head of the list. Subsequent timers are 
stored in increasing order as shown in Figure 2. 

In Fig. 2 the lowest timer is due to expire at absolute 
time 10 hours, 23 minutes, and 12 seconds. 

Because the list is sorted, PER_TICK_PROCESSING 
need only increment the current time of day, and com- 
pare it with the head of the list. If they are equal, 
or the time of day is greater, it deletes that list ele- 
ment and calls EXPIRY_PROCESSING. It continues 
to delete elements at the head of the list until the 
expiry time of the head of the list is strictly less than 
tile time of day. 

START_TIMER searches the list to find the po- 
sition to insert the new timer. In the example, 
START_TIMER will insert a new timer due to expire 
at 10:24:01 between the second and third elements. 

The worst case latency to start a timer is O(n).  The 
average latency depends on the distribution of timer 
intervals (from time started to time stopped), and the 
distribution of the arrival process according to which 
calls to START_TIMER are made. 

Interestingly, this can be modeled (Figure 3) as a sin- 
gle queue with infinite servers; this is valid because 
every timer in the queue is essentially decremented 
(or served) every timer tick. It is shown in I4] that we 
can use Little's result to obtain the average number 
in the queue; also the distribution of the remaining 
time of elements in the timer queue seen by a new re- 
quest is the residual life density of the timer interval 
distribution. 

If the arrival distribution is Poisson, the list is 
searched from the head, and reads and writes both 
cost one unit, then the average cost of insertion for 
negative exponential and uniform timer interval dis- 
tributions is shown in [4] to be: 

2 + 2/3n - -  negative exponential 

2 + 1/2n - -  uniform 

Results for other timer interval distributions can be 
computed using a result in [4]. For a negative expo- 
nential distribution we can reduce the average cost to 
2 + n /3  by searching the list from the rear. In fact, 
if timers are always inserted at the rear of the list, 
this search strategy yields an O(1) START_TIMER 
latency. This happens, for instance, if all timers in- 
tervals have the same value. However, for a get---1 
distribution of the timer interval, we assume the av- 
erage latency of insertion is O(n).  

STOP_TIMER need not search the list if the list is 
doubly linked. When START_TIMER inserts a timer 
into the ordered list it can store a pointer to the 
element. STOP_TIMER can then use this pointer 
to delete the element in O(1) time from the doubly 
linked list. This can be used by any timer scheme. 

If Scheme 2 is implemented by a host processor, the 
interrupt overhead on every tick can be avoided if 
there is hardware support to maintain a single timer. 
The hardware timer is set to expire at the time at 
which the the timer at the head of the list is due 
to expire. The hardware intercepts all clock ticks 
and interrupts the host only when a timer actually 
expires. Unfortunately, some processor architectures 
do not offer this capability. 

Algorithms similar to Scheme 2 are used by both 
VMS and UNIX in implementing their timer modules. 
The performance of the two schemes is summarized 
in Figure 4. 

As for Space, Scheme 1 needs the minimum space 
possible; Scheme 2 needs O(n) extra space for the 
forward and back pointers between queue elements. 

4 Timer Algor i thms ,  Sort ing Tech- 
niques,  and Time-Flow Mecha-  
nisms in Discrete  Event Simula- 
t ions 

4.1 S o r t i n g  A l g o r i t h m s  a n d  P r i o r i t y  Q u e u e s  

Scheme 2 reduced PER_TICK_BOOKKEEPING la- 
tency at the expense of START_TIMER by keeping 
the timer list sorted. Consider the relationship be- 
tween timer and sorting algorithms depicted in Figure 
5. 

However: 

• In a typical sort all elements are input to the 
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module when the sort begins; the sort ends by 
output t ing all elements in sorted order. A timer 
module performs a more dynamic sort because 
elements arrive at different times and are out- 
put at different times. 

In a t imer module, the elements to be "sorted" 
change their value over t ime if we store the in- 
terval. This is not true if we store the absolute 
t ime of expiry. 

A data  structure that  allows "dynamic" sorting is a 
priority queue [5]. A priority queue allows elements to 
be inserted and deleted; it also allows the smallest ele- 
ment in the set to be found. A t imer module can use a 
priority queue, and do P E R _ T I C K _ B O O K K E E P I N G  
only on the smallest t imer element. 

4.1 .1  S c h e m e  3: T r e e - b a s e d  A l g o r i t h m s  

A linked list (Scheme 2) is one way of implement- 
ing a priority queue. For large n, tree-based da ta  
structures are better.  These include unbalanced bi- 
nary trees, heaps, post-order and end-order trees, and 
leftist-trees [4,6]. They a t tempt  to reduce the la- 
tency in Scheme 2 for START_TIMER from O(n) to 
O(log(n)). In [7] it is reported that  this difference 
is significant for large n, and that  unbalanced binary 
trees are less expensive than balanced binary trees. 
Unfortunately, unbalanced binary trees easily degen- 
erate into a linear llst; this can happen, for instance, 
if a set of equal t imer intervals are inserted. 

We will lump these algorithms together as Scheme 3: 
Tree-based algorithms. The performance of Scheme 
3 is summarized in Figure 6. 

4.2 D i s c r e t e  E v e n t  S i m u l a t i o n  

In discrete event simulations [8], all s tate changes 
in the system take place at discrete points in time. 
An important  part  of such simulations are the event- 
handling routines or time-flow mechanisms. When an 
event occurs in a simulation, it may schedule future 
events. These events are inserted into some list of 
outstanding events. The simulation proceeds by pro- 
cessing the earliest event, which in turn may sched- 
ule further events. The simulation continues until the 
event list is empty  or some condition (e.g. clock > 
MAX-SIMULATION-TIME} holds. 

There are two ways to find the earliest event and up- 
date the clock: 

1. 

2. 

The earliest event is immediately retrieved from 
some data  structure {e.g. a priority queue [5]) 
and the clock jumps to the t ime of this event. 
This is embodied in simulation languages like 
GPSS [9] and SIMULA [10]. 

In the simulation of digital circuits, it is often 
sufficient to consider event scheduling at t ime 
instants that  are multiples of the clock inter- 
val, say c. Then, after the program processes 
an event, it increments the clock variable by c 
until it finds any outstanding events at the cur- 
rent time. It then executes the event(s). This 
is embodied in languages for digital simulation 
like TEGAS Il l]  and DECSIM [12]. 

We have already seen that  algorithms used to im- 
plement the first method are applicable for t imer al- 
gorithms: these include linked lists and tree-based 
structures. What  is more interesting is that  algo- 
r i thms for the second method are also applicable. 
Translated in terms of timers, the second method 
for P E R _ T I C K _ B O O K K E E P I N G  is: "Increment the 
clock by the clock tick. If any t imer has expired, call 
EXPIRY_PROCESSING."  

An efficient and widely used method to implement the 
second method is the so-called timing-wheel [11,13] 
technique. In this method,  the da ta  structure into 
which timers are inserted is an array of lists, with a 
single overflow list for timers beyond the range of the 
array. 

In Figure 7, t ime is divided into cycles; each cycle is 
N units of time. Let the current number  of cycles 
be S. If the current t ime pointer points to element 
i, the current t ime is S * N + i. The event notice 
corresponding to an event scheduled to arrive within 
the current cycle (e.g. at t ime S * N + j ,  for integer 
j between 0 and n) is inserted into the list pointed to 
by the j t h  element of the array. Any event occurring 
beyond the current cycle is inserted into the overflow 
list. Within a cycle, the simulation increments the 
current t ime until it finds a non-empty list; it then 
removes and processes all events in the list. If these 
schedule future events within the current cycle, such 
events are inserted into the array of lists; if not, the 
new events are inserted into the overflow list. 

The current t ime pointer is incremented modulo N. 
When it wraps to 0, the number  of cycles is incre- 
mented, and the overflow list is checked; any elements 
due to occur in the current cycle are removed from 
the overflow list and inserted into the array of lists. 
This is implemented in TEGAS-2 Il l] .  
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The array can be conceptually thought of as a timing 
wheel; every time we step through N locations, we ro- 
tate the wheel by incrementing the number of cycles. 
A problem with this implementation is that  as time 
increases within a cycle and we travel down the ar- 
ray it becomes more likely that event records will be 
inserted in the overflow list. Other implementations 
[12] reduce (but do not completely avoid) this effect 
by rotating the wheel half-way through the array. 

In summary, we note that time flow algorithms used 
for digital simulation can be used to implement timer 
algorithms; conversely, timer algorithms can be used 
to implement time flow mechanisms in simulations. 

However, there are differences to note: 

• In Digital Simulations, most events happen 
within a short interval beyond the current 
time. Since timing wheel implementations 
rarely place event notices in the overflow list, 
they do not optimize this case. This is not true 
for a general purpose timer facility. 

• Most simulations ensure that if 2 events are 
scheduled to occur at the same time, they are 
removed in FIFO order. Timer modules need 
not meet this restriction. 

• Stepping through empty buckets on the wheel 
represents overhead for a Digital Simulation. In 
a timer module we have to increment the clock 
anyway on every tick. Consequently, stepping 
through empty buckets on a clock tick does not 
represent significant extra overhead if it is done 
by the same entity that maintains the current 
time. 

• Simulation Languages assume that canceling 
event notices is very rare. If this is so, it is suffi- 
cient to mark the notice as "Canceled" and wait 
until the event is scheduled; at that point the 
scheduler discards the event. In a timer module, 
STOP_TIMER may be called frequently; such 
an approach can cause the memory needs to 
grow unboundedly beyond the number of timers 
outstanding at any time. 

We will use the timing-wheel method below as a point 
of departure to describe further timer algorithms. 

5 S c h e m e  4 - -  B a s i c  S c h e m e  f o r  

T i m e r  I n t e r v a l s  w i t h i n  a S p e c i f i e d  

R a n g e  

We describe a simple modification of the timing wheel 
algorithm. If we can guarantee that all timers are 
set for periods less than Maxlnterval, this modified 
algorithm takes O(1} latency for START_TIMER,  
STOP_TIMER, and PER_TICK_BOOKKEEPING. 
Let the granularity of the timer be 1 unit. The cur- 
rent time is represented in Figure 8 by a pointer 
to an element in a circular buffer with dimensions 
[0, Maxlnterval - 1]. 

To set a timer at j units past current time, we in- 
dex (Figure 8) into Element i ÷ j  mod Maxlnterval), 
and put the timer at the head of a list of timers 
that will expire at a time = CurrentTime ÷ j units. 
Each tick we increment the current timer pointer 
(modMaxlnt~rval) and check the array element be- 
ing pointed to. If the element is 0 (no list of 
timers waiting to expire), no more work is done on 
that timer tick. But if it is non-zero, we do EX- 
PIRY_PROCESSING on all timers that are stored 
in that list. Thus the latency for START_TIMER is 
O(1); PER_TICK_BOOKKEEPING is O(1) except 
when timers expire, but we can' t  do better than that. 
If the timer lists are doubly linked, and, as before, we 
store a pointer to each timer record, then the latency 
of STOP_TIMER is also O(1). 

This is basically a timing wheel scheme where 
the wheel turns one array element every timer 
unit, as opposed to rotating every MaxInterval or 
MaxInterval/2 units [11]. This guarantees that all 
timers within MaxInterval of the current time will 
be inserted in the array of lists; this is not guaranteed 
by conventional timing wheel algorithms [11,13]. 

In sorting terms, this is a bucket sort [5,14] that 
trades off memory for processing. However, since the 
timers change value every time instant, intervals are 
entered as offsets from the current time pointer. It is 
sufficient if the current time pointer increases every 
time instant. 

A bucket sort sorts N elements in O(M) time using 
M buckets, since all buckets have to be examined. 
This is inefficient for large M > N. In timer algo- 
rithms, however, the crucial observation is that  some 
entity needs to do O(1) work per tick to update the 
current time; it costs only a few more instructions 
for the same entity to step through an empty bucket. 
What matters, unlike the sort, is not the total amount 

29 



of work to sort N elements, but the average (and 
worst-case) part of the work that needs to be done 
per timer tick. 

Still memory is finite: it is difficult to justify 232 
words of memory to implement 32 bit timers. One 
solution is to implement timers within some range 
using this scheme and the allowed memory. Timers 
greater than this value are implemented using, say, 
Scheme 2. Alternately, this scheme can be extended 
in two ways to allow larger values of the timer interval 
with modest amounts of memory. 

6 E x t e n s i o n s  

6.1 E x t e n s i o n  1: H a s h i n g  

The previous scheme has an obvious analogy to in- 
serting an element in an array using the element value 
as an index. If there is insufficient memory, we can 
hash the element value to yield an index. 

For example, if the table size is a power of 2, an ar- 
bitrary size timer can easily be divided by the table 
size; the remainder (low order bits) is added to the 
current time pointer to yield the index within the ar- 
ray. The result of the division (high order bits) is 
stored in a list pointed to by the index. 

In Figure 9, let the table size be 256 and the timer 
be a 32 bit timer. The remainder on division is the 
last 8 bits. Let the value of the last 8 bits be 20. 
Then the timer index is 10 (Current Time Pointer) 
W 20 (remainder) = 30. The 24 high order bits are 
then inserted into a list that is pointed to by the 30th 
element. 

Other methods of hashing are possible. For example, 
any function that maps a timer value to an array 
index could be used. We will defend our choice at 
the end of Section 6.1. 

Next, there are two ways to maintain each list. 

6.1.1 S c h e m e  5: H a s h  Tab le  w i t h  S o r t e d  
Lists  in each  B u c k e t  

Here each list is maintained as a ordered list exactly 
as in Scheme 2. START_TIMER can be slow because 
the 24 bit quantity must be inserted into the correct 
place in the llst. Although the worst case latency 
for START_TIMER is still O(n), the average latency 

can be O(1). This is true if n < TableSize, and 
if the hash function (Timer Value mod TableSize) 
distributes timer values uniformly across the table. 
If so, the average size of the list that  the ith element 
is inserted into is i - 1/TableSize [14]. Since i < n < 
TableSize, the average latency of START TIMER is 
O(1). How well this hash actually distributes depends 
on the arrival distribution of timers to this module, 
and the distribution of timer intervals. 

PER_TICK_BOOKKEEPING increments the cur- 
rent time pointer. If the value stored in the array 
element being pointed to is zero, there is no more 
work. Otherwise, as in Scheme 2, the top of the list is 
decremented. If it expires, EXPIRY_PROCESSING 
is called and the top list element is deleted. Once 
again, PER_TICK_BOOKKEEPING takes O(1) av- 
erage and worst-case latency except when multiple 
timers are due to expire at the same instant, which 
is the best we can do. 

Finally, if each list is doubly linked and START_ 
TIMER stores a pointer to each timer element, 
STOP_TIMER takes O(1) time. 

A pleasing observation is that  the scheme reduces to 
Scheme 2 ff the array size is 1. In terms of sorting, 
Scheme 5 is similar to doing a bucket sort on the low 
order bits, followed by an insertion sort [5] on the lists 
pointed to by each bucket. 

6.1 .2  S c h e m e  6: H a s h  Tab le  w i t h  U n s o r t e d  
Lists  in each  B u c k e t  

If a worst case START_TIMER latency of O(n) is 
unacceptable, we can maintain each time list as 
an unordered list instead of an ordered list. Thus 
START_TIMER has a worst case and average la- 
tency of O(1). But PER_TICK_BOOKKEEPING 
now takes longer. Every timer tick we increment the 
pointer (rood TableSize); if there is a list there, we 
must decrement the high order bits for every element 
in the array, exactly as in Scheme 1. However, if the 
hash table has the property described above, then the 
average size of tile list will be O(1). 

We can make a stronger statement about the average 
behavior regardless of how the hash distributes. No- 
tice that every TableSize ticks we decrement once 
all timers that are still living. Thus for n timers 
we do n/TableSize work on average per tick. If 
n < TableSize then we do O(1) work on average 
per tick. If all n timers hash into the same bucket, 
then every TableSize ticks we do O(n) work, but for 
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intermediate ticks we do O(1) work. 

Thus the hash distribution in Scheme 6 only con- 
trols the ~burstiness" (variance) of the latency of 
P E R _ T I C K B O O K K E E P I N G ,  and not the average 
latency. Since the worst-case latency of PER_TICK_- 
BOOKKEEPING is always O(n) (all timers expire 
at the same time), we believe that that  the choice of 
hash function for Scheme 6 is insignificant. Obtain- 
ing the remainder after dividing by a power of 2 is 
cheap (AND instruction), and consequently recom- 
mended. Further, using an arbitrary hash function 
to map a timer value into an array index would re- 
quire PER_TICK_BOOKKEEPING to compute the 
hash on each timer tick, which would make it more 
expensive. 

We discuss implementation strategies for Scheme 6 in 
Appendix A. 

6.2 E xte n s ion  2: Exp lo i t ing  Hierarchy,  
Scheme 7 

The last extension of the basic scheme exploits the 
concept of hierarchy. To represent the number 
1000000 we need only 7 digits instead of 1000000 be- 
cause we represent numbers hierarchically in units of 
l 's, 10's, 100's etc. Similarly, to represent all possible 
timer values within a 32 bit range, we do not need a 
222 element array. Instead we can use a number of 
arrays, each of different granularity. For instance, we 
can use 4 arrays as follows: 

A 100 element array in which each element rep- 
resents a day 

A 24 element array in which each element rep- 
resents an hour 

A 60 element array in which each element rep- 
resents a minute 

A 60 element array in which each element rep- 
resents a second 

Thus instead of 100 * 24 * 60 * 60 = 8.64 million 
locations to store timers up to 100 days, we need only 
100 + 24 + 60 + 60 = 244 locations. 

As an example, consider Figure 10. Let the current 
time be 11 days 10 hours, 24 minutes, 30 seconds. 
Then to set a timer of 50 minutes and 45 seconds, we 
first calculate the absolute time at which the timer 

will expire. This is 11 days, 11 hours, 15 minutes, 15 
seconds. Then we insert the timer into a list begin- 
ning 1 (11 - 10 hours) element ahead of the current 
hour pointer in the hour array. We also store the 
remainder (15 minutes and 15 seconds) in this loca- 
tion. We show this in Figure 10, ignoring the day 
array which does not change during the example. 

The seconds array works as usual: every time the 
hardware clock ticks we increment the second pointer. 
If the list pointed to by the element is non-empty, we 
do EXPIRY_PROCESSING for elements in that list. 
However, the other 3 arrays work slightly differently. 

Even if there are no timers requested by the user 
of the service, there will always be a 60 second 
timer that is used to update the minute array, a 60 
minute timer to update the hour array, and a 24 
hour timer to update the day array. For instance, 
every time the 60 second timer expires, we will in- 
crement the current minute timer, do any required 
EXPIRY_PROCESSING for the minute timers, and 
re-insert another 60 second timer. 

Returning to the example, ff the timer is not stopped, 
eventually the hour timer will reach 11. When the 
hour timer reaches 11, the list is examined; EX- 
PIRY_PROCESSING will insert the remainder of the 
seconds (15) in the minute array, 15 elements after 
the current minute pointer(0). Of course, if the min- 
utes remaining were zero, we could go directly to the 
second array. At this point, the table will look like 
Figure 11. 

Eventually, the minute array will reach the 15th el- 
ement; as part of EXPIRY_PROCESSING we will 
move the timer into the SECOND array 15 seconds 
after the current value. 15 seconds later the timer 
will actually expire, and we do the user-specified EX- 
PIRY_PROCESSING. 

What are the performance parameters of this scheme? 

START_TIMER: Depending on the algorithm, we 
may need 0(rn) time, where m is the number of arrays 
in the hierarchy, to find the right table to insert the 
timer and to find the remaining time. A small num- 
ber of levels should be sufficient to cover the timer 
range with an allowable amount of memory; thus m 
should be small (2 _< rn < 5 say.) 

STOP_TIMER: Once again this can be done in O(1) 
time if all lists are doubly linked. 

PER_TICK_BOOKKEEPING: It is useful to com- 
pare this to the corresponding value in Scheme 6. 
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Both have the same average latency of O(I) for suf- 
ficiently large array sizes but the constants of com- 
plexity are different. More precisely: 

let T be the average timer interval (from start to stop 
or expiry). 

Let M be the total amount of array elements avail- 
able. 

Let m be the total number of levels in the hierarchy. 

The total work done in Scheme 6 for such an average 
sized timer is: 

c(6)* T / M  

where c(6) is a constant denoting the cost of decre- 
menting the high order bits, indexing etc. in Scheme 
6. If a timer lives for T units of time, it will be decre- 
mented T / M  times. 

And in Scheme 7 it is bounded from above by: 

c(7) * m 

where c(7) represents the cost of finding the next list 
to migrate to, and the cost of migration, in Scheme 
7; m is the maximum number of lists to migrate be- 
tween. 

The average cost per unit time for an average of n 
timers then becomes: 

n * c(6) / M Scheme 6 
n * c(7) * m / W Scheme 7 

The choice between Scheme 6 and Scheme 7 will de- 
pend on the parameters above. Since c(6) and c(7) 
will not be drastically different, for small values of T 
and large values of M, Scheme 6 can be better than 
Scheme 7 for both START_TIMER and PER_TICK-- 
BOOKKEEPING.  However, for large values of T and 
small values of M, Scheme 7 will have a better aver- 
age cost (latency) for PER_TICK_BOOKKEEPING 
but a greater cost for START_TIMER. 

Wick Nichols has pointed out that  ff the timer pre- 
cision is allowed to decrease with increasing levels in 
the hierarchy, then we need not migrate timers be- 
tween levels. For instance, in the example above we 
would round off to the nearest hour and only set the 
timer in hours. When the hour timer goes off, we do 
the user specified EXPIRY_PROCESSING without 
migrating to the minute array. Essentially, we now 
have different timer modes, one for hour timers, one 
for minute timers, etc. This reduces PER_TICK_- 
BOOKKEEPING overhead further at the cost of a 

loss in precision of up to 50% (e.g. a 1 minute and 
30 second timer that is rounded to 1 minute). Alter- 
nately, we can improve the precision by allowing just 
one migration between adjacent lists. 

Scheme 7 has an obvious analogy to a radix sort 
[5,14]. We discuss implementation strategies for 
Scheme 7 in Appendix A. 

7 S u m m a r y  and Conc lus ions  

In this paper, we have examined the relationship be- 
tween sorting algorithms, time flow mechanisms in 
discrete event simulations, and timer algorithms. We 
have extended the timing wheel mechanism used in 
logic simulation to yield 3 timer algorithms (Schemes 
5-7) that have constant complexity for setting, stop- 
ping, and maintaining a timer. The extensions in- 
clude rotating the timing wheel every clock tick, hav- 
ing separate overflow lists per bucket, and using a 
hierarchical set of timing wheels (Scheme 7): the ex- 
tensions are necessary because the requirements of a 
scheduler in a logic simulation and those of a general 
timer module are different. 

In choosing between schemes, we believe that Scheme 
1 is appropriate in some cases because of its simplic- 
ity, limited use of memory, and speed in starting and 
stopping timers. Scheme 2 is useful in a host that has 
hardware to maintain the clock and a single timer. 
Although it takes O(n) time to start a timer, tlle 
host is not interrupted every clock tick. 

In a host (e.g. a VAX) without hardware support for 
timers, we believe Schemes 2 and 3 are inappropriate 
because of the cost of START_TIMER when there 
are a large number of outstanding timers. Clearly, 
this is not uncommon in hosts that have a signifi- 
cant amount of real-time activity or have several open 
communication links. 

Scheme 4 is useful when most timers are within a 
small range of the current time. For example, it could 
be used by a networking module that is maintaining 
its own timers. Scheme 5 depends too much on the 
hash distribution (for a fast START_TIMER) to be 
generally useful. 

For a general timer module, similar to the operating 
system facilities found in UNIX or VMS, that is ex- 
pected to work well in a variety of environments, we 
recommend Scheme 6 or 7. 

We have implemented Scheme 6 on a VAX using 
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MACRO-11. We used cheap VAX instructions, where 
the average cost of a "cheap" instruction can be 
taken to be that  of a CLRL (longword clear). We 
did not use VAX Queue instructions. The numbers 
given below for the implementat ion do not include 
the cost of synchronization (e.g. by lowering and rais- 
ing interrupt priority levels) in the START_TIMER 
and STOP_TIMER routines; they are needed for any 
t imer algorithm and their costs are machine specific. 

Tile implementat ion took 13 cheap VAX instructions 
to insert a t imer and 7 to delete a timer. The cost 
per tick was 4 instructions to skip an empty  array lo- 
cation, and 6 instructions to decrement a t imer and 
move to the next queue element. A further 9 instruc- 
tions were needed to delete an expired t imer and call 
the EXPIRY_PROCESSING routine. Thus even if 
we assume that  every outstanding t imer expires dur- 
ing one scan of the table, the average cost per tick is 
4 + 15 * n/TableSize instructions. {Once again this 
is because during every scan of the table all n - - t h e  
average number  of outstanding timers - -  timers will 
be decremented and possibly expire.) If the size of 
the array is much larger than rt, the average cost per 
tick can be close to 4 instructions. 

If the amount  of memory  required for an efficient im- 
plementation of Scheme 6 is a problem, Scheme 7 can 
be pressed into service. Scheme 7, however, will need 
a few more instructions in START_TIMER to find 
the correct table to insert the timer. 

Both Schemes 6 and 7 can be completely or partially 
(see Appendix A) implemented in hardware using 
some auxiliary memory  to store the da ta  structures. 
If a host had such hardware support ,  the host soft- 
ware would need O(1} t ime to s tar t  and stop a t imer 
and would not need to be interrupted every clock tick. 

Finally we note that  designers and implementors have 
assumed that  protocols that  use a large number  of 
timers are expensive and perform poorly. This is 
an artifact of existing implementat ions and operat-  
ing system facilities. Given that  a large number of 
timers can be implemented efficiently {e.g. 4 to 13 
VAX Instructions to start,  stop, and, on the aver- 
age, to maintain timers), we hope this will no longer 
be an issue in the design of protocols for distributed 
systems. 

8 A c k n o w l e d g m e n t s  

Barry Spinney suggested extending Scheme 4 to 
Scheme 5. Hugh Wilkinson independently thought of 
exploiting hierarchy in maintaining t imer lists. John 
Forecast helped us implement Scheme 6. Andrew 
Black commented on an earlier version and helped 
improve the presentation. Andrew Black, Barry Spin- 
hey, Hugh Wilkinson, Steve Glaser, Wick Nichols, 
Paul Koning, Alan Kirby, Mark Kempf, and Char- 
lie Kaufman {all at DEC) were a pleasure to discuss 
these schemes with. We would like to thank Ellen 
Gilliam for her help in assembling the references, and 
the program committee for helpful comments.  
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A I m p l e m e n t a t i o n  C o n s i d e r a t i o n s  

A.1 Hardware Assist 

Since the cost of handling clock interrupts becomes 
more significant for fine granularity (e.g. microsec- 
onds) timers, it may be necessary to employ special 
purpose hardware assist. In the extreme, we can use 
a timer chip which maintains all the data  structures 
(say in Scheme 6) and interrupts host software only 
when a timer expires. 

Another possibility is a chip (actually just a counter) 
that steps through the timer arrays, and interrupts 
the host only if there is work to be done. When the 
host inserts a timer into an empty queue pointed to 
by array element X it tells the chip about this new 
queue. The chip then marks X as "busy". As before, 
the chip scans through the timer arrays every clock 
tick. During its scan, when the chip encounters a 
"busy" location, it interrupts the host and gives the 
host the address of the queue that needs to be worked 
on. Similarly when the host deletes a timer entry 
from some queue and leaves behind an empty queue 
it needs to inform the chip that the corresponding 
array location is no longer "busy". 

Note that the synchronization overhead is minimal 
because the host can keep the actual timer queues in 
its memory which the chip need not access, and the 
chip can keep the timing arrays in its memory, which 

the host need not access. The only communication 
between the host and chip is through interrupts. 

In Scheme 6, the host is interrupted an average of 
TIM times per timer interval, where T is the aver- 
age timer interval and M is the number of array ele- 
ments. In Scheme 7, the host is interrupted at most 
m times, where m is the number of levels in the hi- 
erarchy. If T and m are small and M is large, the 
interrupt overhead for such an implementation can 
be made negligible. 

Finally, we note that  conventional hardware timer 
chips use Scheme 1 to maintain a small number of 
timers. However, if Schemes 6 and 7 are imphmented  
as a single chip that operates on a separate memory 
(that contains the data structures) then there is no 
a priori limit on the number of timers that can be 
handled by the chip. Clearly the array sizes need to 
be parameters that must be supplied to the chip on 
initialization. 

A.2 Symmetric Multiprocessing 

If the host consists of a set of processors, each of 
which can process calls to the timer module (sym- 
metric multiprocessing), Steve Glaser has pointed out 
that  algorithms that  tie up a common data  struc- 
ture for a large period of time will reduce efficiency. 
For instance in Scheme 2, when Processor A inserts 
a timer into the ordered list other processors cannot 
process timer module routines until Processor A fin- 
ishes and releases its semaphore. Scheme 5, 6, and 7 
seem suited for implementation in symmetric multi- 
processors. 

34 



ROUTINE 

STA RT_TI M E R 

STOP_TIMER 

PERTICKBOOKKEEPING 

EXPIRY_PROCESSING 

CRITICAL PARAM ETER 

LATENCY 

LATENCY 

LATENCY 

NONE 

FIGURE 1 - AN EXAMPLE OF THE PARAMETERS OF THE TIMER MODULE THAT 
A NETWORKING APPLICATION MIGHT CONSIDER IMPORTANT 

I 

10:23:12 I., ..m ._m "t 10:23"24 I. 10:24:03 
r I I" "l 

queue head 

FIGURE 2 - TIMER QUEUE EXAMPLE USED TO ILLUSTRATE SCHEME 2 

Arrivals to I 
timer module / 'x  
with pdfa(t) .. 

-I/X 

infinite servers, 
service pdf = s(t) Expired or stopped timers 

Note: s(t) is density function of interval between 
starting and stopping (or expiration) of a timer 

FIGURE 3 - A G/G/INF/INF QUEUEING MODEL OF A TIMER MODULE 

Scheme 1 

Scheme 2 

STA RT_TI M ER 
LATENCY 

0(1) 

O(n) 

STOP_TIM ER 
LATENCY 

0(I) 

0(1) 

PER_TICK_BOOKKEEPING 
LATENCY 

O(n) 

0(1) 

FIGURE 4 -  COMPARING AVERAGE AND WORST-CASE LATENCIES 
OF SCHEMES 1 AND 2 
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Arrival of unsorted 
Timer Requests 

_1 TIMER MODULE I 
1 (SORTING MODULE) I 

Output in sorted order 
(ignoring stopped timers) 

FIGURE 5 - ANALOGY BETWEEN AT IMER AND A SORTING MODULE 

STA RT_TI M E R 
LATE NCY 

O(Iog(n)) 

STOP_TIMER 
LATENCY 

0(1) or O(Iog(n)) 

PER_TICKBOOKKEEPING 
LATENCY 

o(I) 

NOTE: STOP_TIMER is O(1) for unbalanced trees and O(Iog(n)) --- because of the 
need to rebalance the tree after a deletion --- for balanced trees 

FIGURE 6 - AVERAGE LATENCY FOR TREE-BASED SCHEMES 
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Element i 

Elementj 

Element N-1 
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Current Time 

List of timers to 
expire at this time 

I NU mber of Cycles J Overflow List 

FIGURE 7 - T IMING WHEEL MECHANISM USED IN LOGIC SIMULATION [11] 

36 



Element 0 

Element I 

Element i 

Element i + j 

Element 
Maxlnterval  -1 

0 

0 

0 
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• Current Time 

List of  t imers to  
expire at this t ime 

FIGURE 8-ARRAYOF LISTS USED BY SCHEME 4 FOR TIMER INTERVALS 
UP TO A MAXIMUM INTERVAL 
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Current Time 

List of  t imers tha t  have 
hashed into this bucket 

FIGURE 9-ARRAYOF LISTS USED BY SCHEMES 5 AND 6 FOR 
ARBITRARY SIZED TIMERS: BASICALLY A HASH TABLE 
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HOUR ARRAY MINUTE ARRAY SECOND ARRAY 

Current Hour 
Pointer = 10 

Current minute  
Pointer = 24 

Current second 
Pointer = 30 

I T imer Record w i th  Remaining Time = 15 minutes, 15 seconds I 

FIGURE 10 - HIERARCHICAL SET OF ARRAYS USED BY SCHEME 7 
TO " M A P "  TIME MORE EFFICIENTLY 

HOUR ARRAY MINUTE ARRAY SECOND ARRAY 

Current minute  Current second 
Pointer = 0 - - ->  Pointer = 0 - - ->  

Current Hour 
Pointer = 11 

Element 15 

T 

I Timer Record w i th  Remaining Time = 15 seconds I 

FIGURE 11 - FIGURE 10 AFTER THE HOUR COMPONENT EXPIRES 
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