
Hashed and Hierarchical Timing Wheels: Data Structures
for the Efficient Implementation of a Timer Facility

G e o r g e V a r g h e s e a n d T o n y L a u c k

D i g i t a l E q u i p m e n t C o r p o r a t i o n

L i t t l e t o n , M A 01460

Abstrac t

Conventional algorithms to implement an Operating
System timer module take O(n) time to start or main-
rain a timer, where n is the number of outstanding
timers: this is expensive for large n. This paper be-
gins by exploring the relationship between timer algo-
rithms, time flow mechanisms used in discrete event
simulations, and sorting techniques. Next a timer
algorithm for small timer intervals is presented that
is similar to the timing wheel technique used in logic
sinmlators. By using a circular buffer or timing wheel,
it takes O(1) time to start, stop, and maintain timers
within the range of the wheel.

Two extensions for larger values of the interval are de-
scribed. In the first, the timer interval is hashed into
a slot on the timing wheel. In the second, a hierarchy
of timing wheels with different granularities is used to
span a greater range of intervals. The performance of
these two schemes and various implementation trade-
offs are discussed.

1 I n t r o d u c t i o n

In a centralized or distributed operating system, we
need timers for:

• Failure Recovery: Several kinds of failures can-
not be detected asynchronously. Some can

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the AC M copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission o f the Association for Comput ing Machinery. To
copy otherwise, or to republish, requires a fee and /o r specfic
permission.

© 1987 ACM 089791-242-X/87/0011/0025 $1.50

be detected by periodic checking (e.g. mem-
ory corruption) and such timers always expire.
Other failures can be only be inferred by the
lack of some positive action (e.g. message ac-
knowledgment) within a specified period. If
failures are infrequent these timers rarely ex-
pire.

Algorithms in which the notion of time or rel-
ative time is integral: Examples include algo-
rithms that control the rate of production of
some entity (process control, rate-based flow
control in communications), scheduling algo-
rithms, and algorithms to control packet life-
times in computer networks. These timers al-
most always expire.

The performance of algorithms to implement a timer
module becomes an issue when any of the following
are true:

• The algorithm is implemented by a processor
that is interrupted each time a hardware clock
ticks, and the interrupt overhead is substantial.

• Fine granularity timers are required.

• The average number of outstanding timers is
large.

As an example, consider communications between
members of a distributed system. Since messages can
be lost in the underlying network, timers are needed
at some level to trigger retransmissions. A host in a
distributed system can have several timers outstand-
ing. Consider for example a server with 200 connec-
tions and 3 timers per connection. Further, as net-
works scale to higher speeds (> 100 Mbit/sec), both
the required resolution and the rate at which timers
are started and stopped will increase.

25

http://crossmark.crossref.org/dialog/?doi=10.1145%2F41457.37504&domain=pdf&date_stamp=1987-11-01

If the hardware clock interrupts the host every tick,
and the interval between ticks is in the order of mi-
croseconds, then the interrupt overhead is substan-
tial. Most host operating systems offer timers of
coarse (milliseconds or seconds) granularity. Alter-
nately, in some systems finer granularity timers re-
side in special purpose hardware. In either case, the
performance of the t imer algorithms will be an issue
as they determine the latency incurred in start ing or
stopping a t imer and the number of timers that can
be simultaneously outstanding.

2 M o d e l a n d P e r f o r m a n c e M e a s u r e s

Our model of a t imer module has four component
routines:

START_TIMER(Interval , Request_ID, Expiry_
Action): The client calls this routine to s tar t a t imer
that will expire after "Interval" units of time. The
client supplies a Request_ID which is used to distin-
guish this t imer from other timers that the client has
outstanding. Finally, the client can specify what ac-
tion must be taken on expiry: for instance, calling a
client-specified routine, or setting an event flag.

STOP_TIMER(Request_ID): This routine uses its
knowledge of the client and Request_ID to locate the
t imer and stop it.

PER_TICK_BOOKKEEPING: Let the granularity of
the timer-be T units. Then every T units this routine
checks whether any outstanding timers have expired;
if so, it calls STOP_TIMER, which in turn calls the
next routine.

EXPIRY_PROCESSING: This routine does the Ex-
piry_Action specified in the START_TIMER call.

The first two routines are activated on client calls
while the last two are invoked on t imer ticks. The
timer is often an external hardware clock.

The following two performance measures can be used
to choose between the various algorithms described
in the rest of this paper. Both of them are parame-
terized by n, the average (or worst-case) number of
outstanding timers.

1. SPACE: The memory required for the da ta
structures used by the t imer module.

2. LATENCY: The time between the invoking of a
routine in the t imer module and its completion,

assuming that the caller of the routine blocks
until the routine completes. Both the average
and worst case latency are of interest.

For example, a client application that implements a
t ransport protocol may find tha t space is cheap and
the critical parameters for each routine in the t imer
module are as shown in Figure 1.

The performance measures impor tan t for the client
applications should be used to choose among timer
algorithms.

3 C u r r e n t l y U s e d T i m e r S c h e m e s

There are two schemes we know of:

3 . 1 S c h e m e 1 - - S t r a i g h t f o r w a r d

Here [3] START_TIMER finds a memory location and
sets that location to the specified t imer interval. Ev-
ery T units, P E R _ T I C K _ B O O K K E E P I N G will decre-
ment each outstanding timer; if any t imer becomes
zero, EXPIRY_PROCESSING is called.

This scheme is extremely fast
for all but PER_TICK_BOOKKEEPING. It also uses
one record per outstanding timer, the minimum space
possible. Its performance is summarized in Figure 4.
It is appropriate if:

* there are only a few outstanding timers.

• most timers are stopped within a few ticks of
the clock.

• PER_TICK_PROCESSING is done with suit-
able performance by special-purpose hardware.

Note that instead of doing a D E C R E M E N T , we can
store the absolute t ime at which timers expire and
do a COMPARE. This option is valid for all t imer
schemes we describe; the choice between them will
depend on the size of the time-of-day field, the cost
of each instruction, and the hardware on the machine
implementing these algorithms. In this paper we will
use the D E C R E M E N T option, except when describ-
ing Scheme 2.

25

3.2 S c h e m e 2 - - O R D E R E D L I S T / T I M E R
Q U E U E S

Here [3] PER_TICK_BOOKKEEPING latency is re-
duced at the expense of START_TIMER. Timers are
stored ill an ordered list. Unlike Scheme 1, we will
store the absolute time at which the timer expires,
and not the interval before expiry.

The timer that is due to expire at the earliest time is
stored at the head of the list. Subsequent timers are
stored in increasing order as shown in Figure 2.

In Fig. 2 the lowest timer is due to expire at absolute
time 10 hours, 23 minutes, and 12 seconds.

Because the list is sorted, PER_TICK_PROCESSING
need only increment the current time of day, and com-
pare it with the head of the list. If they are equal,
or the time of day is greater, it deletes that list ele-
ment and calls EXPIRY_PROCESSING. It continues
to delete elements at the head of the list until the
expiry time of the head of the list is strictly less than
tile time of day.

START_TIMER searches the list to find the po-
sition to insert the new timer. In the example,
START_TIMER will insert a new timer due to expire
at 10:24:01 between the second and third elements.

The worst case latency to start a timer is O(n). The
average latency depends on the distribution of timer
intervals (from time started to time stopped), and the
distribution of the arrival process according to which
calls to START_TIMER are made.

Interestingly, this can be modeled (Figure 3) as a sin-
gle queue with infinite servers; this is valid because
every timer in the queue is essentially decremented
(or served) every timer tick. It is shown in I4] that we
can use Little's result to obtain the average number
in the queue; also the distribution of the remaining
time of elements in the timer queue seen by a new re-
quest is the residual life density of the timer interval
distribution.

If the arrival distribution is Poisson, the list is
searched from the head, and reads and writes both
cost one unit, then the average cost of insertion for
negative exponential and uniform timer interval dis-
tributions is shown in [4] to be:

2 + 2/3n - - negative exponential

2 + 1/2n - - uniform

Results for other timer interval distributions can be
computed using a result in [4]. For a negative expo-
nential distribution we can reduce the average cost to
2 + n /3 by searching the list from the rear. In fact,
if timers are always inserted at the rear of the list,
this search strategy yields an O(1) START_TIMER
latency. This happens, for instance, if all timers in-
tervals have the same value. However, for a get---1
distribution of the timer interval, we assume the av-
erage latency of insertion is O(n).

STOP_TIMER need not search the list if the list is
doubly linked. When START_TIMER inserts a timer
into the ordered list it can store a pointer to the
element. STOP_TIMER can then use this pointer
to delete the element in O(1) time from the doubly
linked list. This can be used by any timer scheme.

If Scheme 2 is implemented by a host processor, the
interrupt overhead on every tick can be avoided if
there is hardware support to maintain a single timer.
The hardware timer is set to expire at the time at
which the the timer at the head of the list is due
to expire. The hardware intercepts all clock ticks
and interrupts the host only when a timer actually
expires. Unfortunately, some processor architectures
do not offer this capability.

Algorithms similar to Scheme 2 are used by both
VMS and UNIX in implementing their timer modules.
The performance of the two schemes is summarized
in Figure 4.

As for Space, Scheme 1 needs the minimum space
possible; Scheme 2 needs O(n) extra space for the
forward and back pointers between queue elements.

4 Timer Algor i thms , Sort ing Tech-
niques, and Time-Flow Mecha-
nisms in Discrete Event Simula-
t ions

4.1 S o r t i n g A l g o r i t h m s a n d P r i o r i t y Q u e u e s

Scheme 2 reduced PER_TICK_BOOKKEEPING la-
tency at the expense of START_TIMER by keeping
the timer list sorted. Consider the relationship be-
tween timer and sorting algorithms depicted in Figure
5.

However:

• In a typical sort all elements are input to the

27

module when the sort begins; the sort ends by
output t ing all elements in sorted order. A timer
module performs a more dynamic sort because
elements arrive at different times and are out-
put at different times.

In a t imer module, the elements to be "sorted"
change their value over t ime if we store the in-
terval. This is not true if we store the absolute
t ime of expiry.

A data structure that allows "dynamic" sorting is a
priority queue [5]. A priority queue allows elements to
be inserted and deleted; it also allows the smallest ele-
ment in the set to be found. A t imer module can use a
priority queue, and do P E R _ T I C K _ B O O K K E E P I N G
only on the smallest t imer element.

4.1 .1 S c h e m e 3: T r e e - b a s e d A l g o r i t h m s

A linked list (Scheme 2) is one way of implement-
ing a priority queue. For large n, tree-based da ta
structures are better. These include unbalanced bi-
nary trees, heaps, post-order and end-order trees, and
leftist-trees [4,6]. They a t tempt to reduce the la-
tency in Scheme 2 for START_TIMER from O(n) to
O(log(n)). In [7] it is reported that this difference
is significant for large n, and that unbalanced binary
trees are less expensive than balanced binary trees.
Unfortunately, unbalanced binary trees easily degen-
erate into a linear llst; this can happen, for instance,
if a set of equal t imer intervals are inserted.

We will lump these algorithms together as Scheme 3:
Tree-based algorithms. The performance of Scheme
3 is summarized in Figure 6.

4.2 D i s c r e t e E v e n t S i m u l a t i o n

In discrete event simulations [8], all s tate changes
in the system take place at discrete points in time.
An important part of such simulations are the event-
handling routines or time-flow mechanisms. When an
event occurs in a simulation, it may schedule future
events. These events are inserted into some list of
outstanding events. The simulation proceeds by pro-
cessing the earliest event, which in turn may sched-
ule further events. The simulation continues until the
event list is empty or some condition (e.g. clock >
MAX-SIMULATION-TIME} holds.

There are two ways to find the earliest event and up-
date the clock:

1.

2.

The earliest event is immediately retrieved from
some data structure {e.g. a priority queue [5])
and the clock jumps to the t ime of this event.
This is embodied in simulation languages like
GPSS [9] and SIMULA [10].

In the simulation of digital circuits, it is often
sufficient to consider event scheduling at t ime
instants that are multiples of the clock inter-
val, say c. Then, after the program processes
an event, it increments the clock variable by c
until it finds any outstanding events at the cur-
rent time. It then executes the event(s). This
is embodied in languages for digital simulation
like TEGAS Il l] and DECSIM [12].

We have already seen that algorithms used to im-
plement the first method are applicable for t imer al-
gorithms: these include linked lists and tree-based
structures. What is more interesting is that algo-
r i thms for the second method are also applicable.
Translated in terms of timers, the second method
for P E R _ T I C K _ B O O K K E E P I N G is: "Increment the
clock by the clock tick. If any t imer has expired, call
EXPIRY_PROCESSING."

An efficient and widely used method to implement the
second method is the so-called timing-wheel [11,13]
technique. In this method, the da ta structure into
which timers are inserted is an array of lists, with a
single overflow list for timers beyond the range of the
array.

In Figure 7, t ime is divided into cycles; each cycle is
N units of time. Let the current number of cycles
be S. If the current t ime pointer points to element
i, the current t ime is S * N + i. The event notice
corresponding to an event scheduled to arrive within
the current cycle (e.g. at t ime S * N + j , for integer
j between 0 and n) is inserted into the list pointed to
by the j t h element of the array. Any event occurring
beyond the current cycle is inserted into the overflow
list. Within a cycle, the simulation increments the
current t ime until it finds a non-empty list; it then
removes and processes all events in the list. If these
schedule future events within the current cycle, such
events are inserted into the array of lists; if not, the
new events are inserted into the overflow list.

The current t ime pointer is incremented modulo N.
When it wraps to 0, the number of cycles is incre-
mented, and the overflow list is checked; any elements
due to occur in the current cycle are removed from
the overflow list and inserted into the array of lists.
This is implemented in TEGAS-2 Il l] .

28

The array can be conceptually thought of as a timing
wheel; every time we step through N locations, we ro-
tate the wheel by incrementing the number of cycles.
A problem with this implementation is that as time
increases within a cycle and we travel down the ar-
ray it becomes more likely that event records will be
inserted in the overflow list. Other implementations
[12] reduce (but do not completely avoid) this effect
by rotating the wheel half-way through the array.

In summary, we note that time flow algorithms used
for digital simulation can be used to implement timer
algorithms; conversely, timer algorithms can be used
to implement time flow mechanisms in simulations.

However, there are differences to note:

• In Digital Simulations, most events happen
within a short interval beyond the current
time. Since timing wheel implementations
rarely place event notices in the overflow list,
they do not optimize this case. This is not true
for a general purpose timer facility.

• Most simulations ensure that if 2 events are
scheduled to occur at the same time, they are
removed in FIFO order. Timer modules need
not meet this restriction.

• Stepping through empty buckets on the wheel
represents overhead for a Digital Simulation. In
a timer module we have to increment the clock
anyway on every tick. Consequently, stepping
through empty buckets on a clock tick does not
represent significant extra overhead if it is done
by the same entity that maintains the current
time.

• Simulation Languages assume that canceling
event notices is very rare. If this is so, it is suffi-
cient to mark the notice as "Canceled" and wait
until the event is scheduled; at that point the
scheduler discards the event. In a timer module,
STOP_TIMER may be called frequently; such
an approach can cause the memory needs to
grow unboundedly beyond the number of timers
outstanding at any time.

We will use the timing-wheel method below as a point
of departure to describe further timer algorithms.

5 S c h e m e 4 - - B a s i c S c h e m e f o r

T i m e r I n t e r v a l s w i t h i n a S p e c i f i e d

R a n g e

We describe a simple modification of the timing wheel
algorithm. If we can guarantee that all timers are
set for periods less than Maxlnterval, this modified
algorithm takes O(1} latency for START_TIMER,
STOP_TIMER, and PER_TICK_BOOKKEEPING.
Let the granularity of the timer be 1 unit. The cur-
rent time is represented in Figure 8 by a pointer
to an element in a circular buffer with dimensions
[0, Maxlnterval - 1].

To set a timer at j units past current time, we in-
dex (Figure 8) into Element i ÷ j mod Maxlnterval),
and put the timer at the head of a list of timers
that will expire at a time = CurrentTime ÷ j units.
Each tick we increment the current timer pointer
(modMaxlnt~rval) and check the array element be-
ing pointed to. If the element is 0 (no list of
timers waiting to expire), no more work is done on
that timer tick. But if it is non-zero, we do EX-
PIRY_PROCESSING on all timers that are stored
in that list. Thus the latency for START_TIMER is
O(1); PER_TICK_BOOKKEEPING is O(1) except
when timers expire, but we can' t do better than that.
If the timer lists are doubly linked, and, as before, we
store a pointer to each timer record, then the latency
of STOP_TIMER is also O(1).

This is basically a timing wheel scheme where
the wheel turns one array element every timer
unit, as opposed to rotating every MaxInterval or
MaxInterval/2 units [11]. This guarantees that all
timers within MaxInterval of the current time will
be inserted in the array of lists; this is not guaranteed
by conventional timing wheel algorithms [11,13].

In sorting terms, this is a bucket sort [5,14] that
trades off memory for processing. However, since the
timers change value every time instant, intervals are
entered as offsets from the current time pointer. It is
sufficient if the current time pointer increases every
time instant.

A bucket sort sorts N elements in O(M) time using
M buckets, since all buckets have to be examined.
This is inefficient for large M > N. In timer algo-
rithms, however, the crucial observation is that some
entity needs to do O(1) work per tick to update the
current time; it costs only a few more instructions
for the same entity to step through an empty bucket.
What matters, unlike the sort, is not the total amount

29

of work to sort N elements, but the average (and
worst-case) part of the work that needs to be done
per timer tick.

Still memory is finite: it is difficult to justify 232
words of memory to implement 32 bit timers. One
solution is to implement timers within some range
using this scheme and the allowed memory. Timers
greater than this value are implemented using, say,
Scheme 2. Alternately, this scheme can be extended
in two ways to allow larger values of the timer interval
with modest amounts of memory.

6 E x t e n s i o n s

6.1 E x t e n s i o n 1: H a s h i n g

The previous scheme has an obvious analogy to in-
serting an element in an array using the element value
as an index. If there is insufficient memory, we can
hash the element value to yield an index.

For example, if the table size is a power of 2, an ar-
bitrary size timer can easily be divided by the table
size; the remainder (low order bits) is added to the
current time pointer to yield the index within the ar-
ray. The result of the division (high order bits) is
stored in a list pointed to by the index.

In Figure 9, let the table size be 256 and the timer
be a 32 bit timer. The remainder on division is the
last 8 bits. Let the value of the last 8 bits be 20.
Then the timer index is 10 (Current Time Pointer)
W 20 (remainder) = 30. The 24 high order bits are
then inserted into a list that is pointed to by the 30th
element.

Other methods of hashing are possible. For example,
any function that maps a timer value to an array
index could be used. We will defend our choice at
the end of Section 6.1.

Next, there are two ways to maintain each list.

6.1.1 S c h e m e 5: H a s h Tab le w i t h S o r t e d
Lists in each B u c k e t

Here each list is maintained as a ordered list exactly
as in Scheme 2. START_TIMER can be slow because
the 24 bit quantity must be inserted into the correct
place in the llst. Although the worst case latency
for START_TIMER is still O(n), the average latency

can be O(1). This is true if n < TableSize, and
if the hash function (Timer Value mod TableSize)
distributes timer values uniformly across the table.
If so, the average size of the list that the ith element
is inserted into is i - 1/TableSize [14]. Since i < n <
TableSize, the average latency of START TIMER is
O(1). How well this hash actually distributes depends
on the arrival distribution of timers to this module,
and the distribution of timer intervals.

PER_TICK_BOOKKEEPING increments the cur-
rent time pointer. If the value stored in the array
element being pointed to is zero, there is no more
work. Otherwise, as in Scheme 2, the top of the list is
decremented. If it expires, EXPIRY_PROCESSING
is called and the top list element is deleted. Once
again, PER_TICK_BOOKKEEPING takes O(1) av-
erage and worst-case latency except when multiple
timers are due to expire at the same instant, which
is the best we can do.

Finally, if each list is doubly linked and START_
TIMER stores a pointer to each timer element,
STOP_TIMER takes O(1) time.

A pleasing observation is that the scheme reduces to
Scheme 2 ff the array size is 1. In terms of sorting,
Scheme 5 is similar to doing a bucket sort on the low
order bits, followed by an insertion sort [5] on the lists
pointed to by each bucket.

6.1 .2 S c h e m e 6: H a s h Tab le w i t h U n s o r t e d
Lists in each B u c k e t

If a worst case START_TIMER latency of O(n) is
unacceptable, we can maintain each time list as
an unordered list instead of an ordered list. Thus
START_TIMER has a worst case and average la-
tency of O(1). But PER_TICK_BOOKKEEPING
now takes longer. Every timer tick we increment the
pointer (rood TableSize); if there is a list there, we
must decrement the high order bits for every element
in the array, exactly as in Scheme 1. However, if the
hash table has the property described above, then the
average size of tile list will be O(1).

We can make a stronger statement about the average
behavior regardless of how the hash distributes. No-
tice that every TableSize ticks we decrement once
all timers that are still living. Thus for n timers
we do n/TableSize work on average per tick. If
n < TableSize then we do O(1) work on average
per tick. If all n timers hash into the same bucket,
then every TableSize ticks we do O(n) work, but for

30

intermediate ticks we do O(1) work.

Thus the hash distribution in Scheme 6 only con-
trols the ~burstiness" (variance) of the latency of
P E R _ T I C K B O O K K E E P I N G , and not the average
latency. Since the worst-case latency of PER_TICK_-
BOOKKEEPING is always O(n) (all timers expire
at the same time), we believe that that the choice of
hash function for Scheme 6 is insignificant. Obtain-
ing the remainder after dividing by a power of 2 is
cheap (AND instruction), and consequently recom-
mended. Further, using an arbitrary hash function
to map a timer value into an array index would re-
quire PER_TICK_BOOKKEEPING to compute the
hash on each timer tick, which would make it more
expensive.

We discuss implementation strategies for Scheme 6 in
Appendix A.

6.2 E xte n s ion 2: Exp lo i t ing Hierarchy,
Scheme 7

The last extension of the basic scheme exploits the
concept of hierarchy. To represent the number
1000000 we need only 7 digits instead of 1000000 be-
cause we represent numbers hierarchically in units of
l 's, 10's, 100's etc. Similarly, to represent all possible
timer values within a 32 bit range, we do not need a
222 element array. Instead we can use a number of
arrays, each of different granularity. For instance, we
can use 4 arrays as follows:

A 100 element array in which each element rep-
resents a day

A 24 element array in which each element rep-
resents an hour

A 60 element array in which each element rep-
resents a minute

A 60 element array in which each element rep-
resents a second

Thus instead of 100 * 24 * 60 * 60 = 8.64 million
locations to store timers up to 100 days, we need only
100 + 24 + 60 + 60 = 244 locations.

As an example, consider Figure 10. Let the current
time be 11 days 10 hours, 24 minutes, 30 seconds.
Then to set a timer of 50 minutes and 45 seconds, we
first calculate the absolute time at which the timer

will expire. This is 11 days, 11 hours, 15 minutes, 15
seconds. Then we insert the timer into a list begin-
ning 1 (11 - 10 hours) element ahead of the current
hour pointer in the hour array. We also store the
remainder (15 minutes and 15 seconds) in this loca-
tion. We show this in Figure 10, ignoring the day
array which does not change during the example.

The seconds array works as usual: every time the
hardware clock ticks we increment the second pointer.
If the list pointed to by the element is non-empty, we
do EXPIRY_PROCESSING for elements in that list.
However, the other 3 arrays work slightly differently.

Even if there are no timers requested by the user
of the service, there will always be a 60 second
timer that is used to update the minute array, a 60
minute timer to update the hour array, and a 24
hour timer to update the day array. For instance,
every time the 60 second timer expires, we will in-
crement the current minute timer, do any required
EXPIRY_PROCESSING for the minute timers, and
re-insert another 60 second timer.

Returning to the example, ff the timer is not stopped,
eventually the hour timer will reach 11. When the
hour timer reaches 11, the list is examined; EX-
PIRY_PROCESSING will insert the remainder of the
seconds (15) in the minute array, 15 elements after
the current minute pointer(0). Of course, if the min-
utes remaining were zero, we could go directly to the
second array. At this point, the table will look like
Figure 11.

Eventually, the minute array will reach the 15th el-
ement; as part of EXPIRY_PROCESSING we will
move the timer into the SECOND array 15 seconds
after the current value. 15 seconds later the timer
will actually expire, and we do the user-specified EX-
PIRY_PROCESSING.

What are the performance parameters of this scheme?

START_TIMER: Depending on the algorithm, we
may need 0(rn) time, where m is the number of arrays
in the hierarchy, to find the right table to insert the
timer and to find the remaining time. A small num-
ber of levels should be sufficient to cover the timer
range with an allowable amount of memory; thus m
should be small (2 _< rn < 5 say.)

STOP_TIMER: Once again this can be done in O(1)
time if all lists are doubly linked.

PER_TICK_BOOKKEEPING: It is useful to com-
pare this to the corresponding value in Scheme 6.

31

Both have the same average latency of O(I) for suf-
ficiently large array sizes but the constants of com-
plexity are different. More precisely:

let T be the average timer interval (from start to stop
or expiry).

Let M be the total amount of array elements avail-
able.

Let m be the total number of levels in the hierarchy.

The total work done in Scheme 6 for such an average
sized timer is:

c(6)* T / M

where c(6) is a constant denoting the cost of decre-
menting the high order bits, indexing etc. in Scheme
6. If a timer lives for T units of time, it will be decre-
mented T / M times.

And in Scheme 7 it is bounded from above by:

c(7) * m

where c(7) represents the cost of finding the next list
to migrate to, and the cost of migration, in Scheme
7; m is the maximum number of lists to migrate be-
tween.

The average cost per unit time for an average of n
timers then becomes:

n * c(6) / M Scheme 6
n * c(7) * m / W Scheme 7

The choice between Scheme 6 and Scheme 7 will de-
pend on the parameters above. Since c(6) and c(7)
will not be drastically different, for small values of T
and large values of M, Scheme 6 can be better than
Scheme 7 for both START_TIMER and PER_TICK--
BOOKKEEPING. However, for large values of T and
small values of M, Scheme 7 will have a better aver-
age cost (latency) for PER_TICK_BOOKKEEPING
but a greater cost for START_TIMER.

Wick Nichols has pointed out that ff the timer pre-
cision is allowed to decrease with increasing levels in
the hierarchy, then we need not migrate timers be-
tween levels. For instance, in the example above we
would round off to the nearest hour and only set the
timer in hours. When the hour timer goes off, we do
the user specified EXPIRY_PROCESSING without
migrating to the minute array. Essentially, we now
have different timer modes, one for hour timers, one
for minute timers, etc. This reduces PER_TICK_-
BOOKKEEPING overhead further at the cost of a

loss in precision of up to 50% (e.g. a 1 minute and
30 second timer that is rounded to 1 minute). Alter-
nately, we can improve the precision by allowing just
one migration between adjacent lists.

Scheme 7 has an obvious analogy to a radix sort
[5,14]. We discuss implementation strategies for
Scheme 7 in Appendix A.

7 S u m m a r y and Conc lus ions

In this paper, we have examined the relationship be-
tween sorting algorithms, time flow mechanisms in
discrete event simulations, and timer algorithms. We
have extended the timing wheel mechanism used in
logic simulation to yield 3 timer algorithms (Schemes
5-7) that have constant complexity for setting, stop-
ping, and maintaining a timer. The extensions in-
clude rotating the timing wheel every clock tick, hav-
ing separate overflow lists per bucket, and using a
hierarchical set of timing wheels (Scheme 7): the ex-
tensions are necessary because the requirements of a
scheduler in a logic simulation and those of a general
timer module are different.

In choosing between schemes, we believe that Scheme
1 is appropriate in some cases because of its simplic-
ity, limited use of memory, and speed in starting and
stopping timers. Scheme 2 is useful in a host that has
hardware to maintain the clock and a single timer.
Although it takes O(n) time to start a timer, tlle
host is not interrupted every clock tick.

In a host (e.g. a VAX) without hardware support for
timers, we believe Schemes 2 and 3 are inappropriate
because of the cost of START_TIMER when there
are a large number of outstanding timers. Clearly,
this is not uncommon in hosts that have a signifi-
cant amount of real-time activity or have several open
communication links.

Scheme 4 is useful when most timers are within a
small range of the current time. For example, it could
be used by a networking module that is maintaining
its own timers. Scheme 5 depends too much on the
hash distribution (for a fast START_TIMER) to be
generally useful.

For a general timer module, similar to the operating
system facilities found in UNIX or VMS, that is ex-
pected to work well in a variety of environments, we
recommend Scheme 6 or 7.

We have implemented Scheme 6 on a VAX using

32

MACRO-11. We used cheap VAX instructions, where
the average cost of a "cheap" instruction can be
taken to be that of a CLRL (longword clear). We
did not use VAX Queue instructions. The numbers
given below for the implementat ion do not include
the cost of synchronization (e.g. by lowering and rais-
ing interrupt priority levels) in the START_TIMER
and STOP_TIMER routines; they are needed for any
t imer algorithm and their costs are machine specific.

Tile implementat ion took 13 cheap VAX instructions
to insert a t imer and 7 to delete a timer. The cost
per tick was 4 instructions to skip an empty array lo-
cation, and 6 instructions to decrement a t imer and
move to the next queue element. A further 9 instruc-
tions were needed to delete an expired t imer and call
the EXPIRY_PROCESSING routine. Thus even if
we assume that every outstanding t imer expires dur-
ing one scan of the table, the average cost per tick is
4 + 15 * n/TableSize instructions. {Once again this
is because during every scan of the table all n - - t h e
average number of outstanding timers - - timers will
be decremented and possibly expire.) If the size of
the array is much larger than rt, the average cost per
tick can be close to 4 instructions.

If the amount of memory required for an efficient im-
plementation of Scheme 6 is a problem, Scheme 7 can
be pressed into service. Scheme 7, however, will need
a few more instructions in START_TIMER to find
the correct table to insert the timer.

Both Schemes 6 and 7 can be completely or partially
(see Appendix A) implemented in hardware using
some auxiliary memory to store the da ta structures.
If a host had such hardware support , the host soft-
ware would need O(1} t ime to s tar t and stop a t imer
and would not need to be interrupted every clock tick.

Finally we note that designers and implementors have
assumed that protocols that use a large number of
timers are expensive and perform poorly. This is
an artifact of existing implementat ions and operat-
ing system facilities. Given that a large number of
timers can be implemented efficiently {e.g. 4 to 13
VAX Instructions to start, stop, and, on the aver-
age, to maintain timers), we hope this will no longer
be an issue in the design of protocols for distributed
systems.

8 A c k n o w l e d g m e n t s

Barry Spinney suggested extending Scheme 4 to
Scheme 5. Hugh Wilkinson independently thought of
exploiting hierarchy in maintaining t imer lists. John
Forecast helped us implement Scheme 6. Andrew
Black commented on an earlier version and helped
improve the presentation. Andrew Black, Barry Spin-
hey, Hugh Wilkinson, Steve Glaser, Wick Nichols,
Paul Koning, Alan Kirby, Mark Kempf, and Char-
lie Kaufman {all at DEC) were a pleasure to discuss
these schemes with. We would like to thank Ellen
Gilliam for her help in assembling the references, and
the program committee for helpful comments.

9 R e f e r e n c e s

1. N.P. Kronenberg, H. Levy, W.D. Strecker,,
"VAXclusters: A Closely- Coupled Distributed
System," ACM Trans. on Computer Systems,
Vol. 4, No., May 1986,

2. A.S. Tanenbaum and R. van Renesse, "Dis-
tr ibuted Operat ing Systems," Computing Sur-
veys, Vol. 17, No. 4, December 1985

3. A.S. Tanenbaum, "Computer Net-
works," Prentice-Hall, Englewood Cliffs, N.J.,
1981.

4. G.M. Reeves, "Complexity Analysis of Event
Set Algorithms," Computer Journal, Vol. 27,
no. 1, 1984

5. D.E. Knuth, "The Art of Computer Program-
ming, Volume 3," Addison Wesley, Reading,
MA 1973.

6. J.G. Vaucher and P. Duval, "A Comparison Of
Simulation Event List Algorithms," CACM 18,
1975.

7. B. Myhrhaug, "Sequencing Set Efficiency,"
Pub. A9, Norwegian Computing Centre, Fork-
sningveien, 1B, Oslo 3.

8. A.A. Pritsker, P.J. Kiviat, "Simulation with
GASP-II ," Prentice-Hall, Englewood Cliffs,
N.J., 1969..

. "General Purpose Simulation System 3 6 0 -
User's Manual," Pub. H20-0326, IBM Corp.,
White Plains, N.Y., 1968.

33

10.

11.

12.

13.

14.

O-J Dahl, B. Myhrhaug,and K. Nygaard, "SIM-
ULA 67 Common Base Language," Pub. $22
Norwegian Computing Centre, Forksningveien,
1B, Oslo 3.

S. Szygenda, C.W. Hemming, and J.M.
Hemphill, "Time Flow Mechanisms for use in
Digital Logic Simulations," Proc. 1971 Winter
Simulation Conference, New York.

M.A. Kearney, "DECSIM: A Multi-Level Sim-
ulation System for Digital Design," 1984 Inter-
national Conference on Computer Design.

E. Ulrich, "Time-Sequenced Logical Simulation
Based on Circuit Delay and Selective Tracing
of Active Network Paths," 1965 ACM National
Conference.

A. Aho, J. Hopcoft, J. Ullman, "The Design
and Analysis of Computer Algorithms, "Addi-
son Wesley, Reading, MA, 1974

A I m p l e m e n t a t i o n C o n s i d e r a t i o n s

A.1 Hardware Assist

Since the cost of handling clock interrupts becomes
more significant for fine granularity (e.g. microsec-
onds) timers, it may be necessary to employ special
purpose hardware assist. In the extreme, we can use
a timer chip which maintains all the data structures
(say in Scheme 6) and interrupts host software only
when a timer expires.

Another possibility is a chip (actually just a counter)
that steps through the timer arrays, and interrupts
the host only if there is work to be done. When the
host inserts a timer into an empty queue pointed to
by array element X it tells the chip about this new
queue. The chip then marks X as "busy". As before,
the chip scans through the timer arrays every clock
tick. During its scan, when the chip encounters a
"busy" location, it interrupts the host and gives the
host the address of the queue that needs to be worked
on. Similarly when the host deletes a timer entry
from some queue and leaves behind an empty queue
it needs to inform the chip that the corresponding
array location is no longer "busy".

Note that the synchronization overhead is minimal
because the host can keep the actual timer queues in
its memory which the chip need not access, and the
chip can keep the timing arrays in its memory, which

the host need not access. The only communication
between the host and chip is through interrupts.

In Scheme 6, the host is interrupted an average of
TIM times per timer interval, where T is the aver-
age timer interval and M is the number of array ele-
ments. In Scheme 7, the host is interrupted at most
m times, where m is the number of levels in the hi-
erarchy. If T and m are small and M is large, the
interrupt overhead for such an implementation can
be made negligible.

Finally, we note that conventional hardware timer
chips use Scheme 1 to maintain a small number of
timers. However, if Schemes 6 and 7 are imphmented
as a single chip that operates on a separate memory
(that contains the data structures) then there is no
a priori limit on the number of timers that can be
handled by the chip. Clearly the array sizes need to
be parameters that must be supplied to the chip on
initialization.

A.2 Symmetric Multiprocessing

If the host consists of a set of processors, each of
which can process calls to the timer module (sym-
metric multiprocessing), Steve Glaser has pointed out
that algorithms that tie up a common data struc-
ture for a large period of time will reduce efficiency.
For instance in Scheme 2, when Processor A inserts
a timer into the ordered list other processors cannot
process timer module routines until Processor A fin-
ishes and releases its semaphore. Scheme 5, 6, and 7
seem suited for implementation in symmetric multi-
processors.

34

ROUTINE

STA RT_TI M E R

STOP_TIMER

PERTICKBOOKKEEPING

EXPIRY_PROCESSING

CRITICAL PARAM ETER

LATENCY

LATENCY

LATENCY

NONE

FIGURE 1 - AN EXAMPLE OF THE PARAMETERS OF THE TIMER MODULE THAT
A NETWORKING APPLICATION MIGHT CONSIDER IMPORTANT

I

10:23:12 I., ..m ._m "t 10:23"24 I. 10:24:03
r I I" "l

queue head

FIGURE 2 - TIMER QUEUE EXAMPLE USED TO ILLUSTRATE SCHEME 2

Arrivals to I
timer module / 'x
with pdfa(t) ..

-I/X

infinite servers,
service pdf = s(t) Expired or stopped timers

Note: s(t) is density function of interval between
starting and stopping (or expiration) of a timer

FIGURE 3 - A G/G/INF/INF QUEUEING MODEL OF A TIMER MODULE

Scheme 1

Scheme 2

STA RT_TI M ER
LATENCY

0(1)

O(n)

STOP_TIM ER
LATENCY

0(I)

0(1)

PER_TICK_BOOKKEEPING
LATENCY

O(n)

0(1)

FIGURE 4 - COMPARING AVERAGE AND WORST-CASE LATENCIES
OF SCHEMES 1 AND 2

35

Arrival of unsorted
Timer Requests

_1 TIMER MODULE I
1 (SORTING MODULE) I

Output in sorted order
(ignoring stopped timers)

FIGURE 5 - ANALOGY BETWEEN AT IMER AND A SORTING MODULE

STA RT_TI M E R
LATE NCY

O(Iog(n))

STOP_TIMER
LATENCY

0(1) or O(Iog(n))

PER_TICKBOOKKEEPING
LATENCY

o(I)

NOTE: STOP_TIMER is O(1) for unbalanced trees and O(Iog(n)) --- because of the
need to rebalance the tree after a deletion --- for balanced trees

FIGURE 6 - AVERAGE LATENCY FOR TREE-BASED SCHEMES

Element 0

Element 1

Element i

Elementj

Element N-1

0

0

0

0

Current Time

List of timers to
expire at this time

I NU mber of Cycles J Overflow List

FIGURE 7 - T IMING WHEEL MECHANISM USED IN LOGIC SIMULATION [11]

36

Element 0

Element I

Element i

Element i + j

Element
Maxlnterval -1

0

0

0

0

• Current Time

List of t imers to
expire at this t ime

FIGURE 8-ARRAYOF LISTS USED BY SCHEME 4 FOR TIMER INTERVALS
UP TO A MAXIMUM INTERVAL

Element 0

Element 1

Element 10

Element 30

Element 255

0

0

0 4

0

Current Time

List of t imers tha t have
hashed into this bucket

FIGURE 9-ARRAYOF LISTS USED BY SCHEMES 5 AND 6 FOR
ARBITRARY SIZED TIMERS: BASICALLY A HASH TABLE

37

HOUR ARRAY MINUTE ARRAY SECOND ARRAY

Current Hour
Pointer = 10

Current minute
Pointer = 24

Current second
Pointer = 30

I T imer Record w i th Remaining Time = 15 minutes, 15 seconds I

FIGURE 10 - HIERARCHICAL SET OF ARRAYS USED BY SCHEME 7
TO " M A P " TIME MORE EFFICIENTLY

HOUR ARRAY MINUTE ARRAY SECOND ARRAY

Current minute Current second
Pointer = 0 - - -> Pointer = 0 - - ->

Current Hour
Pointer = 11

Element 15

T

I Timer Record w i th Remaining Time = 15 seconds I

FIGURE 11 - FIGURE 10 AFTER THE HOUR COMPONENT EXPIRES

38

