github.com/c12o16h1/go/src@v0.0.0-20200114212001-5a151c0f00ed/runtime/pprof/pprof.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package pprof writes runtime profiling data in the format expected 6 // by the pprof visualization tool. 7 // 8 // Profiling a Go program 9 // 10 // The first step to profiling a Go program is to enable profiling. 11 // Support for profiling benchmarks built with the standard testing 12 // package is built into go test. For example, the following command 13 // runs benchmarks in the current directory and writes the CPU and 14 // memory profiles to cpu.prof and mem.prof: 15 // 16 // go test -cpuprofile cpu.prof -memprofile mem.prof -bench . 17 // 18 // To add equivalent profiling support to a standalone program, add 19 // code like the following to your main function: 20 // 21 // var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`") 22 // var memprofile = flag.String("memprofile", "", "write memory profile to `file`") 23 // 24 // func main() { 25 // flag.Parse() 26 // if *cpuprofile != "" { 27 // f, err := os.Create(*cpuprofile) 28 // if err != nil { 29 // log.Fatal("could not create CPU profile: ", err) 30 // } 31 // defer f.Close() // error handling omitted for example 32 // if err := pprof.StartCPUProfile(f); err != nil { 33 // log.Fatal("could not start CPU profile: ", err) 34 // } 35 // defer pprof.StopCPUProfile() 36 // } 37 // 38 // // ... rest of the program ... 39 // 40 // if *memprofile != "" { 41 // f, err := os.Create(*memprofile) 42 // if err != nil { 43 // log.Fatal("could not create memory profile: ", err) 44 // } 45 // defer f.Close() // error handling omitted for example 46 // runtime.GC() // get up-to-date statistics 47 // if err := pprof.WriteHeapProfile(f); err != nil { 48 // log.Fatal("could not write memory profile: ", err) 49 // } 50 // } 51 // } 52 // 53 // There is also a standard HTTP interface to profiling data. Adding 54 // the following line will install handlers under the /debug/pprof/ 55 // URL to download live profiles: 56 // 57 // import _ "net/http/pprof" 58 // 59 // See the net/http/pprof package for more details. 60 // 61 // Profiles can then be visualized with the pprof tool: 62 // 63 // go tool pprof cpu.prof 64 // 65 // There are many commands available from the pprof command line. 66 // Commonly used commands include "top", which prints a summary of the 67 // top program hot-spots, and "web", which opens an interactive graph 68 // of hot-spots and their call graphs. Use "help" for information on 69 // all pprof commands. 70 // 71 // For more information about pprof, see 72 // https://github.com/google/pprof/blob/master/doc/README.md. 73 package pprof 74 75 import ( 76 "bufio" 77 "bytes" 78 "fmt" 79 "io" 80 "runtime" 81 "sort" 82 "strings" 83 "sync" 84 "text/tabwriter" 85 "time" 86 "unsafe" 87 ) 88 89 // BUG(rsc): Profiles are only as good as the kernel support used to generate them. 90 // See https://golang.org/issue/13841 for details about known problems. 91 92 // A Profile is a collection of stack traces showing the call sequences 93 // that led to instances of a particular event, such as allocation. 94 // Packages can create and maintain their own profiles; the most common 95 // use is for tracking resources that must be explicitly closed, such as files 96 // or network connections. 97 // 98 // A Profile's methods can be called from multiple goroutines simultaneously. 99 // 100 // Each Profile has a unique name. A few profiles are predefined: 101 // 102 // goroutine - stack traces of all current goroutines 103 // heap - a sampling of memory allocations of live objects 104 // allocs - a sampling of all past memory allocations 105 // threadcreate - stack traces that led to the creation of new OS threads 106 // block - stack traces that led to blocking on synchronization primitives 107 // mutex - stack traces of holders of contended mutexes 108 // 109 // These predefined profiles maintain themselves and panic on an explicit 110 // Add or Remove method call. 111 // 112 // The heap profile reports statistics as of the most recently completed 113 // garbage collection; it elides more recent allocation to avoid skewing 114 // the profile away from live data and toward garbage. 115 // If there has been no garbage collection at all, the heap profile reports 116 // all known allocations. This exception helps mainly in programs running 117 // without garbage collection enabled, usually for debugging purposes. 118 // 119 // The heap profile tracks both the allocation sites for all live objects in 120 // the application memory and for all objects allocated since the program start. 121 // Pprof's -inuse_space, -inuse_objects, -alloc_space, and -alloc_objects 122 // flags select which to display, defaulting to -inuse_space (live objects, 123 // scaled by size). 124 // 125 // The allocs profile is the same as the heap profile but changes the default 126 // pprof display to -alloc_space, the total number of bytes allocated since 127 // the program began (including garbage-collected bytes). 128 // 129 // The CPU profile is not available as a Profile. It has a special API, 130 // the StartCPUProfile and StopCPUProfile functions, because it streams 131 // output to a writer during profiling. 132 // 133 type Profile struct { 134 name string 135 mu sync.Mutex 136 m map[interface{}][]uintptr 137 count func() int 138 write func(io.Writer, int) error 139 } 140 141 // profiles records all registered profiles. 142 var profiles struct { 143 mu sync.Mutex 144 m map[string]*Profile 145 } 146 147 var goroutineProfile = &Profile{ 148 name: "goroutine", 149 count: countGoroutine, 150 write: writeGoroutine, 151 } 152 153 var threadcreateProfile = &Profile{ 154 name: "threadcreate", 155 count: countThreadCreate, 156 write: writeThreadCreate, 157 } 158 159 var heapProfile = &Profile{ 160 name: "heap", 161 count: countHeap, 162 write: writeHeap, 163 } 164 165 var allocsProfile = &Profile{ 166 name: "allocs", 167 count: countHeap, // identical to heap profile 168 write: writeAlloc, 169 } 170 171 var blockProfile = &Profile{ 172 name: "block", 173 count: countBlock, 174 write: writeBlock, 175 } 176 177 var mutexProfile = &Profile{ 178 name: "mutex", 179 count: countMutex, 180 write: writeMutex, 181 } 182 183 func lockProfiles() { 184 profiles.mu.Lock() 185 if profiles.m == nil { 186 // Initial built-in profiles. 187 profiles.m = map[string]*Profile{ 188 "goroutine": goroutineProfile, 189 "threadcreate": threadcreateProfile, 190 "heap": heapProfile, 191 "allocs": allocsProfile, 192 "block": blockProfile, 193 "mutex": mutexProfile, 194 } 195 } 196 } 197 198 func unlockProfiles() { 199 profiles.mu.Unlock() 200 } 201 202 // NewProfile creates a new profile with the given name. 203 // If a profile with that name already exists, NewProfile panics. 204 // The convention is to use a 'import/path.' prefix to create 205 // separate name spaces for each package. 206 // For compatibility with various tools that read pprof data, 207 // profile names should not contain spaces. 208 func NewProfile(name string) *Profile { 209 lockProfiles() 210 defer unlockProfiles() 211 if name == "" { 212 panic("pprof: NewProfile with empty name") 213 } 214 if profiles.m[name] != nil { 215 panic("pprof: NewProfile name already in use: " + name) 216 } 217 p := &Profile{ 218 name: name, 219 m: map[interface{}][]uintptr{}, 220 } 221 profiles.m[name] = p 222 return p 223 } 224 225 // Lookup returns the profile with the given name, or nil if no such profile exists. 226 func Lookup(name string) *Profile { 227 lockProfiles() 228 defer unlockProfiles() 229 return profiles.m[name] 230 } 231 232 // Profiles returns a slice of all the known profiles, sorted by name. 233 func Profiles() []*Profile { 234 lockProfiles() 235 defer unlockProfiles() 236 237 all := make([]*Profile, 0, len(profiles.m)) 238 for _, p := range profiles.m { 239 all = append(all, p) 240 } 241 242 sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name }) 243 return all 244 } 245 246 // Name returns this profile's name, which can be passed to Lookup to reobtain the profile. 247 func (p *Profile) Name() string { 248 return p.name 249 } 250 251 // Count returns the number of execution stacks currently in the profile. 252 func (p *Profile) Count() int { 253 p.mu.Lock() 254 defer p.mu.Unlock() 255 if p.count != nil { 256 return p.count() 257 } 258 return len(p.m) 259 } 260 261 // Add adds the current execution stack to the profile, associated with value. 262 // Add stores value in an internal map, so value must be suitable for use as 263 // a map key and will not be garbage collected until the corresponding 264 // call to Remove. Add panics if the profile already contains a stack for value. 265 // 266 // The skip parameter has the same meaning as runtime.Caller's skip 267 // and controls where the stack trace begins. Passing skip=0 begins the 268 // trace in the function calling Add. For example, given this 269 // execution stack: 270 // 271 // Add 272 // called from rpc.NewClient 273 // called from mypkg.Run 274 // called from main.main 275 // 276 // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. 277 // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. 278 // 279 func (p *Profile) Add(value interface{}, skip int) { 280 if p.name == "" { 281 panic("pprof: use of uninitialized Profile") 282 } 283 if p.write != nil { 284 panic("pprof: Add called on built-in Profile " + p.name) 285 } 286 287 stk := make([]uintptr, 32) 288 n := runtime.Callers(skip+1, stk[:]) 289 stk = stk[:n] 290 if len(stk) == 0 { 291 // The value for skip is too large, and there's no stack trace to record. 292 stk = []uintptr{funcPC(lostProfileEvent)} 293 } 294 295 p.mu.Lock() 296 defer p.mu.Unlock() 297 if p.m[value] != nil { 298 panic("pprof: Profile.Add of duplicate value") 299 } 300 p.m[value] = stk 301 } 302 303 // Remove removes the execution stack associated with value from the profile. 304 // It is a no-op if the value is not in the profile. 305 func (p *Profile) Remove(value interface{}) { 306 p.mu.Lock() 307 defer p.mu.Unlock() 308 delete(p.m, value) 309 } 310 311 // WriteTo writes a pprof-formatted snapshot of the profile to w. 312 // If a write to w returns an error, WriteTo returns that error. 313 // Otherwise, WriteTo returns nil. 314 // 315 // The debug parameter enables additional output. 316 // Passing debug=0 prints only the hexadecimal addresses that pprof needs. 317 // Passing debug=1 adds comments translating addresses to function names 318 // and line numbers, so that a programmer can read the profile without tools. 319 // 320 // The predefined profiles may assign meaning to other debug values; 321 // for example, when printing the "goroutine" profile, debug=2 means to 322 // print the goroutine stacks in the same form that a Go program uses 323 // when dying due to an unrecovered panic. 324 func (p *Profile) WriteTo(w io.Writer, debug int) error { 325 if p.name == "" { 326 panic("pprof: use of zero Profile") 327 } 328 if p.write != nil { 329 return p.write(w, debug) 330 } 331 332 // Obtain consistent snapshot under lock; then process without lock. 333 p.mu.Lock() 334 all := make([][]uintptr, 0, len(p.m)) 335 for _, stk := range p.m { 336 all = append(all, stk) 337 } 338 p.mu.Unlock() 339 340 // Map order is non-deterministic; make output deterministic. 341 sort.Slice(all, func(i, j int) bool { 342 t, u := all[i], all[j] 343 for k := 0; k < len(t) && k < len(u); k++ { 344 if t[k] != u[k] { 345 return t[k] < u[k] 346 } 347 } 348 return len(t) < len(u) 349 }) 350 351 return printCountProfile(w, debug, p.name, stackProfile(all)) 352 } 353 354 type stackProfile [][]uintptr 355 356 func (x stackProfile) Len() int { return len(x) } 357 func (x stackProfile) Stack(i int) []uintptr { return x[i] } 358 359 // A countProfile is a set of stack traces to be printed as counts 360 // grouped by stack trace. There are multiple implementations: 361 // all that matters is that we can find out how many traces there are 362 // and obtain each trace in turn. 363 type countProfile interface { 364 Len() int 365 Stack(i int) []uintptr 366 } 367 368 // printCountCycleProfile outputs block profile records (for block or mutex profiles) 369 // as the pprof-proto format output. Translations from cycle count to time duration 370 // are done because The proto expects count and time (nanoseconds) instead of count 371 // and the number of cycles for block, contention profiles. 372 // Possible 'scaler' functions are scaleBlockProfile and scaleMutexProfile. 373 func printCountCycleProfile(w io.Writer, countName, cycleName string, scaler func(int64, float64) (int64, float64), records []runtime.BlockProfileRecord) error { 374 // Output profile in protobuf form. 375 b := newProfileBuilder(w) 376 b.pbValueType(tagProfile_PeriodType, countName, "count") 377 b.pb.int64Opt(tagProfile_Period, 1) 378 b.pbValueType(tagProfile_SampleType, countName, "count") 379 b.pbValueType(tagProfile_SampleType, cycleName, "nanoseconds") 380 381 cpuGHz := float64(runtime_cyclesPerSecond()) / 1e9 382 383 values := []int64{0, 0} 384 var locs []uint64 385 for _, r := range records { 386 count, nanosec := scaler(r.Count, float64(r.Cycles)/cpuGHz) 387 values[0] = count 388 values[1] = int64(nanosec) 389 // For count profiles, all stack addresses are 390 // return PCs, which is what appendLocsForStack expects. 391 locs = b.appendLocsForStack(locs[:0], r.Stack()) 392 b.pbSample(values, locs, nil) 393 } 394 b.build() 395 return nil 396 } 397 398 // printCountProfile prints a countProfile at the specified debug level. 399 // The profile will be in compressed proto format unless debug is nonzero. 400 func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { 401 // Build count of each stack. 402 var buf bytes.Buffer 403 key := func(stk []uintptr) string { 404 buf.Reset() 405 fmt.Fprintf(&buf, "@") 406 for _, pc := range stk { 407 fmt.Fprintf(&buf, " %#x", pc) 408 } 409 return buf.String() 410 } 411 count := map[string]int{} 412 index := map[string]int{} 413 var keys []string 414 n := p.Len() 415 for i := 0; i < n; i++ { 416 k := key(p.Stack(i)) 417 if count[k] == 0 { 418 index[k] = i 419 keys = append(keys, k) 420 } 421 count[k]++ 422 } 423 424 sort.Sort(&keysByCount{keys, count}) 425 426 if debug > 0 { 427 // Print debug profile in legacy format 428 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 429 fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len()) 430 for _, k := range keys { 431 fmt.Fprintf(tw, "%d %s\n", count[k], k) 432 printStackRecord(tw, p.Stack(index[k]), false) 433 } 434 return tw.Flush() 435 } 436 437 // Output profile in protobuf form. 438 b := newProfileBuilder(w) 439 b.pbValueType(tagProfile_PeriodType, name, "count") 440 b.pb.int64Opt(tagProfile_Period, 1) 441 b.pbValueType(tagProfile_SampleType, name, "count") 442 443 values := []int64{0} 444 var locs []uint64 445 for _, k := range keys { 446 values[0] = int64(count[k]) 447 // For count profiles, all stack addresses are 448 // return PCs, which is what appendLocsForStack expects. 449 locs = b.appendLocsForStack(locs[:0], p.Stack(index[k])) 450 b.pbSample(values, locs, nil) 451 } 452 b.build() 453 return nil 454 } 455 456 // keysByCount sorts keys with higher counts first, breaking ties by key string order. 457 type keysByCount struct { 458 keys []string 459 count map[string]int 460 } 461 462 func (x *keysByCount) Len() int { return len(x.keys) } 463 func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] } 464 func (x *keysByCount) Less(i, j int) bool { 465 ki, kj := x.keys[i], x.keys[j] 466 ci, cj := x.count[ki], x.count[kj] 467 if ci != cj { 468 return ci > cj 469 } 470 return ki < kj 471 } 472 473 // printStackRecord prints the function + source line information 474 // for a single stack trace. 475 func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { 476 show := allFrames 477 frames := runtime.CallersFrames(stk) 478 for { 479 frame, more := frames.Next() 480 name := frame.Function 481 if name == "" { 482 show = true 483 fmt.Fprintf(w, "#\t%#x\n", frame.PC) 484 } else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) { 485 // Hide runtime.goexit and any runtime functions at the beginning. 486 // This is useful mainly for allocation traces. 487 show = true 488 fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line) 489 } 490 if !more { 491 break 492 } 493 } 494 if !show { 495 // We didn't print anything; do it again, 496 // and this time include runtime functions. 497 printStackRecord(w, stk, true) 498 return 499 } 500 fmt.Fprintf(w, "\n") 501 } 502 503 // Interface to system profiles. 504 505 // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0). 506 // It is preserved for backwards compatibility. 507 func WriteHeapProfile(w io.Writer) error { 508 return writeHeap(w, 0) 509 } 510 511 // countHeap returns the number of records in the heap profile. 512 func countHeap() int { 513 n, _ := runtime.MemProfile(nil, true) 514 return n 515 } 516 517 // writeHeap writes the current runtime heap profile to w. 518 func writeHeap(w io.Writer, debug int) error { 519 return writeHeapInternal(w, debug, "") 520 } 521 522 // writeAlloc writes the current runtime heap profile to w 523 // with the total allocation space as the default sample type. 524 func writeAlloc(w io.Writer, debug int) error { 525 return writeHeapInternal(w, debug, "alloc_space") 526 } 527 528 func writeHeapInternal(w io.Writer, debug int, defaultSampleType string) error { 529 var memStats *runtime.MemStats 530 if debug != 0 { 531 // Read mem stats first, so that our other allocations 532 // do not appear in the statistics. 533 memStats = new(runtime.MemStats) 534 runtime.ReadMemStats(memStats) 535 } 536 537 // Find out how many records there are (MemProfile(nil, true)), 538 // allocate that many records, and get the data. 539 // There's a race—more records might be added between 540 // the two calls—so allocate a few extra records for safety 541 // and also try again if we're very unlucky. 542 // The loop should only execute one iteration in the common case. 543 var p []runtime.MemProfileRecord 544 n, ok := runtime.MemProfile(nil, true) 545 for { 546 // Allocate room for a slightly bigger profile, 547 // in case a few more entries have been added 548 // since the call to MemProfile. 549 p = make([]runtime.MemProfileRecord, n+50) 550 n, ok = runtime.MemProfile(p, true) 551 if ok { 552 p = p[0:n] 553 break 554 } 555 // Profile grew; try again. 556 } 557 558 if debug == 0 { 559 return writeHeapProto(w, p, int64(runtime.MemProfileRate), defaultSampleType) 560 } 561 562 sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() }) 563 564 b := bufio.NewWriter(w) 565 tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0) 566 w = tw 567 568 var total runtime.MemProfileRecord 569 for i := range p { 570 r := &p[i] 571 total.AllocBytes += r.AllocBytes 572 total.AllocObjects += r.AllocObjects 573 total.FreeBytes += r.FreeBytes 574 total.FreeObjects += r.FreeObjects 575 } 576 577 // Technically the rate is MemProfileRate not 2*MemProfileRate, 578 // but early versions of the C++ heap profiler reported 2*MemProfileRate, 579 // so that's what pprof has come to expect. 580 fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", 581 total.InUseObjects(), total.InUseBytes(), 582 total.AllocObjects, total.AllocBytes, 583 2*runtime.MemProfileRate) 584 585 for i := range p { 586 r := &p[i] 587 fmt.Fprintf(w, "%d: %d [%d: %d] @", 588 r.InUseObjects(), r.InUseBytes(), 589 r.AllocObjects, r.AllocBytes) 590 for _, pc := range r.Stack() { 591 fmt.Fprintf(w, " %#x", pc) 592 } 593 fmt.Fprintf(w, "\n") 594 printStackRecord(w, r.Stack(), false) 595 } 596 597 // Print memstats information too. 598 // Pprof will ignore, but useful for people 599 s := memStats 600 fmt.Fprintf(w, "\n# runtime.MemStats\n") 601 fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) 602 fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) 603 fmt.Fprintf(w, "# Sys = %d\n", s.Sys) 604 fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) 605 fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) 606 fmt.Fprintf(w, "# Frees = %d\n", s.Frees) 607 608 fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) 609 fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) 610 fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) 611 fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) 612 fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) 613 fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) 614 615 fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) 616 fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) 617 fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) 618 fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) 619 fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys) 620 fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys) 621 622 fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) 623 fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC) 624 fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) 625 fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd) 626 fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) 627 fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC) 628 fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction) 629 fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) 630 631 tw.Flush() 632 return b.Flush() 633 } 634 635 // countThreadCreate returns the size of the current ThreadCreateProfile. 636 func countThreadCreate() int { 637 n, _ := runtime.ThreadCreateProfile(nil) 638 return n 639 } 640 641 // writeThreadCreate writes the current runtime ThreadCreateProfile to w. 642 func writeThreadCreate(w io.Writer, debug int) error { 643 return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile) 644 } 645 646 // countGoroutine returns the number of goroutines. 647 func countGoroutine() int { 648 return runtime.NumGoroutine() 649 } 650 651 // writeGoroutine writes the current runtime GoroutineProfile to w. 652 func writeGoroutine(w io.Writer, debug int) error { 653 if debug >= 2 { 654 return writeGoroutineStacks(w) 655 } 656 return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile) 657 } 658 659 func writeGoroutineStacks(w io.Writer) error { 660 // We don't know how big the buffer needs to be to collect 661 // all the goroutines. Start with 1 MB and try a few times, doubling each time. 662 // Give up and use a truncated trace if 64 MB is not enough. 663 buf := make([]byte, 1<<20) 664 for i := 0; ; i++ { 665 n := runtime.Stack(buf, true) 666 if n < len(buf) { 667 buf = buf[:n] 668 break 669 } 670 if len(buf) >= 64<<20 { 671 // Filled 64 MB - stop there. 672 break 673 } 674 buf = make([]byte, 2*len(buf)) 675 } 676 _, err := w.Write(buf) 677 return err 678 } 679 680 func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error { 681 // Find out how many records there are (fetch(nil)), 682 // allocate that many records, and get the data. 683 // There's a race—more records might be added between 684 // the two calls—so allocate a few extra records for safety 685 // and also try again if we're very unlucky. 686 // The loop should only execute one iteration in the common case. 687 var p []runtime.StackRecord 688 n, ok := fetch(nil) 689 for { 690 // Allocate room for a slightly bigger profile, 691 // in case a few more entries have been added 692 // since the call to ThreadProfile. 693 p = make([]runtime.StackRecord, n+10) 694 n, ok = fetch(p) 695 if ok { 696 p = p[0:n] 697 break 698 } 699 // Profile grew; try again. 700 } 701 702 return printCountProfile(w, debug, name, runtimeProfile(p)) 703 } 704 705 type runtimeProfile []runtime.StackRecord 706 707 func (p runtimeProfile) Len() int { return len(p) } 708 func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() } 709 710 var cpu struct { 711 sync.Mutex 712 profiling bool 713 done chan bool 714 } 715 716 // StartCPUProfile enables CPU profiling for the current process. 717 // While profiling, the profile will be buffered and written to w. 718 // StartCPUProfile returns an error if profiling is already enabled. 719 // 720 // On Unix-like systems, StartCPUProfile does not work by default for 721 // Go code built with -buildmode=c-archive or -buildmode=c-shared. 722 // StartCPUProfile relies on the SIGPROF signal, but that signal will 723 // be delivered to the main program's SIGPROF signal handler (if any) 724 // not to the one used by Go. To make it work, call os/signal.Notify 725 // for syscall.SIGPROF, but note that doing so may break any profiling 726 // being done by the main program. 727 func StartCPUProfile(w io.Writer) error { 728 // The runtime routines allow a variable profiling rate, 729 // but in practice operating systems cannot trigger signals 730 // at more than about 500 Hz, and our processing of the 731 // signal is not cheap (mostly getting the stack trace). 732 // 100 Hz is a reasonable choice: it is frequent enough to 733 // produce useful data, rare enough not to bog down the 734 // system, and a nice round number to make it easy to 735 // convert sample counts to seconds. Instead of requiring 736 // each client to specify the frequency, we hard code it. 737 const hz = 100 738 739 cpu.Lock() 740 defer cpu.Unlock() 741 if cpu.done == nil { 742 cpu.done = make(chan bool) 743 } 744 // Double-check. 745 if cpu.profiling { 746 return fmt.Errorf("cpu profiling already in use") 747 } 748 cpu.profiling = true 749 runtime.SetCPUProfileRate(hz) 750 go profileWriter(w) 751 return nil 752 } 753 754 // readProfile, provided by the runtime, returns the next chunk of 755 // binary CPU profiling stack trace data, blocking until data is available. 756 // If profiling is turned off and all the profile data accumulated while it was 757 // on has been returned, readProfile returns eof=true. 758 // The caller must save the returned data and tags before calling readProfile again. 759 func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool) 760 761 func profileWriter(w io.Writer) { 762 b := newProfileBuilder(w) 763 var err error 764 for { 765 time.Sleep(100 * time.Millisecond) 766 data, tags, eof := readProfile() 767 if e := b.addCPUData(data, tags); e != nil && err == nil { 768 err = e 769 } 770 if eof { 771 break 772 } 773 } 774 if err != nil { 775 // The runtime should never produce an invalid or truncated profile. 776 // It drops records that can't fit into its log buffers. 777 panic("runtime/pprof: converting profile: " + err.Error()) 778 } 779 b.build() 780 cpu.done <- true 781 } 782 783 // StopCPUProfile stops the current CPU profile, if any. 784 // StopCPUProfile only returns after all the writes for the 785 // profile have completed. 786 func StopCPUProfile() { 787 cpu.Lock() 788 defer cpu.Unlock() 789 790 if !cpu.profiling { 791 return 792 } 793 cpu.profiling = false 794 runtime.SetCPUProfileRate(0) 795 <-cpu.done 796 } 797 798 // countBlock returns the number of records in the blocking profile. 799 func countBlock() int { 800 n, _ := runtime.BlockProfile(nil) 801 return n 802 } 803 804 // countMutex returns the number of records in the mutex profile. 805 func countMutex() int { 806 n, _ := runtime.MutexProfile(nil) 807 return n 808 } 809 810 // writeBlock writes the current blocking profile to w. 811 func writeBlock(w io.Writer, debug int) error { 812 var p []runtime.BlockProfileRecord 813 n, ok := runtime.BlockProfile(nil) 814 for { 815 p = make([]runtime.BlockProfileRecord, n+50) 816 n, ok = runtime.BlockProfile(p) 817 if ok { 818 p = p[:n] 819 break 820 } 821 } 822 823 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 824 825 if debug <= 0 { 826 return printCountCycleProfile(w, "contentions", "delay", scaleBlockProfile, p) 827 } 828 829 b := bufio.NewWriter(w) 830 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 831 w = tw 832 833 fmt.Fprintf(w, "--- contention:\n") 834 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 835 for i := range p { 836 r := &p[i] 837 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 838 for _, pc := range r.Stack() { 839 fmt.Fprintf(w, " %#x", pc) 840 } 841 fmt.Fprint(w, "\n") 842 if debug > 0 { 843 printStackRecord(w, r.Stack(), true) 844 } 845 } 846 847 if tw != nil { 848 tw.Flush() 849 } 850 return b.Flush() 851 } 852 853 func scaleBlockProfile(cnt int64, ns float64) (int64, float64) { 854 // Do nothing. 855 // The current way of block profile sampling makes it 856 // hard to compute the unsampled number. The legacy block 857 // profile parse doesn't attempt to scale or unsample. 858 return cnt, ns 859 } 860 861 // writeMutex writes the current mutex profile to w. 862 func writeMutex(w io.Writer, debug int) error { 863 // TODO(pjw): too much common code with writeBlock. FIX! 864 var p []runtime.BlockProfileRecord 865 n, ok := runtime.MutexProfile(nil) 866 for { 867 p = make([]runtime.BlockProfileRecord, n+50) 868 n, ok = runtime.MutexProfile(p) 869 if ok { 870 p = p[:n] 871 break 872 } 873 } 874 875 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 876 877 if debug <= 0 { 878 return printCountCycleProfile(w, "contentions", "delay", scaleMutexProfile, p) 879 } 880 881 b := bufio.NewWriter(w) 882 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 883 w = tw 884 885 fmt.Fprintf(w, "--- mutex:\n") 886 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 887 fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1)) 888 for i := range p { 889 r := &p[i] 890 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 891 for _, pc := range r.Stack() { 892 fmt.Fprintf(w, " %#x", pc) 893 } 894 fmt.Fprint(w, "\n") 895 if debug > 0 { 896 printStackRecord(w, r.Stack(), true) 897 } 898 } 899 900 if tw != nil { 901 tw.Flush() 902 } 903 return b.Flush() 904 } 905 906 func scaleMutexProfile(cnt int64, ns float64) (int64, float64) { 907 period := runtime.SetMutexProfileFraction(-1) 908 return cnt * int64(period), ns * float64(period) 909 } 910 911 func runtime_cyclesPerSecond() int64