github.com/code-reading/golang@v0.0.0-20220303082512-ba5bc0e589a3/go/src/image/draw/draw.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package draw provides image composition functions. 6 // 7 // See "The Go image/draw package" for an introduction to this package: 8 // https://golang.org/doc/articles/image_draw.html 9 package draw 10 11 import ( 12 "image" 13 "image/color" 14 "image/internal/imageutil" 15 ) 16 17 // m is the maximum color value returned by image.Color.RGBA. 18 const m = 1<<16 - 1 19 20 // Image is an image.Image with a Set method to change a single pixel. 21 type Image interface { 22 image.Image 23 Set(x, y int, c color.Color) 24 } 25 26 // RGBA64Image extends both the Image and image.RGBA64Image interfaces with a 27 // SetRGBA64 method to change a single pixel. SetRGBA64 is equivalent to 28 // calling Set, but it can avoid allocations from converting concrete color 29 // types to the color.Color interface type. 30 type RGBA64Image interface { 31 image.RGBA64Image 32 Set(x, y int, c color.Color) 33 SetRGBA64(x, y int, c color.RGBA64) 34 } 35 36 // Quantizer produces a palette for an image. 37 type Quantizer interface { 38 // Quantize appends up to cap(p) - len(p) colors to p and returns the 39 // updated palette suitable for converting m to a paletted image. 40 Quantize(p color.Palette, m image.Image) color.Palette 41 } 42 43 // Op is a Porter-Duff compositing operator. 44 type Op int 45 46 const ( 47 // Over specifies ``(src in mask) over dst''. 48 Over Op = iota 49 // Src specifies ``src in mask''. 50 Src 51 ) 52 53 // Draw implements the Drawer interface by calling the Draw function with this 54 // Op. 55 func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) { 56 DrawMask(dst, r, src, sp, nil, image.Point{}, op) 57 } 58 59 // Drawer contains the Draw method. 60 type Drawer interface { 61 // Draw aligns r.Min in dst with sp in src and then replaces the 62 // rectangle r in dst with the result of drawing src on dst. 63 Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) 64 } 65 66 // FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error 67 // diffusion. 68 var FloydSteinberg Drawer = floydSteinberg{} 69 70 type floydSteinberg struct{} 71 72 func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) { 73 clip(dst, &r, src, &sp, nil, nil) 74 if r.Empty() { 75 return 76 } 77 drawPaletted(dst, r, src, sp, true) 78 } 79 80 // clip clips r against each image's bounds (after translating into the 81 // destination image's coordinate space) and shifts the points sp and mp by 82 // the same amount as the change in r.Min. 83 func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) { 84 orig := r.Min 85 *r = r.Intersect(dst.Bounds()) 86 *r = r.Intersect(src.Bounds().Add(orig.Sub(*sp))) 87 if mask != nil { 88 *r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp))) 89 } 90 dx := r.Min.X - orig.X 91 dy := r.Min.Y - orig.Y 92 if dx == 0 && dy == 0 { 93 return 94 } 95 sp.X += dx 96 sp.Y += dy 97 if mp != nil { 98 mp.X += dx 99 mp.Y += dy 100 } 101 } 102 103 func processBackward(dst image.Image, r image.Rectangle, src image.Image, sp image.Point) bool { 104 return dst == src && 105 r.Overlaps(r.Add(sp.Sub(r.Min))) && 106 (sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X)) 107 } 108 109 // Draw calls DrawMask with a nil mask. 110 func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) { 111 DrawMask(dst, r, src, sp, nil, image.Point{}, op) 112 } 113 114 // DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r 115 // in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque. 116 func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) { 117 clip(dst, &r, src, &sp, mask, &mp) 118 if r.Empty() { 119 return 120 } 121 122 // Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation. 123 switch dst0 := dst.(type) { 124 case *image.RGBA: 125 if op == Over { 126 if mask == nil { 127 switch src0 := src.(type) { 128 case *image.Uniform: 129 sr, sg, sb, sa := src0.RGBA() 130 if sa == 0xffff { 131 drawFillSrc(dst0, r, sr, sg, sb, sa) 132 } else { 133 drawFillOver(dst0, r, sr, sg, sb, sa) 134 } 135 return 136 case *image.RGBA: 137 drawCopyOver(dst0, r, src0, sp) 138 return 139 case *image.NRGBA: 140 drawNRGBAOver(dst0, r, src0, sp) 141 return 142 case *image.YCbCr: 143 // An image.YCbCr is always fully opaque, and so if the 144 // mask is nil (i.e. fully opaque) then the op is 145 // effectively always Src. Similarly for image.Gray and 146 // image.CMYK. 147 if imageutil.DrawYCbCr(dst0, r, src0, sp) { 148 return 149 } 150 case *image.Gray: 151 drawGray(dst0, r, src0, sp) 152 return 153 case *image.CMYK: 154 drawCMYK(dst0, r, src0, sp) 155 return 156 } 157 } else if mask0, ok := mask.(*image.Alpha); ok { 158 switch src0 := src.(type) { 159 case *image.Uniform: 160 drawGlyphOver(dst0, r, src0, mask0, mp) 161 return 162 } 163 } 164 } else { 165 if mask == nil { 166 switch src0 := src.(type) { 167 case *image.Uniform: 168 sr, sg, sb, sa := src0.RGBA() 169 drawFillSrc(dst0, r, sr, sg, sb, sa) 170 return 171 case *image.RGBA: 172 drawCopySrc(dst0, r, src0, sp) 173 return 174 case *image.NRGBA: 175 drawNRGBASrc(dst0, r, src0, sp) 176 return 177 case *image.YCbCr: 178 if imageutil.DrawYCbCr(dst0, r, src0, sp) { 179 return 180 } 181 case *image.Gray: 182 drawGray(dst0, r, src0, sp) 183 return 184 case *image.CMYK: 185 drawCMYK(dst0, r, src0, sp) 186 return 187 } 188 } 189 } 190 drawRGBA(dst0, r, src, sp, mask, mp, op) 191 return 192 case *image.Paletted: 193 if op == Src && mask == nil { 194 if src0, ok := src.(*image.Uniform); ok { 195 colorIndex := uint8(dst0.Palette.Index(src0.C)) 196 i0 := dst0.PixOffset(r.Min.X, r.Min.Y) 197 i1 := i0 + r.Dx() 198 for i := i0; i < i1; i++ { 199 dst0.Pix[i] = colorIndex 200 } 201 firstRow := dst0.Pix[i0:i1] 202 for y := r.Min.Y + 1; y < r.Max.Y; y++ { 203 i0 += dst0.Stride 204 i1 += dst0.Stride 205 copy(dst0.Pix[i0:i1], firstRow) 206 } 207 return 208 } else if !processBackward(dst, r, src, sp) { 209 drawPaletted(dst0, r, src, sp, false) 210 return 211 } 212 } 213 } 214 215 x0, x1, dx := r.Min.X, r.Max.X, 1 216 y0, y1, dy := r.Min.Y, r.Max.Y, 1 217 if processBackward(dst, r, src, sp) { 218 x0, x1, dx = x1-1, x0-1, -1 219 y0, y1, dy = y1-1, y0-1, -1 220 } 221 222 var out color.RGBA64 223 sy := sp.Y + y0 - r.Min.Y 224 my := mp.Y + y0 - r.Min.Y 225 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 226 sx := sp.X + x0 - r.Min.X 227 mx := mp.X + x0 - r.Min.X 228 for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx { 229 ma := uint32(m) 230 if mask != nil { 231 _, _, _, ma = mask.At(mx, my).RGBA() 232 } 233 switch { 234 case ma == 0: 235 if op == Over { 236 // No-op. 237 } else { 238 dst.Set(x, y, color.Transparent) 239 } 240 case ma == m && op == Src: 241 dst.Set(x, y, src.At(sx, sy)) 242 default: 243 sr, sg, sb, sa := src.At(sx, sy).RGBA() 244 if op == Over { 245 dr, dg, db, da := dst.At(x, y).RGBA() 246 a := m - (sa * ma / m) 247 out.R = uint16((dr*a + sr*ma) / m) 248 out.G = uint16((dg*a + sg*ma) / m) 249 out.B = uint16((db*a + sb*ma) / m) 250 out.A = uint16((da*a + sa*ma) / m) 251 } else { 252 out.R = uint16(sr * ma / m) 253 out.G = uint16(sg * ma / m) 254 out.B = uint16(sb * ma / m) 255 out.A = uint16(sa * ma / m) 256 } 257 // The third argument is &out instead of out (and out is 258 // declared outside of the inner loop) to avoid the implicit 259 // conversion to color.Color here allocating memory in the 260 // inner loop if sizeof(color.RGBA64) > sizeof(uintptr). 261 dst.Set(x, y, &out) 262 } 263 } 264 } 265 } 266 267 func drawFillOver(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) { 268 // The 0x101 is here for the same reason as in drawRGBA. 269 a := (m - sa) * 0x101 270 i0 := dst.PixOffset(r.Min.X, r.Min.Y) 271 i1 := i0 + r.Dx()*4 272 for y := r.Min.Y; y != r.Max.Y; y++ { 273 for i := i0; i < i1; i += 4 { 274 dr := &dst.Pix[i+0] 275 dg := &dst.Pix[i+1] 276 db := &dst.Pix[i+2] 277 da := &dst.Pix[i+3] 278 279 *dr = uint8((uint32(*dr)*a/m + sr) >> 8) 280 *dg = uint8((uint32(*dg)*a/m + sg) >> 8) 281 *db = uint8((uint32(*db)*a/m + sb) >> 8) 282 *da = uint8((uint32(*da)*a/m + sa) >> 8) 283 } 284 i0 += dst.Stride 285 i1 += dst.Stride 286 } 287 } 288 289 func drawFillSrc(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) { 290 sr8 := uint8(sr >> 8) 291 sg8 := uint8(sg >> 8) 292 sb8 := uint8(sb >> 8) 293 sa8 := uint8(sa >> 8) 294 // The built-in copy function is faster than a straightforward for loop to fill the destination with 295 // the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and 296 // then use the first row as the slice source for the remaining rows. 297 i0 := dst.PixOffset(r.Min.X, r.Min.Y) 298 i1 := i0 + r.Dx()*4 299 for i := i0; i < i1; i += 4 { 300 dst.Pix[i+0] = sr8 301 dst.Pix[i+1] = sg8 302 dst.Pix[i+2] = sb8 303 dst.Pix[i+3] = sa8 304 } 305 firstRow := dst.Pix[i0:i1] 306 for y := r.Min.Y + 1; y < r.Max.Y; y++ { 307 i0 += dst.Stride 308 i1 += dst.Stride 309 copy(dst.Pix[i0:i1], firstRow) 310 } 311 } 312 313 func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) { 314 dx, dy := r.Dx(), r.Dy() 315 d0 := dst.PixOffset(r.Min.X, r.Min.Y) 316 s0 := src.PixOffset(sp.X, sp.Y) 317 var ( 318 ddelta, sdelta int 319 i0, i1, idelta int 320 ) 321 if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X { 322 ddelta = dst.Stride 323 sdelta = src.Stride 324 i0, i1, idelta = 0, dx*4, +4 325 } else { 326 // If the source start point is higher than the destination start point, or equal height but to the left, 327 // then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down. 328 d0 += (dy - 1) * dst.Stride 329 s0 += (dy - 1) * src.Stride 330 ddelta = -dst.Stride 331 sdelta = -src.Stride 332 i0, i1, idelta = (dx-1)*4, -4, -4 333 } 334 for ; dy > 0; dy-- { 335 dpix := dst.Pix[d0:] 336 spix := src.Pix[s0:] 337 for i := i0; i != i1; i += idelta { 338 s := spix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 339 sr := uint32(s[0]) * 0x101 340 sg := uint32(s[1]) * 0x101 341 sb := uint32(s[2]) * 0x101 342 sa := uint32(s[3]) * 0x101 343 344 // The 0x101 is here for the same reason as in drawRGBA. 345 a := (m - sa) * 0x101 346 347 d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 348 d[0] = uint8((uint32(d[0])*a/m + sr) >> 8) 349 d[1] = uint8((uint32(d[1])*a/m + sg) >> 8) 350 d[2] = uint8((uint32(d[2])*a/m + sb) >> 8) 351 d[3] = uint8((uint32(d[3])*a/m + sa) >> 8) 352 } 353 d0 += ddelta 354 s0 += sdelta 355 } 356 } 357 358 func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) { 359 n, dy := 4*r.Dx(), r.Dy() 360 d0 := dst.PixOffset(r.Min.X, r.Min.Y) 361 s0 := src.PixOffset(sp.X, sp.Y) 362 var ddelta, sdelta int 363 if r.Min.Y <= sp.Y { 364 ddelta = dst.Stride 365 sdelta = src.Stride 366 } else { 367 // If the source start point is higher than the destination start 368 // point, then we compose the rows in bottom-up order instead of 369 // top-down. Unlike the drawCopyOver function, we don't have to check 370 // the x coordinates because the built-in copy function can handle 371 // overlapping slices. 372 d0 += (dy - 1) * dst.Stride 373 s0 += (dy - 1) * src.Stride 374 ddelta = -dst.Stride 375 sdelta = -src.Stride 376 } 377 for ; dy > 0; dy-- { 378 copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n]) 379 d0 += ddelta 380 s0 += sdelta 381 } 382 } 383 384 func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) { 385 i0 := (r.Min.X - dst.Rect.Min.X) * 4 386 i1 := (r.Max.X - dst.Rect.Min.X) * 4 387 si0 := (sp.X - src.Rect.Min.X) * 4 388 yMax := r.Max.Y - dst.Rect.Min.Y 389 390 y := r.Min.Y - dst.Rect.Min.Y 391 sy := sp.Y - src.Rect.Min.Y 392 for ; y != yMax; y, sy = y+1, sy+1 { 393 dpix := dst.Pix[y*dst.Stride:] 394 spix := src.Pix[sy*src.Stride:] 395 396 for i, si := i0, si0; i < i1; i, si = i+4, si+4 { 397 // Convert from non-premultiplied color to pre-multiplied color. 398 s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857 399 sa := uint32(s[3]) * 0x101 400 sr := uint32(s[0]) * sa / 0xff 401 sg := uint32(s[1]) * sa / 0xff 402 sb := uint32(s[2]) * sa / 0xff 403 404 d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 405 dr := uint32(d[0]) 406 dg := uint32(d[1]) 407 db := uint32(d[2]) 408 da := uint32(d[3]) 409 410 // The 0x101 is here for the same reason as in drawRGBA. 411 a := (m - sa) * 0x101 412 413 d[0] = uint8((dr*a/m + sr) >> 8) 414 d[1] = uint8((dg*a/m + sg) >> 8) 415 d[2] = uint8((db*a/m + sb) >> 8) 416 d[3] = uint8((da*a/m + sa) >> 8) 417 } 418 } 419 } 420 421 func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) { 422 i0 := (r.Min.X - dst.Rect.Min.X) * 4 423 i1 := (r.Max.X - dst.Rect.Min.X) * 4 424 si0 := (sp.X - src.Rect.Min.X) * 4 425 yMax := r.Max.Y - dst.Rect.Min.Y 426 427 y := r.Min.Y - dst.Rect.Min.Y 428 sy := sp.Y - src.Rect.Min.Y 429 for ; y != yMax; y, sy = y+1, sy+1 { 430 dpix := dst.Pix[y*dst.Stride:] 431 spix := src.Pix[sy*src.Stride:] 432 433 for i, si := i0, si0; i < i1; i, si = i+4, si+4 { 434 // Convert from non-premultiplied color to pre-multiplied color. 435 s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857 436 sa := uint32(s[3]) * 0x101 437 sr := uint32(s[0]) * sa / 0xff 438 sg := uint32(s[1]) * sa / 0xff 439 sb := uint32(s[2]) * sa / 0xff 440 441 d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 442 d[0] = uint8(sr >> 8) 443 d[1] = uint8(sg >> 8) 444 d[2] = uint8(sb >> 8) 445 d[3] = uint8(sa >> 8) 446 } 447 } 448 } 449 450 func drawGray(dst *image.RGBA, r image.Rectangle, src *image.Gray, sp image.Point) { 451 i0 := (r.Min.X - dst.Rect.Min.X) * 4 452 i1 := (r.Max.X - dst.Rect.Min.X) * 4 453 si0 := (sp.X - src.Rect.Min.X) * 1 454 yMax := r.Max.Y - dst.Rect.Min.Y 455 456 y := r.Min.Y - dst.Rect.Min.Y 457 sy := sp.Y - src.Rect.Min.Y 458 for ; y != yMax; y, sy = y+1, sy+1 { 459 dpix := dst.Pix[y*dst.Stride:] 460 spix := src.Pix[sy*src.Stride:] 461 462 for i, si := i0, si0; i < i1; i, si = i+4, si+1 { 463 p := spix[si] 464 d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 465 d[0] = p 466 d[1] = p 467 d[2] = p 468 d[3] = 255 469 } 470 } 471 } 472 473 func drawCMYK(dst *image.RGBA, r image.Rectangle, src *image.CMYK, sp image.Point) { 474 i0 := (r.Min.X - dst.Rect.Min.X) * 4 475 i1 := (r.Max.X - dst.Rect.Min.X) * 4 476 si0 := (sp.X - src.Rect.Min.X) * 4 477 yMax := r.Max.Y - dst.Rect.Min.Y 478 479 y := r.Min.Y - dst.Rect.Min.Y 480 sy := sp.Y - src.Rect.Min.Y 481 for ; y != yMax; y, sy = y+1, sy+1 { 482 dpix := dst.Pix[y*dst.Stride:] 483 spix := src.Pix[sy*src.Stride:] 484 485 for i, si := i0, si0; i < i1; i, si = i+4, si+4 { 486 s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857 487 d := dpix[i : i+4 : i+4] 488 d[0], d[1], d[2] = color.CMYKToRGB(s[0], s[1], s[2], s[3]) 489 d[3] = 255 490 } 491 } 492 } 493 494 func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) { 495 i0 := dst.PixOffset(r.Min.X, r.Min.Y) 496 i1 := i0 + r.Dx()*4 497 mi0 := mask.PixOffset(mp.X, mp.Y) 498 sr, sg, sb, sa := src.RGBA() 499 for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 { 500 for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 { 501 ma := uint32(mask.Pix[mi]) 502 if ma == 0 { 503 continue 504 } 505 ma |= ma << 8 506 507 // The 0x101 is here for the same reason as in drawRGBA. 508 a := (m - (sa * ma / m)) * 0x101 509 510 d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 511 d[0] = uint8((uint32(d[0])*a + sr*ma) / m >> 8) 512 d[1] = uint8((uint32(d[1])*a + sg*ma) / m >> 8) 513 d[2] = uint8((uint32(d[2])*a + sb*ma) / m >> 8) 514 d[3] = uint8((uint32(d[3])*a + sa*ma) / m >> 8) 515 } 516 i0 += dst.Stride 517 i1 += dst.Stride 518 mi0 += mask.Stride 519 } 520 } 521 522 func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) { 523 x0, x1, dx := r.Min.X, r.Max.X, 1 524 y0, y1, dy := r.Min.Y, r.Max.Y, 1 525 if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) { 526 if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X { 527 x0, x1, dx = x1-1, x0-1, -1 528 y0, y1, dy = y1-1, y0-1, -1 529 } 530 } 531 532 sy := sp.Y + y0 - r.Min.Y 533 my := mp.Y + y0 - r.Min.Y 534 sx0 := sp.X + x0 - r.Min.X 535 mx0 := mp.X + x0 - r.Min.X 536 sx1 := sx0 + (x1 - x0) 537 i0 := dst.PixOffset(x0, y0) 538 di := dx * 4 539 for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { 540 for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { 541 ma := uint32(m) 542 if mask != nil { 543 _, _, _, ma = mask.At(mx, my).RGBA() 544 } 545 sr, sg, sb, sa := src.At(sx, sy).RGBA() 546 d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 547 if op == Over { 548 dr := uint32(d[0]) 549 dg := uint32(d[1]) 550 db := uint32(d[2]) 551 da := uint32(d[3]) 552 553 // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. 554 // We work in 16-bit color, and so would normally do: 555 // dr |= dr << 8 556 // and similarly for dg, db and da, but instead we multiply a 557 // (which is a 16-bit color, ranging in [0,65535]) by 0x101. 558 // This yields the same result, but is fewer arithmetic operations. 559 a := (m - (sa * ma / m)) * 0x101 560 561 d[0] = uint8((dr*a + sr*ma) / m >> 8) 562 d[1] = uint8((dg*a + sg*ma) / m >> 8) 563 d[2] = uint8((db*a + sb*ma) / m >> 8) 564 d[3] = uint8((da*a + sa*ma) / m >> 8) 565 566 } else { 567 d[0] = uint8(sr * ma / m >> 8) 568 d[1] = uint8(sg * ma / m >> 8) 569 d[2] = uint8(sb * ma / m >> 8) 570 d[3] = uint8(sa * ma / m >> 8) 571 } 572 } 573 i0 += dy * dst.Stride 574 } 575 } 576 577 // clamp clamps i to the interval [0, 0xffff]. 578 func clamp(i int32) int32 { 579 if i < 0 { 580 return 0 581 } 582 if i > 0xffff { 583 return 0xffff 584 } 585 return i 586 } 587 588 // sqDiff returns the squared-difference of x and y, shifted by 2 so that 589 // adding four of those won't overflow a uint32. 590 // 591 // x and y are both assumed to be in the range [0, 0xffff]. 592 func sqDiff(x, y int32) uint32 { 593 // This is an optimized code relying on the overflow/wrap around 594 // properties of unsigned integers operations guaranteed by the language 595 // spec. See sqDiff from the image/color package for more details. 596 d := uint32(x - y) 597 return (d * d) >> 2 598 } 599 600 func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) { 601 // TODO(nigeltao): handle the case where the dst and src overlap. 602 // Does it even make sense to try and do Floyd-Steinberg whilst 603 // walking the image backward (right-to-left bottom-to-top)? 604 605 // If dst is an *image.Paletted, we have a fast path for dst.Set and 606 // dst.At. The dst.Set equivalent is a batch version of the algorithm 607 // used by color.Palette's Index method in image/color/color.go, plus 608 // optional Floyd-Steinberg error diffusion. 609 palette, pix, stride := [][4]int32(nil), []byte(nil), 0 610 if p, ok := dst.(*image.Paletted); ok { 611 palette = make([][4]int32, len(p.Palette)) 612 for i, col := range p.Palette { 613 r, g, b, a := col.RGBA() 614 palette[i][0] = int32(r) 615 palette[i][1] = int32(g) 616 palette[i][2] = int32(b) 617 palette[i][3] = int32(a) 618 } 619 pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride 620 } 621 622 // quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization 623 // errors that have been propagated to the pixels in the current and next 624 // rows. The +2 simplifies calculation near the edges. 625 var quantErrorCurr, quantErrorNext [][4]int32 626 if floydSteinberg { 627 quantErrorCurr = make([][4]int32, r.Dx()+2) 628 quantErrorNext = make([][4]int32, r.Dx()+2) 629 } 630 pxRGBA := func(x, y int) (r, g, b, a uint32) { return src.At(x, y).RGBA() } 631 // Fast paths for special cases to avoid excessive use of the color.Color 632 // interface which escapes to the heap but need to be discovered for 633 // each pixel on r. See also https://golang.org/issues/15759. 634 switch src0 := src.(type) { 635 case *image.RGBA: 636 pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.RGBAAt(x, y).RGBA() } 637 case *image.NRGBA: 638 pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.NRGBAAt(x, y).RGBA() } 639 case *image.YCbCr: 640 pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.YCbCrAt(x, y).RGBA() } 641 } 642 643 // Loop over each source pixel. 644 out := color.RGBA64{A: 0xffff} 645 for y := 0; y != r.Dy(); y++ { 646 for x := 0; x != r.Dx(); x++ { 647 // er, eg and eb are the pixel's R,G,B values plus the 648 // optional Floyd-Steinberg error. 649 sr, sg, sb, sa := pxRGBA(sp.X+x, sp.Y+y) 650 er, eg, eb, ea := int32(sr), int32(sg), int32(sb), int32(sa) 651 if floydSteinberg { 652 er = clamp(er + quantErrorCurr[x+1][0]/16) 653 eg = clamp(eg + quantErrorCurr[x+1][1]/16) 654 eb = clamp(eb + quantErrorCurr[x+1][2]/16) 655 ea = clamp(ea + quantErrorCurr[x+1][3]/16) 656 } 657 658 if palette != nil { 659 // Find the closest palette color in Euclidean R,G,B,A space: 660 // the one that minimizes sum-squared-difference. 661 // TODO(nigeltao): consider smarter algorithms. 662 bestIndex, bestSum := 0, uint32(1<<32-1) 663 for index, p := range palette { 664 sum := sqDiff(er, p[0]) + sqDiff(eg, p[1]) + sqDiff(eb, p[2]) + sqDiff(ea, p[3]) 665 if sum < bestSum { 666 bestIndex, bestSum = index, sum 667 if sum == 0 { 668 break 669 } 670 } 671 } 672 pix[y*stride+x] = byte(bestIndex) 673 674 if !floydSteinberg { 675 continue 676 } 677 er -= palette[bestIndex][0] 678 eg -= palette[bestIndex][1] 679 eb -= palette[bestIndex][2] 680 ea -= palette[bestIndex][3] 681 682 } else { 683 out.R = uint16(er) 684 out.G = uint16(eg) 685 out.B = uint16(eb) 686 out.A = uint16(ea) 687 // The third argument is &out instead of out (and out is 688 // declared outside of the inner loop) to avoid the implicit 689 // conversion to color.Color here allocating memory in the 690 // inner loop if sizeof(color.RGBA64) > sizeof(uintptr). 691 dst.Set(r.Min.X+x, r.Min.Y+y, &out) 692 693 if !floydSteinberg { 694 continue 695 } 696 sr, sg, sb, sa = dst.At(r.Min.X+x, r.Min.Y+y).RGBA() 697 er -= int32(sr) 698 eg -= int32(sg) 699 eb -= int32(sb) 700 ea -= int32(sa) 701 } 702 703 // Propagate the Floyd-Steinberg quantization error. 704 quantErrorNext[x+0][0] += er * 3 705 quantErrorNext[x+0][1] += eg * 3 706 quantErrorNext[x+0][2] += eb * 3 707 quantErrorNext[x+0][3] += ea * 3 708 quantErrorNext[x+1][0] += er * 5 709 quantErrorNext[x+1][1] += eg * 5 710 quantErrorNext[x+1][2] += eb * 5 711 quantErrorNext[x+1][3] += ea * 5 712 quantErrorNext[x+2][0] += er * 1 713 quantErrorNext[x+2][1] += eg * 1 714 quantErrorNext[x+2][2] += eb * 1 715 quantErrorNext[x+2][3] += ea * 1 716 quantErrorCurr[x+2][0] += er * 7 717 quantErrorCurr[x+2][1] += eg * 7 718 quantErrorCurr[x+2][2] += eb * 7 719 quantErrorCurr[x+2][3] += ea * 7 720 } 721 722 // Recycle the quantization error buffers. 723 if floydSteinberg { 724 quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr 725 for i := range quantErrorNext { 726 quantErrorNext[i] = [4]int32{} 727 } 728 } 729 } 730 }