
Audit of gnark-crypto
Algorand Foundation
20 October 2022
Version: 1.0
Presented by:
Kudelski Security Research Team
Kudelski Security - Nagravision SA
Corporate Headquarters
Route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland
Final

Algorand Foundation | Audit of gnark-crypto20 October 2022
TABLE OF CONTENTS

1 EXECUTIVE SUMMARY 4

1.1 Engagement Scope . 4
1.2 Engagement Analysis . 5
1.3 Issue Summary List . 5

2 TECHNICAL DETAILS OF SECURITY FINDINGS 7

2.1 KS-SBCF-F-01: Missing Karabina decompression function case 7
2.2 KS-SBCF-F-02: Missing batch Torus compression check 8
2.3 KS-SBCF-F-03: BN254 curve has a low security margin 10
2.4 KS-SBCF-F-04: Inversion of 0 element is not detected in field arithmetic . 10
2.5 KS-SBCF-F-05: Batch Jacobian conversion left some element unchanged . 13
2.6 KS-SBCF-F-06: Out-of-bounds access situation 13
2.7 KS-SBCF-F-07: Dependency with security issue 14

3 OTHER OBSERVATIONS 16

3.1 KS-SBCF-O-01: Pairing function does not check the group membership . . 16
3.2 KS-SBCF-O-02: Several TODO comments in the code 17
3.3 KS-SBCF-O-03: Error in comments . 18
3.4 KS-SBCF-O-04: Error handling is not performed in different places across

the code . 19
3.5 KS-SBCF-O-05: Multiple functions across the code are not constant-time . 20
3.6 KS-SBCF-O-06: Multiple possible nil dereferences across the code 26
3.7 KS-SBCF-O-07: Low code coverage of ecc/bls12-381/multiexp.go and

ecc/bls12-381/internal/fptower/e12_pairing.go 28
3.8 KS-SBCF-O-08: Error in test fptower.TestE2ReceiverIsOperand with data

race detector enabled . 29
3.9 KS-SBCF-O-09: The references to the hash-to-curve draft are not updated

to the last version . 30
© 2022 Nagravision SA / All rights reserved.Final Page 2 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
3.10 KS-SBCF-O-10: The function g1SetZ and g1SetZ are commented 31
3.11 KS-SBCF-O-11: The function g1SqrtRatio requires that v is different from 0 32
3.12 KS-SBCF-O-12: Providing a large value for config.NbTasks in the multi-

exponentiation algorithm implementation makes the library panic 33
4 APPENDIX A: ABOUT KUDELSKI SECURITY 36

5 APPENDIX B: METHODOLOGY 37

5.1 Kickoff . 37
5.2 Ramp-up . 37
5.3 Review . 38
5.4 Reporting . 39
5.5 Verify . 40
5.6 Additional Note . 40

6 APPENDIX C: SEVERITY RATING DEFINITIONS 41

REFERENCES 42

© 2022 Nagravision SA / All rights reserved.Final Page 3 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
1 EXECUTIVE SUMMARY

Kudelski Security (“Kudelski”, “we”), the cybersecurity division of the Kudelski Group,
was engaged by Algorand Foundation (“the Client”) to conduct an external security
assessment in the form of a code audit of the cryptographic library gnark-crypto (“the
Product”) developped by the ConsenSys company. The assessment was conducted
remotely by the Kudelski Security Team and coordinated by Antonio De La Piedra,
Sylvain Pelissier and Nathan Hamiel, Head of Cybersecurity Research. The audit took
place from June 27, 2022 to July 20, 2022 and invloved 30 person-days of work. The
audit focused on the following objectives:

• To provide a professional opinion on the maturity, adequacy, and efficiency of
the software solution in examination.

• To identify potential security or interoperability issues and include improvement
recommendations based on the result of our analysis.

This report summarizes the analysis performed and findings. It also contains detailed
descriptions of the discovered vulnerabilities and recommendations for remediation.

1.1 Engagement Scope

The scope of this work is a code audit of the Product written in Go, with a
particular attention to safe implementation of hashing, randomness generation,
protocol verification, and potential for misuse and leakage of secrets. The client has
noted that constant-time analysis of the Product is out of scope of this audit. The
target of the audit was the cryptographic code related to the elliptic curves BLS12-
381 and BN254 at https://github.com/ConsenSys/gnark-crypto. The BN254 curve is
also named alt_bn128 in different context [6]. We audited the commit number:
450e0206211eea38bbb5b5ffddf262efe65bd011 of the repository,
Particular attention was given to the security related to its usage regarding the opcode
implementation in Algorand virtual machine.

© 2022 Nagravision SA / All rights reserved.Final Page 4 of 42

https://github.com/ConsenSys/gnark-crypto

Algorand Foundation | Audit of gnark-crypto20 October 2022
1.2 Engagement Analysis

The engagement consisted of a ramp-up phase where the necessary documentation
about the technological standards and design of the solution in exam was acquired,
followed by a manual inspection of the code provided by the Client and the drafting of
this report.
As a result of our work, we have identified 2 Medium, 5 Low and 12 Informational
findings.

1.3 Issue Summary List

The following security issues were found:
ID Severity Finding Status
KS-SBCF-F-01 Medium Missing Karabina decompression function

case
Acknowledged

KS-SBCF-F-02 Medium Missing batch Torus compression check Acknowledged
KS-SBCF-F-03 Low BN254 curve has a low security margin Acknowledged

© 2022 Nagravision SA / All rights reserved.Final Page 5 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
ID Severity Finding Status
KS-SBCF-F-04 Low Inversion of 0 element is not detected in

field arithmetic
Acknowledged

KS-SBCF-F-05 Low Batch Jacobian conversion left some
element unchanged

Acknowledged

KS-SBCF-F-06 Low Out-of-bounds access situation Acknowledged
KS-SBCF-F-07 Low Dependency with security issue Acknowledged

The following are observations related to general design and improvements:
ID Severity Finding
KS-SBCF-O-01 Informational Pairing function does not check the group

membershipKS-SBCF-O-02 Informational Several TODO comments in the code
KS-SBCF-O-03 Informational Error in comments
KS-SBCF-O-04 Informational Error handling is not performed in different places

across the code
KS-SBCF-O-05 Informational Multiple functions across the code are not

constant-time
KS-SBCF-O-06 Informational Multiple possible nil dereferences across the code
KS-SBCF-O-07 Informational Low code coverage of ecc/bls12-381/multiexp.go

and ecc/bls12-381/internal/fptower/e12_pairing.go
KS-SBCF-O-08 Informational Error in test fptower.TestE2ReceiverIsOperand with

data race detector enabled
KS-SBCF-O-09 Informational The references to the hash-to-curve draft are not

updated to the last version
KS-SBCF-O-10 Informational The function g1SetZ and g1SetZ are commented
KS-SBCF-O-11 Informational The function g1SqrtRatio requires that v is different

from 0
KS-SBCF-O-12 Informational Providing a large value for config.NbTasks in the

multi-exponentiation algorithm implementation
makes the library panic

© 2022 Nagravision SA / All rights reserved.Final Page 6 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
2 TECHNICAL DETAILS OF SECURITY FINDINGS

This section contains the technical details of our findings as well as recommendations
for mitigation.

2.1 KS-SBCF-F-01: Missing Karabina decompression function case

Severity: Medium

Status: Acknowledged

Location:

• ecc/bn254/internal/fptower/e12.go:247
• ecc/bls12-381/internal/fptower/e12.go:247

Description

The Karabina decompression function is used to decompress the cyclotomic square
result. This is used in the final exponentiation step of pairing computations. In the
gnark library, The tower construction is the following:

Fp2 = Fp[u]/(u2 − (9i + 1))

Fp6 = Fp2 [v]/(v3 − u)

Fp12 = Fp6 [w]/(w2 − v)

Thus, elements of F12 are written this way: (h0 + h1v + h2v2) + (h3 + h4v2 + h5v2)w.
For the cyclotomic square in [5] elements are written in this form: (g0 + g1w) +

(g2 + g3w)v + (g4 + g5w)v2. Developing and rearranging the previous form gives:
(h0 + h3w) + (h1 + h4w)v + (h2 + h5w)v2. The decompression function as defined in
the Theorem 3.1 of the previous paper applies the same way. However, a check on the
value of g2 which correspond to h3 in the implementation is needed before the division
to avoid inversion of zero. However this check is not perform in the code:

© 2022 Nagravision SA / All rights reserved.Final Page 7 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

// DecompressKarabina Karabina's cyclotomic square result

func (z *E12) DecompressKarabina(x *E12) *E12 {

var t [3]E2

var one E2

one.SetOne()

// t0 = g1ˆ2

t[0].Square(&x.C0.B1)

// t1 = 3 * g1ˆ2 - 2 * g2

t[1].Sub(&t[0], &x.C0.B2).

Double(&t[1]).

Add(&t[1], &t[0])

// t0 = E * g5ˆ2 + t1

t[2].Square(&x.C1.B2)

t[0].MulByNonResidue(&t[2]).

Add(&t[0], &t[1])

// t1 = 1/(4 * g3)

t[1].Double(&x.C1.B0).

Double(&t[1]).

Inverse(&t[1]) // costly

In the case of h3 = 0 the implementation would do an inversion by zero and return 0.
This ends up in a wrong result of the pairing computation.
Recommendation

All the test cases for decompression should be implemented.
Status Details

Consensys acknowledged the problem and corrected it in PR #219.

2.2 KS-SBCF-F-02: Missing batch Torus compression check

Severity: Medium

© 2022 Nagravision SA / All rights reserved.Final Page 8 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
Status: Acknowledged

Location:

• ecc/bn254/internal/fptower/e12.go:769
• ecc/bls12-381/internal/fptower/e12.go:798

Description

The torus compression as defined in [8] is defined to be f (c0 + c1δ) = 1+c0
c1

. It is not
defined for numbers 1 and -1. In the current implementation if these values are given
as input the compression will compute a wrong value:
// BatchCompressTorus GT/E12 elements to half their size

// using a batch inversion

func BatchCompressTorus(x []E12) ([]E6, error) {

n := len(x)

if n == 0 {

return []E6{}, errors.New("invalid input size")

}

var one E6

one.SetOne()

res := make([]E6, n)

for i := 0; i < n; i++ {

res[i].Set(&x[i].C1)

}

t := BatchInvertE6(res) // costs 1 inverse

for i := 0; i < n; i++ {

res[i].Add(&x[i].C0, &one).

Mul(&res[i], &t[i])

}

© 2022 Nagravision SA / All rights reserved.Final Page 9 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

return res, nil

}

Recommendation

Like for the function CompressTorus a check on each C1 coordinates should be
implemented.

2.3 KS-SBCF-F-03: BN254 curve has a low security margin

Severity: Low

Status: Acknowledged

Location: ecc/bn254/
Description

According to recent development of the tower field sieve algorithm [2], some curve
security are now considered reduced. For BN254 curve the resulting field has size
3072 bits whereas more than 5000 bits is now advised. The security level is now
considered to be 103 bits for this curve [1]. Even though the security of the scheme is
not practically broken this curve should not be used for future implementation. With
a bigger resulting field, BLS12-381 curve seems to have a larger security margin.
Recommendation

The end user should be warned that this curve should be used only for compatibility
results and advised to used other curves with larger security margin.
Status Details

ConsenSys estimated the security of BN254 to 103 bits following [4] and using the
software shipped with that paper https://gitlab.inria.fr/tnfs-alpha/alpha. However this
is the curve used in Ethereum and they implemented it for compatibility reasons.

2.4 KS-SBCF-F-04: Inversion of 0 element is not detected in field
arithmetic

Severity: Low

© 2022 Nagravision SA / All rights reserved.Final Page 10 of 42

https://gitlab.inria.fr/tnfs-alpha/alpha

Algorand Foundation | Audit of gnark-crypto20 October 2022
Status: Acknowledged

Location:

• ecc/bn254/internal/fptower/e2_bn254.go:76
• ecc/bn254/internal/fptower/e2.go:261
• ecc/bn254/internal/fptower/e6.go:245, 284
• ecc/bn254/internal/fptower/e12.go:377, 397, 429
• ecc/bls12-381/internal/fptower/e2_bls381.go:78
• ecc/bls12-381/internal/fptower/e2.go:269
• ecc/bls12-381/internal/fptower/e6.go:245, 292
• ecc/bls12-381/internal/fptower/e12.go:377, 405, 429

An inversion by 0 is not detected in the field arithmetic for the bls-12-381 and bn254
curves. For instance, the test below fails without reporting an inversion by zero instead
it ends up with a wrong result.
properties.Property("[BN254] mul & inverse fails", prop.ForAll(

func(a, b *E2) bool {

var c, d E2

b.SetZero()

d.Inverse(b)

c.Set(a)

c.Mul(&c, b).Mul(&c, &d)

return c.Equal(a)

},

genA,

genB,

))

Since the inversion operations in the tower field extensions F2, F6 and F12 also rely
on successive inversions, and inversion by zero could happen without letting the user
knows. For instance, in the inversion operation of an element in F6, the temporary
variable t6 is inverted:

© 2022 Nagravision SA / All rights reserved.Final Page 11 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

// Inverse an element in E6

func (z *E6) Inverse(x *E6) *E6 {

// Algorithm 17 from https://eprint.iacr.org/2010/354.pdf

// step 9 is wrong in the paper it's t1-t4

var t0, t1, t2, t3, t4, t5, t6, c0, c1, c2, d1, d2 E2

t0.Square(&x.B0)

t1.Square(&x.B1)

t2.Square(&x.B2)

t3.Mul(&x.B0, &x.B1)

t4.Mul(&x.B0, &x.B2)

...

t6.Add(&t6, &d1)

t6.Inverse(&t6)

z.B0.Mul(&c0, &t6)

z.B1.Mul(&c1, &t6)

z.B2.Mul(&c2, &t6)

return z

}

The functions BatchInvertE2, BatchInvertE6, BatchInvertE12 and Exp (used with a
negative exponent) have also the same behavior.
2.4.1 Recommendation

We recommend the client to check if an inversion of 0 is performed and alert the user
about this fact. For example, the ModInverse of the big numbers package the input
value is unchanged and the return value is nil in case the inverse does not exist.
Status Details

ConsenSys acknowledged the behavior and use this is as a convention i.e if the input
equals 0 then the output equals the input.

© 2022 Nagravision SA / All rights reserved.Final Page 12 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
2.5 KS-SBCF-F-05: Batch Jacobian conversion left some element

unchanged

Severity: Low

Status: Acknowledged

Location:

• src/ecc/bn254/g1.go:823
• src/ecc/bls12-381/g1.go:840

Description

The public function BatchJacobianToAffineG1 assumes that the result parameters
contains only zero elements. However, if the parameter was used previously, each
element matching a index corresponding to a point at infinity in the points would be
left unchanged. This would lead to a wrong result.

// batch convert to affine.

parallel.Execute(len(points), func(start, end int) {

for i := start; i < end; i++ {

if zeroes[i] {

// do nothing, X and Y are zeroes in affine.

continue

}

So far in the library the input parameter is always used with an all zero input but this
function is exported by the package thus may be used in the wrong way. In addition,
this function is not tested.
Recommendation

Either zeroize the elements matching a point at infinity or warn the user of the correct
usage.

2.6 KS-SBCF-F-06: Out-of-bounds access situation

Severity: Low

© 2022 Nagravision SA / All rights reserved.Final Page 13 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
Status: Acknowledged

Location:

• ecc/bls12-381/g1.go:819
• ecc/bn254/g1.go:802

In the BatchJacobianToAffineG1 public function, the loop is based on the size of the
input parameter points instead of result. If the result size is not equal to the size of
points, an out-of-bounds (OOB) situation is possible.
func BatchJacobianToAffineG1(points []G1Jac, result []G1Affine) {

zeroes := make([]bool, len(points))

accumulator := fp.One()

// batch invert all points[].Z coordinates with Montgomery batch

inversion trick↪→

// (stores points[].Zˆ-1 in result[i].X to avoid allocating a slice

of fr.Elements)↪→

for i := 0; i < len(points); i++ {

if points[i].Z.IsZero() {

zeroes[i] = true

continue

}

result[i].X = accumulator

Recommendation

For BatchJacobianToAffineG1, we recommend the client to check the length of result
and validate that it has the same length as the points array.

2.7 KS-SBCF-F-07: Dependency with security issue

Severity: Low

Status: Acknowledged

Location: See below
© 2022 Nagravision SA / All rights reserved.Final Page 14 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
Description

The dependency pkg:golang/golang.org/x/text@v0.3.6 contains the following secu-
rity issue: [CVE-2021-38561] CWE-125: Out-of-bounds. See for instance https://bugzilla
.redhat.com/show_bug.cgi?id=CVE-2021-38561.
Recommendation

We recommend the client to update the affected dependency.
Status Details

The Client communicated to us that this is a transitive dependency, pulled by the latest
version of golang.org/x/crypto package. This dependency is used only for blake2b
calls in the twistededwards package. There is no impact on the Algorand scope.

© 2022 Nagravision SA / All rights reserved.Final Page 15 of 42

https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2021-38561
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2021-38561

Algorand Foundation | Audit of gnark-crypto20 October 2022
3 OTHER OBSERVATIONS

This section contains additional observations that are not directly related to the
security of the code, and as such have no severity rating or remediation status
summary. These observations are either minor remarks regarding good practice or
design choices or related to implementation and performance. These items do not
need to be remediated for what concerns security, but where applicable we include
recommendations.

3.1 KS-SBCF-O-01: Pairing function does not check the group
membership

Location:

• ecc/bn254/pairing.go:35
• ecc/bls12-381/pairing.go:34

Description

The function Pairperforming the pairing operation does implement check on the input
P and Q to be in the proper group before executing pairing operations. If the input are
not in the correct groups, the operation could result in totally erroneous output.
func Pair(P []G1Affine, Q []G2Affine) (GT, error) {

f, err := MillerLoop(P, Q)

if err != nil {

return GT{}, err

}

return FinalExponentiation(&f), nil

}

For example, a SetRandom method call on the G1 and G2 type elements (fp.Element,
fptower.E2 respectively) which are exposed publicly doesn’t enforce that the resulting
point is inside the right subgroup. Instead, a call to clear to cofactor is needed to be
sure that the generated random element is in the right subgroup. The client could
clarify this behaviour to avoid misusage.
© 2022 Nagravision SA / All rights reserved.Final Page 16 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
Recommendation

The input element should have been deserialized before usage with the functions
SetByte which check the group membership.
Moreover, in certain occasions it could be useful to have a random element generation
function for both G1, G2 based on the generation of a random seed that is feed into
the HashIntoG1/HashIntoG2 functions.
Notes

Consensys assumes that all the input points are always coming from the SetBytes

function which checks the group membership.

3.2 KS-SBCF-O-02: Several TODO comments in the code

Location: See below
Description

Some comment contains TODO. Some of them concern missing check during
computation for example in src/ecc/bn254/hash_to_g2.go:76:
gx1.Square(&x1) // 11. gx1 = x1²

// TODO : Beware A != 0

//12. gx1 = gx1 + A

gx1.Mul(&gx1, &x1) // 13. gx1 = gx1 * x1

gx1.Add(&gx1, &bTwistCurveCoeff) // 14. gx1 = gx1 + B

gx1NotSquare = gx1.Legendre() >> 1 // 15. e1 = is_square(gx1)

// gx1NotSquare = 0 if gx1 is a square, -1 otherwise

This may indicates a missing case not handle during computation.
Other TODO comments across the code appear at:

• ecc/bls12-381/hash_to_g1.go:185, 207, 217, 353
• ecc/bls12-381/hash_to_g2.go:231, 253, 269, 417
• ecc/bl-12-381/fp/internal/e12.go:467, 506, 507
• ecc/bn254/hash_to_g1.go:39, 61
• ecc/bn254/internal/fptower/e12.go: 467, 506, 507

© 2022 Nagravision SA / All rights reserved.Final Page 17 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
Recommendation

These comments should be addressed and corrected.
Notes

3.3 KS-SBCF-O-03: Error in comments

Location:

• ecc/bn254/internal/fptower/e2.go:173
• ecc/bn254/internal/fptower/e12.go:418, 464, 476
• ecc/bls-12-381/g1.go:339
• ecc/bn254/g1.go:339
• ecc/bn254/g2.go:344
• ecc/bn254/internal/fptower/e2_bn254.go:53

For the F2 and F12 exponentiation functions the comment says:
// Exp sets z=xˆk (mod qˆ2) and returns it

However the exponentiation is computed in F2 and F12.
The comment in line 339 of g1.go appears as:
// FromAffine sets p = Q, p in Jacboian, Q in affine

instead of Jacobian.
Algorihtm 22 of [3] is wrongly referenced in function squareGenericE2:
// squareGenericE2 sets z to the E2-product of x,x returns z

// note: do not rename, this is referenced in the x86 assembly impl

func squareGenericE2(z, x *E2) {

// algo 22 https://eprint.iacr.org/2010/354.pdf

Recommendation

The comment should be corrected.
© 2022 Nagravision SA / All rights reserved.Final Page 18 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
3.4 KS-SBCF-O-04: Error handling is not performed in different

places across the code

Location:

• ecc/bls12-381/multiexp.go:340, 1410
• ecc/bls12-381/fp/element.go:941, 1094
• ecc/bn254/multiexp.go:340, 1410
• ecc/bn254/fp/element.go:803, 952

There are calls to the panic function at several places in the code. For a node running
the code it can create DoS problems is the panic function is triggered. For example,
the function msmInnerG1Jac doesn’t provide error handlings for the parameter c, and
panics when an input value is not known:
func msmInnerG1Jac(p *G1Jac, c int, points []G1Affine, scalars

[]fr.Element, splitFirstChunk bool) {↪→

switch c {

case 4:

[...]

default:

panic("not implemented")

}

Also for instance in the SetStringmethod (element.go):
func (z *Element) SetString(number string) *Element {

// get temporary big int from the pool

vv := bigIntPool.Get().(*big.Int)

if _, ok := vv.SetString(number, 0); !ok {

panic("Element.SetString failed -> can't parse number into a

big.Int " + number)↪→

© 2022 Nagravision SA / All rights reserved.Final Page 19 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

}

z.SetBigInt(vv)

// release object into pool

bigIntPool.Put(vv)

return z

}

Recommendation

We recommend the client to perform error handling when possible instead of a call to
panic.

3.5 KS-SBCF-O-05: Multiple functions across the code are not
constant-time

Location:

• ecc/bls12-381/g2.go:386 and 425
• ecc/bls12-381/fp/element.go:874
• ecc/bls12-381/internal/fptower/e2.go:174
• ecc/bls12-381/internal/fptower/e12.go: 468, 420, and 508
• ecc/bn254/g2.go:402 and 950
• ecc/bn254/fp/element.go:738
• ecc/bn254/internal/fptower/e2.go:174
• ecc/bn254/internal/fptower/e12.go: 468, 420, and 508

Several functions across the code are not constant-time. The windowed scalar multi-
plication G1 method (mulWindowed) computes a 2-bit windowed scalar multiplication,
based on the sometimes, sensitive exponent s:

© 2022 Nagravision SA / All rights reserved.Final Page 20 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

// mulWindowed computes a 2-bits windowed scalar multiplication

func (p *G1Jac) mulWindowed(a *G1Jac, s *big.Int) *G1Jac {

var res G1Jac

var ops [3]G1Jac

res.Set(&g1Infinity)

ops[0].Set(a)

ops[1].Double(&ops[0])

ops[2].Set(&ops[0]).AddAssign(&ops[1])

b := s.Bytes()

for i := range b {

w := b[i]

mask := byte(0xc0)

for j := 0; j < 4; j++ {

res.DoubleAssign().DoubleAssign()

c := (w & mask) >> (6 - 2*j)

if c != 0 {

res.AddAssign(&ops[c-1])

}

mask = mask >> 2

}

}

p.Set(&res)

return p

}

The exponentiation method of Element type relies on square and multiply:
for i := e.BitLen() - 2; i >= 0; i-- {

z.Square(z)

© 2022 Nagravision SA / All rights reserved.Final Page 21 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

if e.Bit(i) == 1 {

z.Mul(z, &x)

}

}

The exponentiation and Sqrtmethods of E2 type:
func (z *E2) Exp(x E2, k *big.Int) *E2 {

if k.IsUint64() && k.Uint64() == 0 {

return z.SetOne()

}

e := k

if k.Sign() == -1 {

// negative k, we invert

x.Inverse(&x)

// we negate k in a temp big.Int since

// Int.Bit(_) of k and -k is different

e = bigIntPool.Get().(*big.Int)

defer bigIntPool.Put(e)

e.Neg(k)

}

z.SetOne()

b := e.Bytes()

for i := 0; i < len(b); i++ {

w := b[i]

for j := 0; j < 8; j++ {

z.Square(z)

if (w & (0b10000000 >> j)) != 0 {

z.Mul(z, &x)

}

}

© 2022 Nagravision SA / All rights reserved.Final Page 22 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

}

return z

}

The exponentiation and the GLV methods for F12:
// uses 2-bits windowed method

func (z *E12) Exp(x E12, k *big.Int) *E12 {

if k.IsUint64() && k.Uint64() == 0 {

return z.SetOne()

}

e := k

if k.Sign() == -1 {

// negative k, we invert

x.Inverse(&x)

// we negate k in a temp big.Int since

// Int.Bit(_) of k and -k is different

e = bigIntPool.Get().(*big.Int)

defer bigIntPool.Put(e)

e.Neg(k)

}

var res E12

var ops [3]E12

res.SetOne()

ops[0].Set(&x)

ops[1].Square(&ops[0])

ops[2].Set(&ops[0]).Mul(&ops[2], &ops[1])

b := e.Bytes()

© 2022 Nagravision SA / All rights reserved.Final Page 23 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

for i := range b {

w := b[i]

mask := byte(0xc0)

for j := 0; j < 4; j++ {

res.Square(&res).Square(&res)

c := (w & mask) >> (6 - 2*j)

if c != 0 {

res.Mul(&res, &ops[c-1])

}

mask = mask >> 2

}

}

z.Set(&res)

return z

}

The cyclotomic exponentiation for F12:
// uses 2-NAF decomposition

// x must be in the cyclotomic subgroup

// TODO : use a windowed method

func (z *E12) CyclotomicExp(x E12, k *big.Int) *E12 {

if k.IsUint64() && k.Uint64() == 0 {

return z.SetOne()

}

e := k

if k.Sign() == -1 {

// negative k, we invert (=conjugate)

x.Conjugate(&x)

// we negate k in a temp big.Int since

© 2022 Nagravision SA / All rights reserved.Final Page 24 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

// Int.Bit(_) of k and -k is different

e = bigIntPool.Get().(*big.Int)

defer bigIntPool.Put(e)

e.Neg(k)

}

var res, xInv E12

xInv.InverseUnitary(&x)

res.SetOne()

eNAF := make([]int8, e.BitLen()+3)

n := ecc.NafDecomposition(e, eNAF[:])

for i := n - 1; i >= 0; i-- {

res.CyclotomicSquare(&res)

if eNAF[i] == 1 {

res.Mul(&res, &x)

} else if eNAF[i] == -1 {

res.Mul(&res, &xInv)

}

}

z.Set(&res)

return z

}

Recommendation

We recommend the client to rely on constant-time implementations when possible.
For example, branch-free point addition and doubling can be performed using the
complete addition law formulas proposed by Renes et al. [7]. More precisely via
Algorithm7 for point addition and via Algorithm9 for point doublingwith an increase in
the number of multiplications (1 multiplication for point addition and 6 multiplications
for doubling).

© 2022 Nagravision SA / All rights reserved.Final Page 25 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
3.6 KS-SBCF-O-06: Multiple possible nil dereferences across the

code

Location:

• Several, see below.
Across the code there is no validation of input arguments against nil, which can make
an implementation relying on gnark panic e.g.
panic: runtime error: invalid memory address or nil pointer dereference

[recovered]↪→

panic: runtime error: invalid memory address or nil pointer

dereference↪→

[signal SIGSEGV: segmentation violation code=0x1 addr=0x20 pc=0x55a500]

In ecc/bls-12-381/:
• g1.go : Set, ScalarMultiplication, Add, Sub, Equal, FromJacobian, Neg,
AddAssign, AddMixed, Double, FromAffine, mulWindowed, phi, mulGLV,
ClearCofactor, FromJacExtended, unsafeFromJacExtended, add, double,
subMixed, addMixed, doubleNegMixed, doubleMixed,
BatchScalarMultiplicationG1.

• g2.go: Set, ScalarMultiplication, Add, Sub, Equal, Neg, FromJacobian,
SubAssign, AddAssign, AddMixed, Double, FromAffine, mulWindowed, psi, phi,
mulGLV, ClearCofactor, fromJacExtended, unsafeFromJacExtended, add,
double, subMixed, addMixed, doubleNegMixed, doubleMixed,
BatchScalarMultiplicationG2.

• hash_to_g1.go: g1IsogenyXNumerator, g1IsogenyXDenominator,
g1IsogenyYNumerator, g1IsogenyYDenominator, g1Isogeny, g1SqrtRatio,
g1MulByZ, mapToCurve, g1EvalPolynomial, g1Sgn0, g1NotZero.

• hash_to_g2.go: g2IsogenyXNumerator, g2IsogenyXDenominator,
g2IsogenyYNumerator, g2IsogenyYDenominator, g2Isogeny, g2SqrtRatio,
g2NotOne, g2MulByZ, mapToCurve2, g2EvalPolynomial, g2Sgn0, g2NotZero.

© 2022 Nagravision SA / All rights reserved.Final Page 26 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
• multiexp.go: msmInnerG1Jac, msmReduceChunkG1Affine, msmInnerG2Jac,
msmReduceChunkG2Affine.

• pairing.go: FinalExponentiation, DoubleStep, AddMixedStep.
• ecc/bls12-381/element.go: Mul, Square, Add, Double, Sub, Neg, Select,
mulGeneric, fromMontGeneric, reduceGeneric, butterFlyGeneric, Exp,
ToBigInt, ToBitIntRegular, Bytes, setBytes, setBigInt, approximate,
linearComb, montReduceSigned, negL, mulWNonModular, linearCombNonModular.

• ecc/bls12-381/internal/fp/tower/e2_adx_amd64.s: Mul, MulByNonResidue,
Square.

• ecc/bls12-381/internal/fp/tower/e2_bls381_fallback.go: MulByNonResidue, Mul,
Square.

• ecc/bls12-381/internal/fp/tower/e2_bls381.go: mulGenericE2, squareGenericE2,
MulByNonResidueInv, Inverse, norm, MulBybTwistCurveCoeff.

• ecc/bls12-381/internal/fp/tower/e2_fallback.go: addE2, subE2, doubleE2, negE2.
• ecc/bls12-381/internal/fp/tower/e2.go: Equal, Set, Add, Sub, Double, Neg,
MulByElement, Conjugate, Exp, Sqrt, Select, Div.

• ecc/bls12-381/internal/fp/tower/e2.go: Equal, Set, Add, Neg, Sub, Double,
MulByNonResidue, MulByE2, MulBy01, MulBy1, Mul, Square, Inverse.

• ecc/bls12-381/internal/fp/tower/e12_pairing.go: ExpHalf, Expt, MulBy014,
Mul014By014.

• ecc/bls12-381/internal/fp/tower/e12.go: Equal, Set, Add, Sub, Double, Square,
CyclotomicSquareCompressed, DecompressKarabina, CyclotomicSquare,
Inverse, Exp, CyclotomicExp, ExpGLV, InverseUnitary, Conjugate,

• ecc/bls12-381/internal/fptower/frobenius.go: Frobenius, FrobeniusSquare,
MulByNonResidue1Power1, MulByNonResidue1Power2, MulByNonResidue1Power3,
MulByNonResidue1Power4, MulByNonResidue1Power5, MulByNonResidue2Power1,
MulByNonResidue2Power2, MulByNonResidue2Power3, MulByNonResidue2Power4,
MulByNonResidue2Power5.

The same applies to the functions related to the BN254 curve.
© 2022 Nagravision SA / All rights reserved.Final Page 27 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
Recommendation

We recommend the client to validate the input parameters against nil in public
functions to avoid crashes in an application that relies on gnark.
Status Details

The client has communicated to us that they assume that the inputs are properly
allocated.

3.7 KS-SBCF-O-07: Lowcode coverageof ecc/bls12-381/multiexp.go
and ecc/bls12-381/internal/fptower/e12_pairing.go

Location:

• ecc/bls12-381/multiexp.go
• ecc/bn254/multiexp.go
• ecc/bls12-381/internal/fptower/e12_pairing.go
• ecc/bn254/internal/fptower/e12_pairing.go

Description

According to:
go test -race -covermode=atomic -coverprofile=cover.out

go tool cover -html=cover.out

Themultiexp_test.go test only covers 38%of themulti-exponentiation implementation
(37.1 % in the BN254 case). Further, e12_pairing.go has a code coverage of only 3.6 %
(3.2 % in the BN254 case).
Recommendation

We recommend the client to increase the amount of testing of both modules as good
practice.
3.7.1 Status Details

The Client communicated to us that e12_pairing.go is tested at the root package in

pairing_test.go.
© 2022 Nagravision SA / All rights reserved.Final Page 28 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
3.8 KS-SBCF-O-08: Error in test fptower.TestE2ReceiverIsOperand

with data race detector enabled

Location:

• ecc/bls12-381/internal/fptower/
• ecc/bn254/internal/fptower/

Description

Via go test -race in bls12-381/internal/fptower and bn254/internal/fptower:
WARNING: DATA RACE

Write at 0x00000083f8c5 by goroutine 32:

fptower.TestE2ReceiverIsOperand()

ecc/bls12-381/internal/fptower/e2_test.go:196 +0x1ba6

testing.tRunner()

/usr/lib/go-1.17/src/testing/testing.go:1259 +0x22f

testing.(*T).Run·dwrap·21()
/usr/lib/go-1.17/src/testing/testing.go:1306 +0x47

Previous read at 0x00000083f8c5 by goroutine 34:

fptower.TestE2Ops()

ecc/bls12-381/internal/fptower/e2_test.go:418 +0x2046

testing.tRunner()

/usr/lib/go-1.17/src/testing/testing.go:1259 +0x22f

testing.(*T).Run·dwrap·21()
/usr/lib/go-1.17/src/testing/testing.go:1306 +0x47

Goroutine 32 (running) created at:

testing.(*T).Run()
/usr/lib/go-1.17/src/testing/testing.go:1306 +0x726

testing.runTests.func1()

/usr/lib/go-1.17/src/testing/testing.go:1598 +0x99

testing.tRunner()

/usr/lib/go-1.17/src/testing/testing.go:1259 +0x22f

© 2022 Nagravision SA / All rights reserved.Final Page 29 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

testing.runTests()

/usr/lib/go-1.17/src/testing/testing.go:1596 +0x7ca

testing.(*M).Run()
/usr/lib/go-1.17/src/testing/testing.go:1504 +0x9d1

main.main()

_testmain.go:115 +0x22b

Goroutine 34 (finished) created at:

testing.(*T).Run()
/usr/lib/go-1.17/src/testing/testing.go:1306 +0x726

testing.runTests.func1()

/usr/lib/go-1.17/src/testing/testing.go:1598 +0x99

testing.tRunner()

/usr/lib/go-1.17/src/testing/testing.go:1259 +0x22f

testing.runTests()

/usr/lib/go-1.17/src/testing/testing.go:1596 +0x7ca

testing.(*M).Run()
/usr/lib/go-1.17/src/testing/testing.go:1504 +0x9d1

main.main()

_testmain.go:115 +0x22b

==================

--- FAIL: TestE2ReceiverIsOperand (0.35s)
e2_test.go:193: disabling ADX

testing.go:1152: race detected during execution of test

FAIL

exit status 1

FAIL github.com/consensys/gnark-crypto/ecc/bls12-381/internal/fptower

1.468s↪→

3.9 KS-SBCF-O-09: The references to the hash-to-curve draft are
not updated to the last version

Location:

© 2022 Nagravision SA / All rights reserved.Final Page 30 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
• ecc/bls12-381/hash_to_g1.go: 136, 187, 323
• ecc/bls12-381/hash_to_g2.go: 136, 233, 378
• ecc/bn254/hash_to_g1.go: 26, 146
• ecc/bn254/hash_to_g2.go: 26, 156

Description

The last version, 16, is located at https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-c
urve/.

3.10 KS-SBCF-O-10: The function g1SetZ and g1SetZ are com-
mented

Location:

• ecc/bls12-381/hash_to_g1.go
• ecc/bls12-381/hash_to_g2.go

Description

The function g1SetZ and g1SetZ are commented:
/*

// g1SetZ sets z to [11].

func g1SetZ(z *fp.Element) {

z.Set(&fp.Element {9830232086645309404, 1112389714365644829,

8603885298299447491, 11361495444721768256, 5788602283869803809,

543934104870762216})

↪→

↪→

}*/

/*

// g2SetZ sets z to [-2, -1].

func g2SetZ(z *fptower.E2) {

z.Set(&fptower.E2 {

A0: fp.Element{9794203289623549276, 7309342082925068282,

1139538881605221074, 15659550692327388916, 16008355200866287827,

582484205531694093},

↪→

↪→

© 2022 Nagravision SA / All rights reserved.Final Page 31 of 42

https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/

Algorand Foundation | Audit of gnark-crypto20 October 2022

A1: fp.Element{4897101644811774638, 3654671041462534141,

569769440802610537, 17053147383018470266, 17227549637287919721,

291242102765847046},

↪→

↪→

})

}*/

3.11 KS-SBCF-O-11: The function g1SqrtRatio requires that v is
different from 0

Status: Acknowledged
Location:

• ecc/bls12-381/hash_to_g1.go:135
Description

According to the hash-to-curve ietf draft, F.2.1.2, the optimized sqrt_ratio for q
congruent with 3 mod 4 requires that v is not zero. This check is not performed the
g1SqrtRatio function:
// g1SqrtRatio computes the square root of u/v and returns 0 iff u/v was

indeed a quadratic residue↪→

// if not, we get sqrt(Z * u / v). Recall that Z is non-residue// The

main idea is that since the computation of the square root involves

taking large powers of u/v, the inversion of v can be avoided

↪→

↪→

func g1SqrtRatio(z *fp.Element, u *fp.Element, v *fp.Element) uint64 {

// Taken from

https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/13/

F.2.1.2. q = 3 mod 4

↪→

↪→

var tv1 fp.Element

tv1.Square(v)

var tv2 fp.Element

tv2.Mul(u, v)

tv1.Mul(&tv1, &tv2)

© 2022 Nagravision SA / All rights reserved.Final Page 32 of 42

https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/

Algorand Foundation | Audit of gnark-crypto20 October 2022

var y1 fp.Element

{

Status Details

The client has communicated to us that they assume that the caller (the SSWU map)
fulfills its side of the contract, that is, providing a non-zero value v.

3.12 KS-SBCF-O-12: Providing a large value for config.NbTasks in
the multi-exponentiation algorithm implementation makes
the library panic

Status: Acknowledged
Location:

• ecc/bls12-381/multiexp.go:176, 87
• ecc/bn254/multiexp.go:176, 87

Description

The configuration for the public function MultiExp, including the nbTasks parameter
is not validated. For a very large value, the library crashes with a panic and an out of
memory error. To reproduce this issue, MultiExp can be called as:
splitted2.MultiExp(samplePointsLarge[:], sampleScalars[:],

ecc.MultiExpConfig{NbTasks: 9999999999999})↪→

producing the following output:
fatal error: runtime: out of memory

runtime stack:

runtime.throw({0x600751, 0x48c273c00000})

© 2022 Nagravision SA / All rights reserved.Final Page 33 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022

/usr/lib/go-1.17/src/runtime/panic.go:1198 +0x71

runtime.sysMap(0xc009400000, 0x428ee0, 0xc001289e90)

/usr/lib/go-1.17/src/runtime/mem_linux.go:169 +0x96

runtime.(*mheap).grow(0x7b2f40, 0x246139ca9)

/usr/lib/go-1.17/src/runtime/mheap.go:1393 +0x225

runtime.(*mheap).allocSpan(0x7b2f40, 0x246139ca9, 0x0, 0x1)

/usr/lib/go-1.17/src/runtime/mheap.go:1179 +0x165

runtime.(*mheap).alloc.func1()
/usr/lib/go-1.17/src/runtime/mheap.go:913 +0x69

runtime.systemstack()

/usr/lib/go-1.17/src/runtime/asm_amd64.s:383 +0x49

goroutine 18 [running]:

runtime.systemstack_switch()

/usr/lib/go-1.17/src/runtime/asm_amd64.s:350 fp=0xc00008ec98

sp=0xc00008ec90 pc=0x461ee0↪→

runtime.(*mheap).alloc(0x7f130a7d45d0, 0x8, 0x1, 0x0)

/usr/lib/go-1.17/src/runtime/mheap.go:907 +0x73 fp=0xc00008ece8

sp=0xc00008ec98 pc=0x425213↪→

runtime.(*mcache).allocLarge(0x53, 0x48c273950058, 0xb4, 0x1)

/usr/lib/go-1.17/src/runtime/mcache.go:227 +0x89 fp=0xc00008ed48

sp=0xc00008ece8 pc=0x415e89↪→

runtime.mallocgc(0x48c273950058, 0x0, 0x1)

/usr/lib/go-1.17/src/runtime/malloc.go:1082 +0x5c5 fp=0xc00008edc8

sp=0xc00008ed48 pc=0x40cbc5↪→

runtime.makechan(0x5, 0x9184e729fff)

/usr/lib/go-1.17/src/runtime/chan.go:101 +0x93 fp=0xc00008ee08

sp=0xc00008edc8 pc=0x404fd3↪→

github.com/consensys/gnark-crypto/ecc/bls12-381.partitionScalars(⌋
{0xc0001e0000, 0x3b5, 0x3b5}, 0x4, 0x0,

0x9184e729fff)

↪→

↪→

© 2022 Nagravision SA / All rights reserved.Final Page 34 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
Recommendation

We recomend the client to either perform input validation of the parameter nbTasks
or limit the number of tasks to avoid a crash in a particular implementation using the
library.

© 2022 Nagravision SA / All rights reserved.Final Page 35 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
4 APPENDIX A: ABOUT KUDELSKI SECURITY

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team
of security experts delivers end-to-end consulting, technology, managed services,
and threat intelligence to help organizations build and run successful security
programs. Our global reach and cyber solutions focus is reinforced by key international
partnerships.
Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com.
Kudelski Security
Route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland
Kudelski Security
5090 North 40th Street
Suite 450
Phoenix, Arizona 85018
This report and its content is copyright (c) Nagravision SA, all rights reserved.

© 2022 Nagravision SA / All rights reserved.Final Page 36 of 42

https://www.kudelskisecurity.com

Algorand Foundation | Audit of gnark-crypto20 October 2022
5 APPENDIX B: METHODOLOGY

For this engagement, Kudelski used a methodology that is described at high-level in
this section. This is broken up into the following phases.

5.1 Kickoff

The project was kicked off when all of the sales activities had been concluded. We set
up a kickoff meeting where project stakeholders were gathered to discuss the project
as well as the responsibilities of participants. During this meeting we verified the scope
of the engagement and discussed the project activities. It was an opportunity for both
sides to ask questions and get to know each other. By the end of the kickoff there was
an understanding of the following:

• Designated points of contact
• Communication methods and frequency
• Shared documentation
• Code and/or any other artifacts necessary for project success
• Follow-up meeting schedule, such as a technical walkthrough
• Understanding of timeline and duration

5.2 Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular
project. This included the steps needed for gaining familiarity with the codebase and
technological innovations utilized, such as:

• Reviewing previous work in the area including academic papers
• Reviewing programming language constructs for the languages used in the code
• Researching common flaws and recent technological advancements

© 2022 Nagravision SA / All rights reserved.Final Page 37 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
5.3 Review

The review phase is where a majority of the work on the engagement was performed.
In this phasewe analyzed the project for flaws and issues that could impact the security
posture. This included an analysis of the architecture, a review of the code, and a
specification matching to match the architecture to the implemented code.
In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol
2. Review of the code written for the project
3. Assessment of the cryptographic primitives used
4. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the
experience of the reviewer. Nodynamic testingwas performed, only the use of custom-
built scripts and tools were used to assist the reviewer during the testing. We discuss
our methodology in more detail in the following subsections.
Code Safety

We analyzed the provided code, checking for issues related to the following categories:
• General code safety and susceptibility to known issues
• Poor coding practices and unsafe behavior
• Leakage of secrets or other sensitive data through memory mismanagement
• Susceptibility to misuse and system errors
• Error management and logging

This is a general and not comprehensive list, meant only to give an understanding of
the issues we have been looking for.
Cryptography

We analyzed the cryptographic primitives and components as well as their implemen-
tation. We checked in particular:

• Matching of the proper cryptographic primitives to the desired cryptographic
functionality needed

© 2022 Nagravision SA / All rights reserved.Final Page 38 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
• Security level of cryptographic primitives and their respective parameters (key
lengths, etc.)

• Safety of the randomness generation in general as well as in the case of failure
• Safety of key management
• Assessment of proper security definitions and compliance to use cases
• Checking for known vulnerabilities in the primitives used

Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the
specification. We checked for things such as:

• Proper implementation of the documented protocol phases
• Proper error handling
• Adherence to the protocol logical description

5.4 Reporting

Kudelski delivered to the Client a preliminary report in PDF format that contained an
executive summary, technical details, and observations about the project, which is also
the general structure of the current final report.
The executive summary contains an overview of the engagement, including the
number of findings as well as a statement about our general risk assessment of the
project as a whole.
In the report we not only point out security issues identified but also informational
findings for improvement categorized into several buckets:

• High
• Medium
• Low
• Informational

The technical details are aimed more at developers, describing the issues, the severity
ranking and recommendations for mitigation.

© 2022 Nagravision SA / All rights reserved.Final Page 39 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
As we performed the audit, we also identified issues that are not security related, but
are general best practices and steps, that can be taken to lower the attack surface of
the project.
As an optional step, we can agree on the creation of a public report that can be shared
and distributed with a larger audience.

5.5 Verify

After the preliminary findings have been delivered, we verified the fixes applied by the
Client. After these fixeswere verified, we updated the status of the finding in the report.
The output of this phasewas the current, final report with anymitigated findings noted.

5.6 Additional Note

It is important to notice that, although we did our best in our analysis, no code
audit assessment is per se guarantee of absence of vulnerabilities. Our effort was
constrained by resource and time limits, along with the scope of the agreement.
In assessing the severity of some of the findings we identified, we kept in mind both
the ease of exploitability and the potential damage caused by an exploit. Since this
is a library, we ranked some of these vulnerabilities potentially higher than usual, as
we expect the code to be reused across different applications with different input
sanitization and parameters.
Correct memory management is left to TypeScript and was therefore not in scope.
Zeroization of secret values from memory is also not enforceable at a low level in a
language such as TypeScript.
While assessment the severity of the findings, we considered the impact, ease of
exploitability, and the probability of attack. This is a solid baseline for severity
determination. Information about the severity ratings can be found in Appendix C
of this document.

© 2022 Nagravision SA / All rights reserved.Final Page 40 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
6 APPENDIX C: SEVERITY RATING DEFINITIONS

Kudelski Security uses a custom approach when determining criticality of identified
issues. This is meant to be simple and fast, providing customers with a quick at a
glance view of the risk an issue poses to the system. As with anything risk related,
these findings are situational. We consider multiple factors when assigning a severity
level to an identified vulnerability. A few of these include:

• Impact of exploitation
• Ease of exploitation
• Likelihood of attack
• Exposure of attack surface
• Number of instances of identified vulnerability
• Availability of tools and exploits

Severity Definition
High The identified issue may be directly exploitable causing an

immediate negative impact on the users, data, and availability of the
system for multiple users.

Medium The identified issue is not directly exploitable but combined with
other vulnerabilities may allow for exploitation of the system or
exploitation may affect singular users. These findings may also
increase in severity in the future as techniques evolve.

Low The identified issue is not directly exploitable but raises the attack
surface of the system. This may be through leaking information that
an attacker can use to increase the accuracy of their attacks.

Informational Informational findings are best practice steps that can be used to
harden the application and improve processes.

© 2022 Nagravision SA / All rights reserved.Final Page 41 of 42

Algorand Foundation | Audit of gnark-crypto20 October 2022
REFERENCES
[1]
Diego F. Aranha, Youssef El Housni, and Aurore Guillevic. 2022. A survey of
elliptic curves for proof systems. Retrieved from https://eprint.iacr.org/2022/586

[2]
Razvan Barbulescu and Sylvain Duquesne. 2017. Updating key size estimations
for pairings. DOI:https://doi.org/10.1007/s00145-018-9280-5
[3]
Jean-Luc Beuchat, Jorge Enrique González Díaz, Shigeo Mitsunari, Eiji Okamoto,
Francisco Rodríguez-Henríquez, and Tadanori Teruya. 2010. High-speed
software implementation of the optimal ate pairing over barreto-naehrig curves.
Retrieved from https://eprint.iacr.org/2010/354

[4]
Aurore Guillevic and Shashank Singh. 2019. On the alpha value of polynomials
in the tower number field sieve algorithm. Retrieved from https://eprint.iacr.org/
2019/885

[5]
Koray Karabina. 2010. Squaring in cyclotomic subgroups. Retrieved from https:
//eprint.iacr.org/2010/542

[6]
Ethereum Improvement Proposals. 2017. EIP-196: Precompiled contracts
for addition and scalar multiplication on the elliptic curve alt_bn128. (2017).
Retrieved from https://eips.ethereum.org/EIPS/eip-196

[7]
Joost Renes, Craig Costello, and Lejla Batina. 2015. Complete addition formulas
for prime order elliptic curves. Retrieved from https://eprint.iacr.org/2015/1060

[8]
Karl Rubin and Alice Silverberg. 2008. Compression in finite fields and
torus-based cryptography. SIAM J. Comput. 37, (January 2008), 1401–1428.
DOI:https://doi.org/10.1137/060676155

© 2022 Nagravision SA / All rights reserved.Final Page 42 of 42

https://eprint.iacr.org/2022/586
https://doi.org/10.1007/s00145-018-9280-5
https://eprint.iacr.org/2010/354
https://eprint.iacr.org/2019/885
https://eprint.iacr.org/2019/885
https://eprint.iacr.org/2010/542
https://eprint.iacr.org/2010/542
https://eips.ethereum.org/EIPS/eip-196
https://eprint.iacr.org/2015/1060
https://doi.org/10.1137/060676155

	EXECUTIVE SUMMARY
	Engagement Scope
	Engagement Analysis
	Issue Summary List

	TECHNICAL DETAILS OF SECURITY FINDINGS
	KS-SBCF-F-01: Missing Karabina decompression function case
	KS-SBCF-F-02: Missing batch Torus compression check
	KS-SBCF-F-03: BN254 curve has a low security margin
	KS-SBCF-F-04: Inversion of 0 element is not detected in field arithmetic
	KS-SBCF-F-05: Batch Jacobian conversion left some element unchanged
	KS-SBCF-F-06: Out-of-bounds access situation
	KS-SBCF-F-07: Dependency with security issue

	OTHER OBSERVATIONS
	KS-SBCF-O-01: Pairing function does not check the group membership
	KS-SBCF-O-02: Several TODO comments in the code
	KS-SBCF-O-03: Error in comments
	KS-SBCF-O-04: Error handling is not performed in different places across the code
	KS-SBCF-O-05: Multiple functions across the code are not constant-time
	KS-SBCF-O-06: Multiple possible nil dereferences across the code
	KS-SBCF-O-07: Low code coverage of ecc/bls12-381/multiexp.go and ecc/bls12-381/internal/fptower/e12_pairing.go
	KS-SBCF-O-08: Error in test fptower.TestE2ReceiverIsOperand with data race detector enabled
	KS-SBCF-O-09: The references to the hash-to-curve draft are not updated to the last version
	KS-SBCF-O-10: The function g1SetZ and g1SetZ are commented
	KS-SBCF-O-11: The function g1SqrtRatio requires that v is different from 0
	KS-SBCF-O-12: Providing a large value for config.NbTasks in the multi-exponentiation algorithm implementation makes the library panic

	APPENDIX A: ABOUT KUDELSKI SECURITY
	APPENDIX B: METHODOLOGY
	Kickoff
	Ramp-up
	Review
	Reporting
	Verify
	Additional Note

	APPENDIX C: SEVERITY RATING DEFINITIONS
	REFERENCES

