Document type Document ID Version Date
Tmesec Report 1.0 April 25, 2017

Created by Reviewed by Classification

Philip Akesson Niclas Adlertz

Go Ethereum
Security Review

Ethereum Foundation (Stiftung Ethereum)

Andreas Hallberg, andreas.hallberg@truesec.se
Philip Akesson, philip.akesson@truesec.se

TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmé

Org.nr. 556919-7311

Document type Document ID Version Date
Tmesec Report 1.0 April 25, 2017

Created by Reviewed by Classification

Philip Akesson Niclas Adlertz

Executive Summary

TrueSec has during April 2017 performed a security review of the Go implementation of Ethereum.
TrueSec found the code to be of high quality and developed with a security-focused mindset. No
critical security vulnerabilities have been found. The most serious vulnerability is an unintentional
default bypass of web browsers’ same-origin policy when enabling the client's RPC HTTP endpoint.
The other issues found do not present direct attack vectors in themselves, and the rest of the report
mainly consists of general comments and recommendations.

TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmo

Org.nr. 556919-7311

Tme sec Docunant ype Document ID Version bate
epor . pril 25,
il Akesson Nitas Adrs cresesten

Contents

f_Purpose and scope 3

2 Document revisions 3

3 Methods 3

4 Results 4

#.1 Peer-to-peer (p2p) and networking 4

1.1 KNOWNISSUES o o vt i e e e e e e e 4

#.1.2 Unnecessarily large memory allocationy 4

#.2 Transaction and block processing. 6

#.2.1 Divide-by-zerorisk 6

#.2.2 Codecomplexityl 6

#.3 IPCandRPCinterfaces 7

#.3.1 CORS: All origins allowed by defaultin the HTTPRPQ 7

#.4 JavaScript Engineand APl 10

#.4.1 Weak seed in pseudo-random number generationf 10

#.5 EVMimplementation 11

#.5.1 Cheap memory consumption by abusing the intPool 11

#.5.2 Fragile protection of negative-valued transactions in mined blocks 11

B.6 Miscellaneous 13

#.6.1 Race condition in miningcodg 13

#.6.2 Many third-party dependencies 13

TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmo

Org.nr. 556919-7311

Document type Document ID Version Date

Report 1.0 April 25, 2017
Created by Reviewed by Classification
Philip Akesson Niclas Adlertz

1 Purpose and scope

TrueSec has during April 2017 at the request of the Ethereum Foundation performed a security
review of Go Ethereumll, the official Go implementation of Ethereum.

The following components were in primary scope:

+ Peer-to-peer communication and networking, block downloading

* RPC interface, Javascript scripting engine

» Transaction and block processing, consensus rules implementation
» Ethereum Virtual Machine (resource exhaustion/Denial-of-Service)

Specifically not in scope:

+ Light client implementation, light client specific syncing (still being implemented)
+ Backend database, leveldb storage, trie implementation

» Account handling, crypto, handling of private keys and wallets

» Swarm (not in production yet)

2 Document revisions

1.0 2017-04-25 Philip Akesson First version of the document

3 Methods

The review has mainly been done by reading the code and forming an understanding of how the
application works. More specifically, TrueSec has:

+ Tried to identify possible bottlenecks that can lead to Denial-of-Service (DoS)

* Verified that data shared between threads is properly protected

» Followed the data flow from external inputs to see if invalid input somehow can lead to
erroneous behavior

» Performed fuzzing of the RLP serialization format (and the EVM bytecode interpreter, with
the existing go-fuzz entry point)

» Automatically searched for race conditions using Go’s built-in "—race” build flag

Dynamic analysis has been performed by running a private Ethereum network with two geth nodes
and one bootnode, and by writing new unit tests as well as modifying existing tests.

"https://ethereum.github.io/go-ethereum/

TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmo

Org.nr. 556919-7311

https://ethereum.github.io/go-ethereum/

Document type Document ID Version Date

Report 1.0 April 25, 2017
Created by Reviewed by Classification
Philip Akesson Niclas Adlertz

4 Results

4.1 Peer-to-peer (p2p) and networking

TrueSec has reviewed the p2p and networking code, focusing on:

» Secure channel establishment - handshake and establishment of shared secrets
» Secure channel properties - confidentiality and integrity

* Message serialization

* Node discovery

* Protection against Denial-of-Service: timeouts and message size limits

TrueSec has also fuzzed the RLP decoding using go-fuzzE without finding any crashes.

4.1.1 Known issues

Although the shared secrets are properly established via the "encryption handshake”, the chan-
nel lacks confidentiality due to a so called "two-time-pad’-flaw in the implementation of the sym-
metric encryption. This is an already known issue (see https://github.com/ethereum/devp2p/
issues/32 and https://github.com/ethereum/go-ethereum/issues/1315). Since the channel
today only transports public blockchain data, the issue has intentionally been left unresolved.

Another known issue is the lack of replay protection on the secure channel level (a defunct time-
based replay protection mechanism was mentioned in conversation with the Ethereum develop-
ers). TrueSec recommends that the next version of the protocol implement replay protection using
message numbers.

4.1.2 Unnecessarily large memory allocations

In r1px.go, TrueSec found two end user controlled memory allocations that are unnecessarily
large. TrueSec has not found a way to exploit them in a Denial-of-Service scenario, but recom-
mends that they be validated more aggressively.

When reading a protocol message, 16.8MB can be allocated:

func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {

fsize := readInt24(headbuf)
// ignore protocol type for now

// read the frame content
var rsize = fsize // frame size rounded up to 16 byte boundary
if padding := fsize % 16; padding > 0 {
rsize += 16 - padding
}
// TRUESEC: user-controlled allocation of 16.8MB:
framebuf := make([]byte, rsize)

Since the maximum message size of the ethereum protocol is 10MB, TrueSec recommends that
the same size limit is applied at this level before consuming the rest of the message.

2https://github.com/dvyukov/go-fuzz/

TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmo

Org.nr. 556919-7311

https://github.com/ethereum/devp2p/issues/32
https://github.com/ethereum/devp2p/issues/32
https://github.com/ethereum/go-ethereum/issues/1315
https://github.com/dvyukov/go-fuzz/

Document type Document ID Version Date
Tmesec Report 1.0 April 25, 2017

Created by Reviewed by Classification

Philip Akesson Niclas Adlertz

During the encryption handshake, it is possible to allocate 65KB for the handshake message:

func readHandshakeMsg(msg plainDecoder, plainSize int,
prv *ecdsa.PrivateKey, r io.Reader) ([lbyte, error) {

// Could be EIP-8 format, try that.
prefix := buf[:2]
size := binary.BigEndian.Uint16(prefix)
if size < uint16(plainSize) {
return buf, fmt.Errorf("size underflow, need at least ...
}
// TRUESEC: user-controlled allocation of 65KB:
buf = append(buf, make([lbyte, size-uintl6(plainSize)+2)...)

Unless handshake message data is expected to actually contain 65KB of data TrueSec recom-
mends that the size is more aggressively checked before consuming the rest of the message.

TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmo

Org.nr. 556919-7311

Document type Document ID Version Date

Report 1.0 April 25, 2017
Created by Reviewed by Classification
Philip Akesson Niclas Adlertz

4.2 Transaction and block processing

TrueSec reviewed the transaction and block downloading and processing parts, focusing on:

+ Denial-of-Service by memory allocation, goroutine leaks and I/O operations
+ Synchronization problems

4.2.1 Divide-by-zero risk

In Go, dividing by zero results in a panic. In downloader.go the method qosReduceConfidence
relies on the caller having ensured that peers is not zero before dividing:

func (d *Downloader) qosReduceConfidence() {
peers := uint64(d.peers.Len())

// TRUESEC: no zero-check of peers here
conf := atomic.LoadUint64(&d.rttConfidence) * (peers - 1) / peers

TrueSec has not found a way of exploiting this to crash the node, but relying on the caller to ensure
that d.peers.Len() is not zero is fragile. TrueSec recommends that all non-constant divisors are
zero-checked immediately before dividing.

4.2.2 Code complexity

TrueSec found the transaction and block processing code to be more complex and harder to read
than the code in the other areas in this audit. Methods tend to be larger than usual, with methods in
fetcher.go, downloader.go and blockchain.go near or above the 200 LOC mark. Synchroniza-
tion is achieved with a sometimes rather involved combination of mutexes and channel messaging.
As an example, the Downloader struct definition (downloader.go) needs 60 LOC with 3 mutexes
and 11 channels.

Code that is hard to read and understand is fertile ground for security issues. The eth package
in particular contains several large methods, structs and interfaces, as well as extensive use of
mutexes and channels. TrueSec recommends that effort is spent refactoring and simplifying the
code to prevent security problems in the future.

TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmo

Org.nr. 556919-7311

Document type Document ID Version Date

Report 1.0 April 25, 2017
Created by Reviewed by Classification
Philip Akesson Niclas Adlertz

4.3 IPC and RPC interfaces

TrueSec reviewed the IPC and RPC (HTTP and WS) interfaces, with a focus on potential access
control issues and ways to escalate privileges from public APIs to private APIs (admin, debug et
cetera).

4.3.1 CORS: All origins allowed by default in the HTTP RPC

The HTTP RPC interface can be enabled by starting geth with -—-rpc. This will start a web server
listening for HTTP requests on port 8545, which can be accessed by anyone with network access.
Because of the potential for exposing this by mistake (for example by connecting to an untrusted
network), only public APIs are available on the HTTP RPC interface by default.

The same-origin policy and default cross-origin resource sharing (CORS) settings restrict web
browser access and limits the possibilities of attacking the RPC API via, for example, cross-
site scripting (XSS). The allowed origins can for example be configured with --rpccorsdomain
"domain", as a comma-separated list -—rpccorsdomain "domainl,domain2", or the special case
--rpccorsdomain "*" which essentially allows all domains full access from standard web browsers.
If not configured, the CORS headers will not be set - and the browser will not allow cross-origin
requests to be made. See Figure {i.

& Cross-0Origin Request Blocked: The Same Origin Policy disallows reading the remote resource
at http://localhost:B8545/. (Reason: CORS header ‘Access-Control-Allow-Origin® missing).

Figure 1: Firefox blocking a cross-origin request due to missing CORS headers

However, this was broken in commit 5e29£4b B (from Apr 12, 2017) - resulting in the RPC being
accessible through web browsers in a way that was not intended, essentially bypassing the same-
origin policy.

The CORS configuration for the HTTP RPC was changed to handle the allowed origins in a string
array - instead of passing it around internally as a single comma-separated string.

Previously, the comma-separated string was split into an array just before instantiating the cors
middleware (see Listing fl). With the default value (when the user has not explicitly configured
anything, for example using --rpccorsdomain) being an empty string, this resulted in a string
array containing an empty string.

After commit 5e29f4b, the default value is instead an empty array which is passed all the way
through to the cors middleware in newCorsHandler (see Listing B).

The cors middleware then checks the length of the allowed origins array (see Listing B). If the
length is zero, as is the case for an empty array, the cors middleware 2 will fall back to its own
default value and allow all origins.

The issue can be shown by running geth --rpc, without specifying any allowed origins, and
checking for the CORS headers with an OPTION request before (Listing M) and after (Listing [B))
commit 5e29f4b. Note the value of Access-Control-Allow-Origin in the second output.

Note that this would have been the case even before the changes, had it not been for the string
splitting resulting in cors not interpreting the input value (an array containing an empty string) as
empty.

The issue can be exploited from a browser with the following JavaScript code, executing from any
domain (even a local filesystem, which will in most cases result in an invalid or nul1l Origin):

3https://github.com/ethereum/go-ethereum/commit/5e29f4be935ff227bbf07a0c6e80e8809f520202
“https://github.com/rs/cors

TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmo

Org.nr. 556919-7311

https://github.com/rs/cors

165

166

167

168

169

170

171

172

173

174

175

176

177

164

165

166

167

168

169

170

171

172

Document type Document ID Version Date
Tmesec Report 1.0 April 25, 2017

Created by Reviewed by Classification

Philip Akesson Niclas Adlertz

var xhr = new XMLHttpRequest();
xhr.open("POST", "http://localhost:8545", true);
xhr.setRequestHeader ("Content-Type", "application/json");
xhr.onreadystatechange = function() {

if (xhr.readyState == XMLHttpRequest.DONE && xhr.status == 200) {

console.log("Modules: " + xhr.responseText);

}

}

xhr.send('{"jsonrpc":"2.0","method": "rpc_modules","params":[],"id":67}"')

TrueSec recommends that the default configuration for CORS is explicitly set as restrictive as
possible (eg. allowed origin set to 1ocalhost, or even no CORS headers at all), instead of relying
on an external dependency to choose a sane (and secure) default configuration.

func newCorsHandler(srv *Server, corsString string) http.Handler {
var allowedOrigins [Jstring
for _, domain := range strings.Split(corsString, ",") {
allowedOrigins = append(allowedOrigins, strings.TrimSpace(domain))

}

¢ := cors.New(cors.Options{
AllowedOrigins: allowedOrigins,
AllowedMethods: []lstring{"POST", "GET"},
MaxAge: 600,
AllowedHeaders: []string{"*"},

b

return c.Handler(srv)

Listing 1: rpc/http.go, before commit 5629f4be935f£227bbf07a0c6e80e8809£5¢0202

func newCorsHandler (srv *Server, allowedOrigins []string) http.Handler {
c := cors.New(cors.Options{
AllowedOrigins: allowedOrigins,
AllowedMethods: []lstring{"POST", "GET"},
MaxAge: 600,
AllowedHeaders: [Istring{"*"},

1))
return c.Handler(srv)
}
Listing 2: rpc/http.go, after commit 5e29£4be935f£227bbf07a0c6e80e8809£5e0202
TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com

SE-211 41 Malmo
Org.nr. 556919-7311

113

114

115

116

17

Document type Document ID Version Date
Tmesec Report 1.0 April 25, 2017

Created by Reviewed by Classification

Philip Akesson Niclas Adlertz

// Allowed Origins

if len(options.AllowedOrigins) == 0 {
// Default is all origins
c.allowedOriginsAll = true

Listing 3: vendor/github.com/rs/cors/cors.go

$ curl -i -X OPTIONS
-H "Access-Control-Request-Method: POST"
-H "Access-Control-Request-Headers: content-type"
-H "Origin: foobar" http://localhost:8545

HTTP/1.1 200 OK

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Date: Tue, 25 Apr 2017 08:49:10 GMT
Content-Length: 0

Content-Type: text/plain; charset=utf-8

Listing 4: CORS headers before commit 5e29f4b

$ curl -i -X OPTIONS
-H "Access-Control-Request-Method: POST"
-H "Access-Control-Request-Headers: content-type"
-H "Origin: foobar" http://localhost:8545
HTTP/1.1 200 OK
Access-Control-Allow-Headers: Content-Type
Access-Control-Allow-Methods: POST
Access-Control-Allow-Origin: foobar
Access-Control-Max-Age: 600
Vary: Origin
Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Date: Tue, 25 Apr 2017 08:47:24 GMT
Content-Length: 0
Content-Type: text/plain; charset=utf-8

Listing 5: CORS headers after commit 5e29f4b

TrueSec SYD AB Phone Fax E-mail Web

Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com

SE-211 41 Malmo
Org.nr. 556919-7311

85

86

87

88

89

90

91

92

93

94

Document type Document ID Version Date

Report 1.0 April 25, 2017
Created by Reviewed by Classification
Philip Akesson Niclas Adlertz

4.4 JavaScript Engine and API

The JavaScript engine ottof is included in Go Ethereum as a CLI scripting interface, a console
REPL to the IPC/RPC interfaces, and as a part of the private debug API. Given the limited exposure
of this code, this was considered a lower priority during the review.

441 Weak seed in pseudo-random number generation

When initializing the pseudo random number generator used in the jsre, the seed falls back
to the current UNIX time if crypto/rand (which returns cryptographically secure pseudorandom
numbers) fails. See listing B. The seed is then used to initialize an instance of math/rand.

This PRNG is not used for anything sensitive internally, and obviously should not be used as a
cryptographically secure RNG, but since it can be used by end-users when running scripts from
the command-line interface it might be safer to fail instead of potentially providing weak seeds.
Getting errors from crypto/rand is likely indicative of other issues as well.

Even with decent seeds, it should also be made very clear in the documentation that this PRNG
is not cryptographically secure.

// randomSource returns a pseudo random value generator.
func randomSource() *rand.Rand {
bytes := make([lbyte, 8)

seed := time.Now() .UnixNano()
if _, err := crand.Read(bytes); err == nil {
seed = int64(binary.LittleEndian.Uint64 (bytes))
}
src := rand.NewSource(seed)

return rand.New(src)

Listing 6: internal/jsre/jsre.go

5 https://github.com/robertkrimen/otto

TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmo

Org.nr. 556919-7311

https://github.com/robertkrimen/otto

Document type Document ID Version Date

Report 1.0 April 25, 2017
Created by Reviewed by Classification
Philip Akesson Niclas Adlertz

4.5 EVM implementation

TrueSec reviewed the Ethereum Virtual Machine (EVM) with focus on Denial-of-Service by abus-
ing memory allocation and 1/0O usage. There was an existing go-fuzz entry point to the EVM
interpreter (runtime/fuzz.go), which appears to have been already used with success. TrueSec
verified its functionality, but found no issues during fuzzing.

4.51 Cheap memory consumption by abusing the intPool

For performance reasons, big integers used during the EVM’s execution are pooled in the intPool
(intpool.go). The pool has no size limit, leading to an unintentionally cheap way of consuming
memory using specific opcode combinations.

For example, the contract code

0 JUMPDEST // 1 gas

1 COINBASE // 2 gas

2 ORIGIN // 2 gas

3 EQ // 3 gas, puts 20 + 20 bytes on the intpool
4 JUMP // 8 gas, puts 4-8 bytes on the intpool

would (if the block gaslimit permitted it, see below) allocate 10GB on the intPool for 3.33e9 gas
(about 3300 USD at the time of writing). The EVM’s intended gas cost for 10GB is 1.95e14 gas
(about 195 million USD).

A DoS-attack by provoking an out-of-memory panic via intPool is prevented by the consensus
rules, restricting the gaslimit growth to 1/1024 per block and having the gaslimit target at 4.7e6 gas.
TrueSec still recommends that the size of the intpool be restricted, should an attacker discover
a more efficient way of populating the intPool or should the gaslimit target increase drastically.

4.5.2 Fragile protection of negative-valued transactions in mined blocks

Transfer of Ether between accounts are done by the method Transfer in core/evm. go:

func Transfer(db vm.StateDB, sender, recipient common.Address, amount *big.Int) {
db.SubBalance(sender, amount)
db.AddBalance(recipient, amount)

The input amount is a pointer to a signed type, potentially having a negative referenced value. A
negative amount would move Ether from the recipient to the sender, effectively letting the sender
steal Ether from the “recipient”.

When receiving an unmined transaction, the transaction’s value is validated to be positive. See
tx_pool.go, validateTx():

if tx.Value().Sign() < 0 {
return ErrNegativeValue

}

During block processing, there is no such explicit validation; transactions with negative values are
prevented only implicitly by the p2p serialization format (RLP) which can not decode negative val-
ues. Considering an evil miner stealing Ether by issuing blocks with negative-valued transactions,
relying on the particular serialization format to provide this protection seems unnecessarily fragile.

TrueSec SYD AB Phone Fax E-mail Web

Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com

SE-211 41 Malmé

Org.nr. 556919-7311

Document type Document ID Version Date
Tmesec Report 1.0 April 25, 2017

Created by Reviewed by Classification

Philip Akesson Niclas Adlertz

TrueSec recommends that explicit validation of the transaction’s value be done also during block
processing. One could also consider enforcing the unsignedness of a transaction’s amount by
using an unsigned type.

TrueSec SYD AB Phone Fax E-mail Web

Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmo
Org.nr. 556919-7311

Document type Document ID Version Date

Report 1.0 April 25, 2017
Created by Reviewed by Classification
Philip Akesson Niclas Adlertz

4.6 Miscellaneous
4.6.1 Race condition in mining code

TrueSec used the "—race” build flag to find race conditions using Go’s built-in race detection feature.
A race condition was discovered in ethash/ethash.go concerning the timestamping of ethash-
datasets used when mining:

func (ethash *Ethash) dataset(block uint64) [Juint32 {
epoch := block / epochLength

// If we have a PoW for that epoch, use that
ethash.lock.Lock()

current.used = time.Now() // TRUESEC: race
ethash.lock.Unlock()

// Wait for generation finish, bump the timestamp and finalize the cache
current.generate (ethash.dagdir, ethash.dagsondisk, ethash.tester)

current.lock.Lock()
current.used = time.Now()
current.lock.Unlock()

To remove the race condition, protect the first setting of current.used with the current.lock
mutex.

TrueSec has not investigated whether the race condition has in fact had any effect on the node’s
mining.

4.6.2 Many third-party dependencies

Go Ethereum depends on seventy one third-party packages (listed using govendor list +vend).

Since each dependency can introduce new attack vectors, and requires time and effort to monitor
for security vulnerabilities, TrueSec always recommends that the number of third-party dependen-
cies be kept at a minimum.

Seventy one dependencies seems like a lot to handle for any project. TrueSec recommends that
the Ethereum developers investigate whether all dependencies are in fact needed, or if some of
them can be replaced by own code.

TrueSec SYD AB Phone Fax E-mail Web
Drottninggatan 38 08-100010 08-100077 info@truesec.se www.truesec.com
SE-211 41 Malmo

Org.nr. 556919-7311

	Purpose and scope
	Document revisions
	Methods
	Results
	Peer-to-peer (p2p) and networking
	Known issues
	Unnecessarily large memory allocations

	Transaction and block processing
	Divide-by-zero risk
	Code complexity

	IPC and RPC interfaces
	CORS: All origins allowed by default in the HTTP RPC

	JavaScript Engine and API
	Weak seed in pseudo-random number generation

	EVM implementation
	Cheap memory consumption by abusing the intPool
	Fragile protection of negative-valued transactions in mined blocks

	Miscellaneous
	Race condition in mining code
	Many third-party dependencies

