
Ethereum Clef Review
Ethereum Foundation
September 14, 2018 – Version 1.0

Prepared for
Martin Swende

Prepared by
David Wong
Eric Schorn

Executive Summary
In the start of September 2018, the Ethereum Foun-
dation contracted NCC Group to perform a review of
the Clef command-line interface. The Clef CLI is a self-
contained account management tool that can also be
used as a “signing server” to auto-approve transactions
and other available methods of an API exposed through
various interfaces. One consultant was tasked to look
for usability and security issues with the tool and its API.
One extra consultant was added to the project at no ex-
tra cost to the Ethereum Foundation. A discord channel
was used to communicate with the development team.
Some medium-risk issues were discovered while a few
observations and recommendations were written up.
No major issues were found.

Scope
Commit 70cfedc9d7bd64f1f112eb2099a5c36266863f4
0 of Clef was audited, the scope included the following
items:

Clef. The Ethereum Foundation has developed a self-
contained tool for account management. It can be used
to create accounts, list them, sign transactions, sign
arbitrary data and recover public keys from signatures.
It can be used as a simple command-line interface (CLI)
or with a graphical user interface (GUI). Requests are
made through an API exposed via an IPC or a JSON-RPC
interface. Clef can also be used with different types of
“backends”, from simple file system wallets to hardware
wallets like the Trezor1 and the Nano Ledger.2

Rules. Clef supports automation of requests handling,
allowing users to develop Javascript functions that will
approve or reject requests to the API based on time,
the Clef state and the request being made. This allows
Clef to run without user-interaction (although it will be
required as a fallback if the functions written fail to
correctly approve or reject requests).

The following items were not included in scope:

Crypto. Clef relies on a couple of cryptographic
primitives which are not part of the standard go library:
keccak256 (a variant of SHA-3) and secp256k1 (for the
ECDSA signature algorithm and recovering public keys
out of such signatures).

Accounts. Clef relies heavily on the accounts package
of go-ethereum for parsing a transaction’s call data via
accounts/abi, for managing accounts via accounts/
keystore and for compatibility with hardware wallets

via accounts/usbwallet. While a full review of
these packages was not in scope, the consultants
have partially reviewed them when relevant to the Clef
application.

BigNumber.js. Javascript rules written for Clef canmake
use of this extra dependency for handling big numbers.
This library is a single file of less than 3000 lines of code
and was not audited as part of this engagement.

Otto. Otto is a Javascript interpreter written in Go used
by Clef to execute the rules written by users. It is quite
an important package with around 40,000 lines of code.
Note that this package is also used in other parts of go-
ethereum.

GUI-based Clef. Clef can be used in conjunction with a
graphical interface. The consultants did not spend time
looking at these applications.

Key Findings
While no major findings were found, a few medium-risk
findings were discovered:

• Lack of Complexity Check for Passphrases. As it
is, Clef does not enforce any minimum-length on
passphrases used to protect private keys. Users are
incentivized not to use a passphrase (length 0) or to
use a weak passphrase (length < 8).

• Denial of Services of Clef’s API. Malformed requests
can crash the application, which could be of temporary
damage to long-lived automated configurations of
Clef.

• Encryption of Clef Backup is Insufficient. Clef uses
a master secret to encrypt several important piece
of information including passphrases that can unlock
Ethereum wallets. This master secret is then stored in
clear on the device running Clef, accessible to users
with enough permissions, to physical breaches on
devices with no disk encryption or to accidental copies
of the file to other locations.

Strategic Recommendations
NCCGroup recommends that the Ethereum Foundation
takes the following points into consideration in order to
increase the security stance of Clef:

• Documentation. Thoroughly document the threat
model of Clef, and list what users need to protect
against in high-stake situations. Ensure that all
examples of rules are up-to-date and secure by default

1https://trezor.io/
2https://www.ledger.com/

2 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/holiman/go-ethereum/tree/70cfedc9d7bd64f1f112eb2099a5c36266863f40/cmd/clef
https://github.com/holiman/go-ethereum/tree/70cfedc9d7bd64f1f112eb2099a5c36266863f40/cmd/clef
https://trezor.io/
https://www.ledger.com/

so that they can be copy/pasted by users.
• External Dependencies. Clef makes use of large
dependencies that could impact the well-functioning
of the program. Otto3 is used as a Javascript inter-
preter to run rules written by users; bignumber.js4 is
used as a Javascript library to handle large numbers.
The Ethereum Foundation should ensure that these
dependencies are up-to-date and have been audited.

• Go-Ethereum Dependencies. The accounts pack-
age is a large piece of go-ethereum that Clef lever-
ages. It handles on-disk encryption and storage of
wallets, communication with hardware wallets, and
contracts’ ABI logic. The crypto package is used
by Clef to handle public-key cryptography logic and
hashing. The Ethereum Foundation should consider
auditing these parts as they are central pieces of the
tool.

3https://github.com/robertkrimen/otto
4https://github.com/MikeMcl/bignumber.js/

3 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/robertkrimen/otto
https://github.com/MikeMcl/bignumber.js/

Dashboard
Target Metadata
Name Clef
Type Command-Line Interface
Platforms Go
Environment Local Instance

Engagement Data
Type Code Review
Method Code-assisted
Dates 2018-09-03 to 2018-09-14
Consultants 1
Level of effort 10 person-days

Targets
Clef github.com/holiman/go-ethereum/blob/clefchanges_2/cmd/clef

Finding Breakdown

Critical Risk issues 0
High Risk issues 0
Medium Risk issues 4
Low Risk issues 8
Informational issues 1
Total issues 13

Category Breakdown
Authentication 2
Configuration 2
Cryptography 3
Data Validation 4
Denial of Service 1
Patching 1

Component Breakdown
keystore 1

Key
Critical High Medium Low Informational

4 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/holiman/go-ethereum/blob/clefchanges_2/cmd/clef/

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 24.

Title ID Risk
Encryption of Clef Backup is Insufficient 002 Medium
Lack of Password Strength Check 005 Medium
Validation Of Transaction Data Field Fails Open 007 Medium
Denial of Service Through Incorrect Method Selector 010 Medium
Incorrect File Permissions For secrets.dat 001 Low
Encrypted Values From Key-Value Encrypted Storage Are Swappable 003 Low
Lack of Guidance on Exposed Clef API 004 Low
ECRecover Does Not Authenticate The Recovered Public Key 009 Low
Outdated Dependencies 011 Low
Rules Dangerously Rely On Time And State 012 Low
Denial of Service Through Malformed Import Key 013 Low
Encrypted KeyStore Integrity Check Is Incomplete 014 Low
UI Mixes Extraneous and Approval-Specific Data 006 Informational

5 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

Finding Details
Finding Encryption of Clef Backup is Insufficient

Risk Medium Impact: High, Exploitability: Low

Identifier NCC-EF-Clef-002

Category Authentication

Location • cmd/clef/main.go:initializeSecrets()

Impact An attacker able to compromise a user’s device has full access to Clef’s encrypted back up.

Description Clef stores a number of files on disk, such as credentials.json containing account cre-
dentials and config.json containing the JavaScript rule-file hashes, in order to be able to
recover from a restart. These files are encrypted by keys derived from a single seed which is
stored in cleartext on disk in the secrets.dat file.

An attacker able to access secrets.dat and credentials.json would have full and un-
restricted access to accounts and their value. Because of this, a device not protected with
disk encryption that gets physically breached would leak all information stored under Clef’s
encrypted backup. A running device that gets remotely breached would also compromise
a dormant Clef application, irrespective of disk encryption. Furthermore, an accidental non-
encrypted copy or backup of these files to a different location could compromise a user’s
accounts.

Recommendation Enforce usage of a passphrase to start the Clef command-line interface. Leverage the same
passphrasemechanisms as in go-ethereum/accounts/keystore to protect the secrets.dat
file.

6 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

Finding Lack of Password Strength Check

Risk Medium Impact: Medium, Exploitability: Low

Identifier NCC-EF-Clef-005

Category Authentication

Location • signer/core/api.go:New()

Impact An attacker may guess insecure user passwords or brute-force weak user passwords in the
event of a breach. This would allow the attacker to retrieve private keys of the user’s Ethereum
accounts.

Description The Clef CLI can be used to create and manage Ethereum externally owned accounts. The
account creation process can be started by sending the following RPC request to Clef (if run
with the --rpc option):

curl -H "Content-Type: application/json" -X POST --data '{"jsonrpc":"2.0","metho
d":"account_new","params":["test"],"id":67}' localhost:8550

The user running the Clef process is then prompted to enter a password which is used to
protect the account’s private key. At this point the user can enter an arbitrary-length pass-
word (empty passwords are also accepted). This would facilitate recovery of the accounts’s
private keys to attackers physically or remotely breaching the device where Clef is installed.

Recommendation Enforce a minimum password length. The NIST organization has published documents5
about the topic, recommending to set aminimum-length of 8 characters for such passwords.
Additionally, check for known bad passwords. Various lists of known bad passwords like the
NBP6 exist.

Client Response Clef now enforce passwords of 10 characters at a minimum: github.com/holiman/go-ethere
um/commit/193f7049719a2da9018027853d0c2237cdad602b
5https://pages.nist.gov/800-63-3/
6NIST Bad Passwords:https://cry.github.io/nbp/

7 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/holiman/go-ethereum/commit/193f7049719a2da9018027853d0c2237cdad602b
https://github.com/holiman/go-ethereum/commit/193f7049719a2da9018027853d0c2237cdad602b
https://pages.nist.gov/800-63-3/
https://cry.github.io/nbp/

Finding Validation Of Transaction Data Field Fails Open

Risk Medium Impact: High, Exploitability: Low

Identifier NCC-EF-Clef-007

Category Data Validation

Location • signer/core/{abihelper,validation}.go

Impact A maliciously crafted data field could allow an attacker to deceive the signer’s intent.

Description When receiving a request to sign a transaction, Clef first attempts to perform a few validation
checks before passing the request to the user. If a special argument is passed to the request
(a method’s signature) the program also attempts to match it against the data field. In that
case, the data field must be composed of a 4-byte identifier for the function called (which is
the hash of the method’s signature truncated to 4 bytes) and a multiple of 32 bytes:

func parseCallData(calldata []byte, abidata string) (*decodedCallData, error) {
if len(calldata) < 4 {

return nil, fmt.Errorf("Invalid ABI-data, incomplete method sign
ature of (%d bytes)", len(calldata))

}
sigdata, argdata := calldata[:4], calldata[4:]
if len(argdata)%32 != 0 {

return nil, fmt.Errorf("Not ABI-encoded data; length should be a
multiple of 32 (was %d)", len(argdata))

}

This check is not enforced if no method signature is passed as argument in the request to
Clef. This is because method signatures are not an Ethereum Virtual Machine feature but a
Solidity-specific feature. If the check fails, Clef still end up passing the request to the user
with a warning:

info, err = testSelector(*methodSelector, data)
if err != nil {

msgs.warn(fmt.Sprintf("Tx contains data, but provided ABI signature coul
d not be matched: %v", err))

}

Since users of the Clef CLI are not expected to always pass a method signature, or to un-
derstand the warning associated to a failed ABI signature check, the behavior of Clef might
incentivize users to click through them (this is called alert fatigue). Because of this, malicious
DAPPs could attempt short address attacks7 or other yet unknown attacks where transac-
tions’ calldata is malformed.

Recommendation In the cases where a method signature is passed, the data field format should always be
enforced to be of length 4 + k × 32 with k ≥ 0. If this is not the case, Clef should not pass
the request to the end user. In the cases where a method signature is not passed and the
data field is not empty, its format should still be checked against the previously discussed
encoding. If it does not validate, Clef should reject the transaction (unless configured to
lighten its validations or with a whitelist of relaxed contract addresses). Alternatively, if non-
standard transactions need default support, the user should be warned that the transaction
data field is not standard.
7https://www.dasp.co/#item-9

8 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://www.dasp.co/#item-9

Client Response Validations that return warnings are now rejecting transactions by default, a new “advanced”
mode was added to bypass this behavior: github.com/holiman/go-ethereum/commit/193f7
049719a2da9018027853d0c2237cdad602b

9 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/holiman/go-ethereum/commit/193f7049719a2da9018027853d0c2237cdad602b
https://github.com/holiman/go-ethereum/commit/193f7049719a2da9018027853d0c2237cdad602b

Finding Denial of Service Through Incorrect Method Selector

Risk Medium Impact: Low, Exploitability: Low

Identifier NCC-EF-Clef-010

Category Data Validation

Location • signer/core/abihelper.go:parseCallData()
• accounts/abi/abi.go:JSON()

Impact An attacker with access to Clef’s API can crash the application.

Description In some use-cases Clef is used to run continuously, accepting requests and accepting them
based on rules written by the user. In such cases, a crash could prevent legitimate transac-
tions to be processed until the application is restarted.

The account_signTransaction API handles transaction signing requests. In order to pro-
vide useful information to the user, the endpoint making the request can provide themethod
signature of the function being called (in cases where the transaction would result in a con-
tract execution). If this method signature is malformed, Clef crashes. Currently a single regex
is used to validate this user input:

// MethodSelectorToAbi converts a method selector into an ABI struct. The return
ed data is a valid json string

// which can be consumed by the standard abi package.
func MethodSelectorToAbi(selector string) ([]byte, error) {

re := regexp.MustCompile(`^([^\)]+)\(([a-z0-9,\[\]]*)\)`)
groups := re.FindStringSubmatch(selector)

While the regex is expected to validate typical function signatures:

functionName(uint256, string, address)

It is too liberal, using a blacklist instead of a whitelist. This overly-accepting policy permits the
following kind of user inputs:

• functionName can be anything but \ and)
• arguments can be alphanumeric strings and contain [and] but do not have to enforce
syntactically correct brackets

• argument list can end and start with ,
• the end of the function signature can contain anything

This mean that the following function signatures are valid according to the current checks:

call(a,a],bbbb932[,)
#@#((@$!(uint256) anything

Reproduction Steps Run the following in the terminal with a Clef process exposing an RPC interface on local-
host:8550 and observe that the Clef application crashes.

10 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

curl -i -H "Content-Type: application/json" -X POST --data '{"jsonrpc":"2.0","me
thod":"account_signTransaction","params":[{"from":"0x82A2A876D39022B3019932D
30Cd9c97ad5616813","gas":"0x333","gasPrice":"0x123","nonce":"0x0","to":"0x07
a565b7ed7d7a678680a4c162885bedbb695fe0", "value":"0x10", "data":"0x4401a6e40
00012"}, "func(uin
t256,uint256,[]uint256)"],"id":67}' http://localhost:8550/

The following method signatures all make the application crash:

func(uint256,uint256,[]uint256)
func(uint256,uint256,uint256,)
func(,uint256,uint256,uint256)

Recommendation In order to address this issue:

1. Investigate the JSON decoder of the abi package to find the root cause of the error.
2. Further validate the received method signature before attempting to operate on it.

Client Response APull Request was introduced to fix the bug: github.com/ethereum/go-ethereum/pull/17653

11 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/ethereum/go-ethereum/pull/17653

Finding Incorrect File Permissions For secrets.dat

Risk Low Impact: High, Exploitability: Low

Identifier NCC-EF-Clef-001

Category Configuration

Location • Permissions set in initializeSecrets() on line 228 of cmd/clef/main.go
• Permissions checked in checkFile() on line 550 of cmd/clef/main.go

Impact The master seed may be deleted or overwritten resulting in the loss of access to account
credentials and JavaScript rule-file hashes.

Description The secrets.dat file contains the master seed, which is required to be able to store and
retrieve account credentials and JavaScript rule-file hashes. In practice, this central file is
written once, contains the critical root secret stored in the clear, and must be maximally
protected.

Master seed generation and storage is the primary purpose of the initializeSecrets()
function in cmd/clef/main.go. The seed is written to disk on line 228 with file permissions
set to 700. This corresponds to full permissions for the owner – read, write and execute. As
a result, the owner may easily delete or overwrite this file resulting in loss of access to the
storage mentioned above. In principle, the owner may also attempt to execute this file.

The primary purpose of the checkFile() function in cmd/clef/main.go is to check the file
permissions of the secrets.dat file. On line 550, the file permissions are read, logically
‘ANDed’ with 077 and compared to 0 - with any result other than 0 being an error. This is
consistent with verifying the storage permissions set in initializeSecrets() as described
above.

For secrets.dat, the write permission should not be set by default and the execution per-
mission is also inappropriate. The handling of the secrets.dat file is analogous to handling
SSH keys.8

Separately, note that the file permissions for the account credentials stored in credentials.json
and the JavaScript rule-file hashes stored in config.json are currently set to 600 by the w
riteEncryptedStorage function in signer/storageaes_gcm_storage.go. This is consid-
ered appropriate due to the read/write nature of the key-value storage and the fact that the
contents are always encrypted by the root secret.

Recommendation The file permissions for secrets.dat should be set to 400 (instead of 700) in initializeS-
ecrets(). The file permissions for secrets.dat should be ‘ANDed’ with 377 (instead of 077)
in checkFile() to maintain consistency.
8https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html#troublesho
ot-unprotected-key

12 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html#troubleshoot-unprotected-key
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html#troubleshoot-unprotected-key

Finding Encrypted Values From Key-Value Encrypted Storage Are Swappable

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-EF-Clef-003

Category Cryptography

Location • signer/storage/aes_gcm_storage.go

Impact An attacker with permissions to the encrypted backup files of Clef could swap around the
encrypted passwords for the user’s keystores. This could allow weak attacks (like confirming
if different keys are protected by the same passphrase), or yet unknown complex attacks
depending on the rules in use by Clef.

Description The Clef command-line interface stores the following data on disk, in an encrypted form, in
order to facilitate recovery after restarts of the application:

• passwords for keystores (used by rule engine)
• storage for javascript rules
• hash of rule-file

The storage and encryption is done via a key-value store where only the values are encrypted
via AES-GCM:

// Put stores a value by key. 0-length keys results in no-op
func (s *AESEncryptedStorage) Put(key, value string) {

// ...
ciphertext, iv, err := encrypt(s.key, []byte(value))
// ...
encrypted := storedCredential{Iv: iv, CipherText: ciphertext}
data[key] = encrypted
// ...

}

The key-values are then encoded in the JSON format and saved on disk as can be seen in the
following example:

{
"key1": {
"iv": "IQZYrnH0YjbcLmBD",
"c": "oP2S7Li+YYPt2vQcfDgUlc/QaIk="

},
"key2": {
"iv": "OVilp+zm+OvgH7Vm",
"c": "DP7kmTyJR89nTMb1mfRPokIYRpg="

}
}

An attacker with the correct permissions to these files can tamper them to swap around the
values of key1 and key2 such that when key1 is retrieved from storage, the value associated
to key2 is obtained.

Recommendation Include the key part of the key-value in the additionalData field of the Seal() and Open()
functions. See the cipher package9 for more information.

Client Response the key part of the key-value was added as additional data to AES-GCM: github.com/holiman
9https://golang.org/pkg/crypto/cipher/

13 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/holiman/go-ethereum/commit/913f77ca8c5c08749b9d668adeb1ab02bbc30663
https://github.com/holiman/go-ethereum/commit/913f77ca8c5c08749b9d668adeb1ab02bbc30663

/go-ethereum/commit/913f77ca8c5c08749b9d668adeb1ab02bbc30663

14 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

Finding Lack of Guidance on Exposed Clef API

Risk Low Impact: Low, Exploitability: Undetermined

Identifier NCC-EF-Clef-004

Category Denial of Service

Location • cmd/clef/main.go

Impact An attacker with access to the Clef API can quickly spam the interface and render it useless,
forcing the user to restart the application in order to process legitimate requests.

Description An attacker who has access to the public API of Clef (through an RPC interface exposed to
the internet for example) can quickly spam the process with requests that will need to be
manually handled, in order, by the end user.

If such an attack is performed, the end user will be incapable of going on with normal oper-
ations without restarting the process.

In addition, requests done over Ethereum’s RPC protocol are not encrypted. While most of
the API requests and responsesmight eventually be published on the Ethereum network, the
“account_sign” method (aimed at signing arbitrary data for different purposes) might require
secrecy.

Reproduction Steps Run the followingbash script with a Clef process exposing anRPC interface on localhost:8550
and observe that the Clef user now has to accept requests one by one.

for i in {1..100}

do curl --no-buffer -H "Content-Type: application/json" -X POST --data '{"jsonrp
c":"2.0","method":"account_new","params":["test"],"id":67}' localhost:8550 &

done
kill $(jobs -p)

Recommendation Add ways to encrypt the connection (via TLS) and to authenticate clients to the Clef API.

Alternatively, delegate these tasks to a lower-layer protocol or a fronting proxy, but add
documentation to warn users against the dangers of exposing Clef’s API outside of their
own machine.

15 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

Finding ECRecover Does Not Authenticate The Recovered Public Key

Risk Low Impact: Undetermined, Exploitability: Undetermined

Identifier NCC-EF-Clef-009

Category Cryptography

Location • signer/core/api.go

Impact Depending on the usage of this request, signatures could be tampered with in order to
recover the wrong public key.

Description The Clef API exposes an EcRecover method that allows to recover an Ethereum public-
key from a signed message. The method implements algorithm 4.1.6 (Public Key Recovery
Operation) from the Standards for Efficient Cryptography Group document on Elliptic Curve
Cryptography.10

As noted by the algorithm’s specification, several public keys can be recovered from a signa-
ture. This is due to the ECDSA signature algorithm removing some information from the r
value of a signature: only the x-coordinate is retained (2 solutions can be recovered for the
y-coordinate) and it is further reduced modulo the order of the elliptic curve. In the case of
Ethereum, secp256k1 is used which has a curve order slightly lower than the field modulus,
so indeed information is lost. The curve uses a cofactor of 1, so the number of possible
solutions to the algorithm are 2× (1 + 1) = 4.

In order for the recovery algorithm to recover the correct solution, a v byte is added at the
end of every Ethereum signature. Its least significant bit contains the sign of the y-coordinate
of the r value and the rest of the bits contain information to re-compute the x-coordinate of
the r value.

Since these bits can be tampered with, an attacker could in some cases deceive the algorithm
by leading it to a wrong public key.

Recommendation In order to verify the recovered key, Clef needs to:

1. Verify that the key can be used to verify the signature passed in the request. This is step
1.6.2 of the SEC algorithm which is not implemented by Clef.

2. Match the recovered public key against an Ethereum address or another authentication
mechanism.

To protect against these attacks, the API of Clef needs to be changed to accept an extra
“authentication” argument.

Client Response The ECRecover method was removed from Clef’s API: github.com/holiman/go-ethereum/co
mmit/cf3bf1724e58cc85ec87cb39a0aee0cb246c472e
10SEC 1: Elliptic Curve Cryptography version 2.0

16 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/holiman/go-ethereum/commit/cf3bf1724e58cc85ec87cb39a0aee0cb246c472e
https://github.com/holiman/go-ethereum/commit/cf3bf1724e58cc85ec87cb39a0aee0cb246c472e
http://www.secg.org/sec1-v2.pdf

Finding Outdated Dependencies

Risk Low Impact: Undetermined, Exploitability: Undetermined

Identifier NCC-EF-Clef-011

Category Patching

Location • signer/rules/deps/bignumber.js found at
– https://github.com/holiman/go-ethereum/blob/clefchanges_2/signer/rules/deps
– https://github.com/ethereum/go-ethereum/blob/master/signer/rules/deps

• vendor/vendor.json found at
– https://github.com/holiman/go-ethereum/blob/clefchanges_2/vendor
– https://github.com/ethereum/go-ethereum/blob/master/vendor

Impact Outdated dependencies may expose the application to publicly discovered vulnerabilities.

Description Many of the largest breaches to date have relied on exploiting known vulnerabilities in out-
dated components. The Clef and Go-ethereum code repositories draw from many outdated
components, albeit without currently well-known vulnerabilities. The risk is proportional to
component functional and data sensitivity, development activity and quality, popularity, and
length of time between project dependency updates. The OWASP project lists this risk on the
Ten Most Critical Web Application Security Risks11 due to the widespread prevalence of this
issue.

The signer/rules/rules.go code utilizes signer/rules/deps/bindata.go to essentially
load the ‘bignumber.js’ library for arbitrary-precision decimal and non-decimal arithmetic.
The source of this library is signer/rules/deps/bignumber.js which is version 2.0.3. The
changelog for this project12 indicates that this version was released in February 2015, and
that the most recent version is 7.2.1. NCC Group is not aware of any publicly known vulnera-
bilities in this library.

The vendor/vendor.json file lists approximately 154 Golang dependencies with revision
timestamps ranging from early 2015 to August 2018. The majority of these are out of date
and can be updated. For example, there seven components sourced from a UPnP client
library for Go repository at https://github.com/huin/goupnpwith a commit hash of 6795
07af18f3c7ba2bcc7905392ce23e148661c3made on December 2016 which is 11 commits
out of date.

Recommendation Update the project dependencies to the most recent and stable versions recommended for
production deployment. Include a regular review of dependency freshness as part of the
development process.
11https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
12https://github.com/MikeMcl/bignumber.js/blob/master/CHANGELOG.md

17 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/holiman/go-ethereum/blob/clefchanges_2/signer/rules/deps
https://github.com/ethereum/go-ethereum/blob/master/signer/rules/deps
https://github.com/holiman/go-ethereum/blob/clefchanges_2/vendor
https://github.com/ethereum/go-ethereum/blob/master/vendor
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://github.com/MikeMcl/bignumber.js/blob/master/CHANGELOG.md

Finding Rules Dangerously Rely On Time And State

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-EF-Clef-012

Category Configuration

Location • cmd/clef/rules.md

Impact Attacks exist to alter Clef’s state and access to time. If successfully mounted, they would allow
an attacker to either revert the state used by Clef’s rule or alter the time as seen and used by
Clef. This could ultimately allow an attacker that has access to the Clef interface to remove
some limitations imposed by its rules.

Description Clef allow users to write rules (in javascript) in order to automate handling of the requests
to Clef. Several examples are given in the documentation,13 the first one being a time rule
limiting howmuch ether can be sent over a windowof 1week. For this, the javascript run-time
environment relies on the time given by the system:

var windowstart = new Date().getTime() - window;

There exist different ways for attackers to affect the time of the device running Clef without
being root on the system:

1. If the CAP_SYS_TIME capability14 is set on the date program, any user can change the
time.

2. If the attacker has a privilegedman-in-the-middle position in the network, she could attack
the NTP protocol15 to alter the device’s time.

Furthermore, to keep a state in between executions of the rules, Clef keeps an encrypted key-
value storage (jsStorage). Particular attacks might allow an attacker to alter this state and
remove some limitations (for example if a boolean has ben set to prevent further transactions,
reverting the state would allow transactions to flow again):

1. If the attacker has a physical access to the machine, she could re-set it to a previous
snapshot.

2. If the attacker has file permissions to the jsStorage, she could record changes and revert
the file to a previous point in time.

These attacks could allow an attacker to prevent certain rules from working correctly, or
worse, to drain wallets if the attacker has direct access to Clef’s API.

Recommendation This finding highlights the fact that the security of the system running Clef is of utmost
importance. Different type of users should be given different recommendations, depending
on how much is at stake. Different threat models could be written, documenting what Clef
protects against and does not protect against. Ultimately, it is hard to defend against these
types of highly targeted attacks from powerful adversaries, and they should be out of the
threat model of Clef.
13cmd/clef/rules.md
14http://man7.org/linux/man-pages/man7/capabilities.7.html
15https://www.cs.bu.edu/~goldbe/NTPattack.html

18 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/ethereum/go-ethereum/blob/master/cmd/clef/rules.md#example-1-ruleset-for-a-rate-limited-window
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.cs.bu.edu/~goldbe/NTPattack.html

Finding Denial of Service Through Malformed Import Key

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-EF-Clef-013

Category Data Validation

Location • accounts/keystore/keystore_passphrase.go

Impact A malicious attacker with access to the API or a privileged man-in-the-middle position could
craft malicious import requests or tamper with them in order to crash the application or alter
the keys imported without alerting the user.

Description Clef’s API exposes an “Import” method allowing requests to import already existing accounts.
This import method accepts an encrypted key as argument, which must be formatted under
specific formats. Two formats are accepted by Clef: a version 1 and a version 3, which utilize
different encryptionmethods. Most of the code following the import of the key systematically
assumes that the argument passed by the request is trusted, whichmight be in practice since
rules cannot be written to handle this method: the user must manually accept an import
request. The following code paths all have issues:

Importing Private Keys. The Import flow ends up calling the crypto.ToECDSAUnsafe()
method which, as indicated, “blindly converts a binary blob to a private key. It should almost
never be used unless you are sure the input is valid and want to avoid hitting errors due to
bad origin encoding (0 prefixes cut off).”

JSON Parsing. Several fields from the passed JSON object are retrieved without previously
checking if they exist. The getKDFKey() function used to retrieve KDF parameters from the
request does not expect an empty map as cryptoJSON.KDFParams and will crash if given
one. Additionally, it expects integers as fields for the KDF object, even when given strings.

KDF parameters. A denial of service can be obtained by providing absurdly large param-
eters for the Scrypt Key Derivation Function, which will force the program to compute an
interminable cryptographic operation.

Authenticated Encryption. Before attempting the decryption of the imported key, the key-
store will verify the integrity of the ciphertext in order to detect any tampering from man-in-
the-middle attackers. This integrity check does not include the IV and is not done in constant
time. This could allow an attacker to tamper with the IV, making the user decrypt the wrong
private key, without any alert given by Clef (even though the “address” recovered is different
from the “address” field passed as argument in the request).

Decryption. Version 1 of the Importer will use AES-CBC to decrypt the received key, in
particular the low-level CryptBlocks function which takes a multiple of the blocksize as
argument. If not, the function will panic, as can be seen in .16

Reproduction Steps Run the following in the terminal with a Clef process exposing an RPC interface on local-
host:8550 and observe that the Clef application crashes.

curl -i -H "Content-Type: application/json" -X POST --data '{"jsonrpc":"2.0","me
thod":"account_import","params":[{"version":"1","address":"string","id":"str
ing","crypto":{"cipher":"","ciphertext":"","cipherparams":{"iv":""},"kdf":""
,"kdfparams":{},"mac":""}}],"id":67}' http://localhost:8550/

16crypto/cipher/cbc.go

19 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/golang/go/blob/50bd1c4d4eb4fac8ddeb5f063c099daccfb71b26/src/crypto/cipher/cbc.go#L57:L63

The following payloads also crash the application:

{"version":"1","address":"string","id":"string","crypto":{"cipher":"","ciphertex
t":"","cipherparams":{"iv":""},"kdf":"","kdfparams":{"salt":"","dklen":"","n
":"","r":"","p":"","c":"","prf":""},"mac":""}}

{"version":"1","address":"string","id":"string","crypto":{"cipher":"","ciphertex
t":"01","cipherparams":{"iv":""},"kdf":"pbkdf2","kdfparams":{"salt":"","dkle
n":5,"n":5,"r":5,"p":5,"c":5,"prf":"hmac-sha256"},"mac":"32f2f344a0bdf0434df
8d3c3fd2afd043c1a26b969bb7c448abd67a4af27ae03"}}

Recommendation Thoroughly document the fact that the Import API MUST be used with trusted and verified
inputs. In addition, address the issues underlined in this finding.

Furthermore, consider removing the Import method from the API of Clef.

20 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

Finding Encrypted KeyStore Integrity Check Is Incomplete

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-EF-Clef-014

Category Cryptography

Component keystore

Location • accounts/keystore/keystore_passphrase.go

Impact An attacker can tamper with a wallet backup without alerting the user, who would not realize
the assault until trying to use the wallet key.

Description The keystore package of Go-Ethereum has an exported EncryptKey() method capable of
storing wallets in an encrypted form. The encryption uses a key derived from a passphrase
known by the user. As a mean of integrity check, to ensure that a backup of an encrypted key
has not been tampered with, the keystore computes a message authentication code (MAC)
over the ciphertext as can be seen below:

// EncryptKey encrypts a key using the specified scrypt parameters into a json
// blob that can be decrypted later on.
func EncryptKey(key *Key, auth string, scryptN, scryptP int) ([]byte, error) {

// ...

derivedKey, err := scrypt.Key(authArray, salt, scryptN, scryptR, scrypt
P, scryptDKLen)

// ...
iv := make([]byte, aes.BlockSize) // 16
if _, err := io.ReadFull(rand.Reader, iv); err != nil {

panic("reading from crypto/rand failed: " + err.Error())
}
cipherText, err := aesCTRXOR(encryptKey, keyBytes, iv)
// ...
mac := crypto.Keccak256(derivedKey[16:32], cipherText)

This integrity check does not include the iv, important piece of the encryption/decryption
process, allowing attackers to tamper with it without having to modify the ciphertext. Since
the content encrypted is of high entropy, no strong attacks can be performed.

Recommendation Make use of an authenticated cipher like AES-GCM which compiles encryption with integrity
check as a single algorithm.

21 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

Finding UI Mixes Extraneous and Approval-Specific Data

Risk Informational Impact: Undetermined, Exploitability: Undetermined

Identifier NCC-EF-Clef-006

Category Data Validation

Location signer/core/cliui.go

Impact An attacker could phish a user through the display of attacker controlled information in the
Clef UI.

Description When Clef receives a request through its exposed API, metadata is displayed to the user in
charge of handling it. This metadata includes a variety of fields unrelated to what is being
signed like IP address, user-agent, origin, etc. There are 6 calls to showMetadata() within
signer/core/cliui.go that drive this functionality. Some of these fields can be trivially
tampered with and might provide a false understanding as users could rely too heavily on
them instead of the important fields.

The following ‘malicious’ request (with the redacted JSON taken from Go code example com-
ments) will be accepted by Clef.

curl http://localhost:8550/ \
-i -H "Content-Type: application/json" \
-X POST --data '{...}' \
-A "indicates INVALID CHECKSUM IS EXPECTED" \
-H "Origin: NCC Group requires IMMEDIATE APPROVAL per direction of J Smith"

Clef will present the following information to the user.

--------- Transaction request-------------
to: 0x07a565b7ed7d7a678680a4c162885bedbb695fe0

WARNING: Invalid checksum on to-address!

from: 0x82A2A876D39022B3019932D30Cd9c97ad5616813 [chksum ok]
value: 16 wei
gas: 0x333 (819)
gasprice: 291 wei
nonce: 0x0 (0)
data: 0x4401a6e400...012

Transaction validation:
* WARNING : Invalid checksum on to-address
* Info : safeSend(address: 0x0000000000000000000000000000000000000012)

Request context:
127.0.0.1:40802 -> HTTP/1.1 -> localhost:8550

User-Agent: indicates INVALID CHECKSUM IS EXPECTED
Origin: NCC Group requires IMMEDIATE APPROVAL per direction of J Smith

Approve? [y/N]:
>

As currently presented, the metadata provides little benefit to legitimate requests but may
facilitate illegitimate requests. A naive user may consider the extraneous request data as

22 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

superseding the true warning above and mistakenly approve this transaction.

Recommendation Do not present request metadata alongside approval-specific data without clear delineation
and warnings. Either clearly label the categories presented and warn that request data
cannot be relied upon, or simply remove all request data.

Client Response An additional message was added before displayingmetadata provided by the external caller
of the API: github.com/holiman/go-ethereum/commit/c6d7644e5a5bd0fe23c7f060a390112
115515cab

23 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

https://github.com/holiman/go-ethereum/commit/c6d7644e5a5bd0fe23c7f060a390112115515cab
https://github.com/holiman/go-ethereum/commit/c6d7644e5a5bd0fe23c7f060a390112115515cab

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

24 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

25 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

Appendix B: Project Contacts
The team from NCC Group has the following primary members:

• David Wong — Consultant
david.wong@nccgroup.trust

• Eric Schorn — Consultant
Eric.Schorn@nccgroup.trust

The team from Ethereum Foundation has the following primary member:

• Martin Swende — Ethereum Foundation
martin.swende@ethereum.org

26 | Ethereum Clef Review Ethereum Foundation / NCC Group Confidential

mailto:david.wong@nccgroup.trust
mailto:Eric.Schorn@nccgroup.trust
mailto:martin.swende@ethereum.org

	Executive Summary
	Scope
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions
	Project Contacts

