github.com/darmach/terratest@v0.34.8-0.20210517103231-80931f95e3ff/docs/assets/img/home/terratest_top_left.svg (about) 1 <?xml version="1.0" encoding="UTF-8"?> 2 <svg width="541px" height="562px" viewBox="0 0 541 562" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> 3 <!-- Generator: Sketch 57.1 (83088) - https://sketch.com --> 4 <title>terratest_top_left</title> 5 <desc>Created with Sketch.</desc> 6 <defs> 7 <linearGradient x1="30.993838%" y1="0%" x2="69.006162%" y2="100%" id="linearGradient-1"> 8 <stop stop-color="#4EB9FB" offset="0%"></stop> 9 <stop stop-color="#2683F5" offset="100%"></stop> 10 </linearGradient> 11 <linearGradient x1="79.8583349%" y1="52.4918236%" x2="23.5716011%" y2="62.6047667%" id="linearGradient-2"> 12 <stop stop-color="#1382C6" offset="0%"></stop> 13 <stop stop-color="#0352C2" offset="100%"></stop> 14 </linearGradient> 15 <linearGradient x1="79.8583349%" y1="52.4918236%" x2="23.5716011%" y2="62.6047667%" id="linearGradient-3"> 16 <stop stop-color="#1888CF" offset="0%"></stop> 17 <stop stop-color="#0352C2" offset="100%"></stop> 18 </linearGradient> 19 <linearGradient x1="30.993838%" y1="0%" x2="69.006162%" y2="100%" id="linearGradient-4"> 20 <stop stop-color="#4EB9FB" offset="0%"></stop> 21 <stop stop-color="#2683F5" offset="100%"></stop> 22 </linearGradient> 23 <linearGradient x1="79.8583349%" y1="52.4918236%" x2="23.5716011%" y2="62.6047667%" id="linearGradient-5"> 24 <stop stop-color="#1888CF" offset="0%"></stop> 25 <stop stop-color="#0352C2" offset="100%"></stop> 26 </linearGradient> 27 <linearGradient x1="79.8583349%" y1="52.4918236%" x2="23.5716011%" y2="62.6047667%" id="linearGradient-6"> 28 <stop stop-color="#0352C2" offset="0%"></stop> 29 <stop stop-color="#0352C2" offset="100%"></stop> 30 </linearGradient> 31 </defs> 32 <g id="Page-1" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd"> 33 <g id="terratest_top_left"> 34 <g id="Group" transform="translate(413.000000, 0.000000)"> 35 <polygon id="Rectangle" fill="url(#linearGradient-1)" points="51 63.2903226 100.2 32.4 100.2 81.3096774 51 112.2"></polygon> 36 <polygon id="Rectangle-Copy-15" fill="#00229E" transform="translate(24.600000, 72.300000) scale(-1, 1) translate(-24.600000, -72.300000) " points="0 63.2903226 49.2 32.4 49.2 81.3096774 0 112.2"></polygon> 37 <polygon id="Rectangle-Copy-3" fill="#0352C2" transform="translate(50.100000, 30.900000) scale(-1, 1) translate(-50.100000, -30.900000) " points="1.2 30.9 50.1 0 99 30.9 50.1 61.8"></polygon> 38 </g> 39 <g id="Group-Copy" transform="translate(219.000000, 169.000000)"> 40 <polygon id="Rectangle" fill="url(#linearGradient-1)" points="51 63.2903226 100.2 32.4 100.2 81.3096774 51 112.2"></polygon> 41 <polygon id="Rectangle-Copy-15" fill="#0136AD" transform="translate(24.600000, 72.300000) scale(-1, 1) translate(-24.600000, -72.300000) " points="-9.23705556e-14 63.2903226 49.2 32.4 49.2 81.3096774 -9.23705556e-14 112.2"></polygon> 42 <polygon id="Rectangle-Copy-3" fill="url(#linearGradient-2)" transform="translate(50.100000, 30.900000) scale(-1, 1) translate(-50.100000, -30.900000) " points="1.2 30.9 50.1 0 99 30.9 50.1 61.8"></polygon> 43 </g> 44 <g id="Group-Copy-2" transform="translate(414.000000, 291.000000)"> 45 <polygon id="Rectangle" fill="url(#linearGradient-1)" points="51 63.2903226 100.2 32.4 100.2 81.3096774 51 112.2"></polygon> 46 <polygon id="Rectangle-Copy-15" fill="#0242B7" transform="translate(24.600000, 72.300000) scale(-1, 1) translate(-24.600000, -72.300000) " points="-8.8817842e-14 63.2903226 49.2 32.4 49.2 81.3096774 -8.8817842e-14 112.2"></polygon> 47 <polygon id="Rectangle-Copy-3" fill="url(#linearGradient-3)" transform="translate(50.100000, 30.900000) scale(-1, 1) translate(-50.100000, -30.900000) " points="1.2 30.9 50.1 7.10542736e-15 99 30.9 50.1 61.8"></polygon> 48 </g> 49 <g id="Group-Copy-3" transform="translate(488.000000, 262.000000)"> 50 <polygon id="Rectangle" fill="url(#linearGradient-4)" points="26.5 32.6451613 51.1 17.2 51.1 41.6548387 26.5 57.1"></polygon> 51 <polygon id="Rectangle-Copy-15" fill="#0136AD" transform="translate(12.300000, 37.150000) scale(-1, 1) translate(-12.300000, -37.150000) " points="0 32.6451613 24.6 17.2 24.6 41.6548387 0 57.1"></polygon> 52 <polygon id="Rectangle-Copy-3" fill="url(#linearGradient-5)" transform="translate(25.650000, 15.450000) scale(-1, 1) translate(-25.650000, -15.450000) " points="1.2 15.45 25.65 1.42108547e-14 50.1 15.45 25.65 30.9"></polygon> 53 </g> 54 <g id="Group-Copy-4" transform="translate(462.000000, 218.000000)"> 55 <polygon id="Rectangle" fill="url(#linearGradient-4)" points="26.5 32.6451613 51.1 17.2 51.1 41.6548387 26.5 57.1"></polygon> 56 <polygon id="Rectangle-Copy-15" fill="#012FA8" transform="translate(12.300000, 37.150000) scale(-1, 1) translate(-12.300000, -37.150000) " points="0 32.6451613 24.6 17.2 24.6 41.6548387 0 57.1"></polygon> 57 <polygon id="Rectangle-Copy-3" fill="#067ACB" transform="translate(25.650000, 15.450000) scale(-1, 1) translate(-25.650000, -15.450000) " points="1.2 15.45 25.65 0 50.1 15.45 25.65 30.9"></polygon> 58 </g> 59 <g id="Group-Copy-6" transform="translate(75.000000, 331.000000)"> 60 <polygon id="Rectangle" fill="url(#linearGradient-4)" points="26.5 32.6451613 51.1 17.2 51.1 41.6548387 26.5 57.1"></polygon> 61 <polygon id="Rectangle-Copy-15" fill="#0127A2" transform="translate(12.300000, 37.150000) scale(-1, 1) translate(-12.300000, -37.150000) " points="2.27373675e-13 32.6451613 24.6 17.2 24.6 41.6548387 2.27373675e-13 57.1"></polygon> 62 <polygon id="Rectangle-Copy-3" fill="#0352C2" transform="translate(25.650000, 15.450000) scale(-1, 1) translate(-25.650000, -15.450000) " points="1.2 15.45 25.65 -1.42108547e-14 50.1 15.45 25.65 30.9"></polygon> 63 </g> 64 <g id="Group-Copy-7" transform="translate(0.000000, 282.000000)"> 65 <polygon id="Rectangle" fill="url(#linearGradient-4)" points="26.5 32.6451613 51.1 17.2 51.1 41.6548387 26.5 57.1"></polygon> 66 <polygon id="Rectangle-Copy-15" fill="#0124A0" transform="translate(12.300000, 37.150000) scale(-1, 1) translate(-12.300000, -37.150000) " points="1.82964754e-13 32.6451613 24.6 17.2 24.6 41.6548387 1.82964754e-13 57.1"></polygon> 67 <polygon id="Rectangle-Copy-3" fill="#0237AE" transform="translate(25.650000, 15.450000) scale(-1, 1) translate(-25.650000, -15.450000) " points="1.2 15.45 25.65 0 50.1 15.45 25.65 30.9"></polygon> 68 </g> 69 <g id="Group-Copy-5" transform="translate(489.000000, 175.000000)"> 70 <polygon id="Rectangle" fill="url(#linearGradient-4)" points="26.5 32.6451613 51.1 17.2 51.1 41.6548387 26.5 57.1"></polygon> 71 <polygon id="Rectangle-Copy-15" fill="#00229E" transform="translate(12.300000, 37.150000) scale(-1, 1) translate(-12.300000, -37.150000) " points="2.48689958e-14 32.6451613 24.6 17.2 24.6 41.6548387 2.48689958e-14 57.1"></polygon> 72 <polygon id="Rectangle-Copy-3" fill="url(#linearGradient-6)" transform="translate(25.650000, 15.450000) scale(-1, 1) translate(-25.650000, -15.450000) " points="1.2 15.45 25.65 0 50.1 15.45 25.65 30.9"></polygon> 73 </g> 74 <image id="terratest_hero" x="137" y="413" width="199.291866" height="149" xlink:href=""></image> 75 <path d="M324,200 L460,114" id="Line-2" stroke="#07A7FD" stroke-width="2" stroke-linecap="square" stroke-dasharray="2,8"></path> 76 <path d="M131,368 L267,282" id="Line-2-Copy-3" stroke="#07A7FD" stroke-width="2" stroke-linecap="square" stroke-dasharray="2,8"></path> 77 <path d="M54,318.443618 L124.28293,274 L199,325.443618" id="Line-2-Copy-4" stroke="#07A7FD" stroke-width="2" stroke-linecap="square" stroke-dasharray="2,8"></path> 78 <path d="M272,320 L408,234" id="Line-2-Copy" stroke="#07A7FD" stroke-width="2" stroke-linecap="square" stroke-dasharray="2,8" transform="translate(340.000000, 277.000000) scale(1, -1) translate(-340.000000, -277.000000) "></path> 79 <path d="M328,440 L464,354" id="Line-2-Copy-2" stroke="#FF484C" stroke-width="2" stroke-linecap="square" stroke-dasharray="2,8" transform="translate(396.000000, 397.000000) scale(-1, -1) translate(-396.000000, -397.000000) "></path> 80 </g> 81 </g> 82 </svg>