github.com/devfans/go-ethereum@v1.5.10-0.20170326212234-7419d0c38291/p2p/discover/node.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package discover 18 19 import ( 20 "crypto/ecdsa" 21 "crypto/elliptic" 22 "encoding/hex" 23 "errors" 24 "fmt" 25 "math/big" 26 "math/rand" 27 "net" 28 "net/url" 29 "regexp" 30 "strconv" 31 "strings" 32 33 "github.com/ethereum/go-ethereum/common" 34 "github.com/ethereum/go-ethereum/crypto" 35 "github.com/ethereum/go-ethereum/crypto/secp256k1" 36 ) 37 38 const NodeIDBits = 512 39 40 // Node represents a host on the network. 41 // The fields of Node may not be modified. 42 type Node struct { 43 IP net.IP // len 4 for IPv4 or 16 for IPv6 44 UDP, TCP uint16 // port numbers 45 ID NodeID // the node's public key 46 47 // This is a cached copy of sha3(ID) which is used for node 48 // distance calculations. This is part of Node in order to make it 49 // possible to write tests that need a node at a certain distance. 50 // In those tests, the content of sha will not actually correspond 51 // with ID. 52 sha common.Hash 53 54 // whether this node is currently being pinged in order to replace 55 // it in a bucket 56 contested bool 57 } 58 59 // NewNode creates a new node. It is mostly meant to be used for 60 // testing purposes. 61 func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node { 62 if ipv4 := ip.To4(); ipv4 != nil { 63 ip = ipv4 64 } 65 return &Node{ 66 IP: ip, 67 UDP: udpPort, 68 TCP: tcpPort, 69 ID: id, 70 sha: crypto.Keccak256Hash(id[:]), 71 } 72 } 73 74 func (n *Node) addr() *net.UDPAddr { 75 return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)} 76 } 77 78 // Incomplete returns true for nodes with no IP address. 79 func (n *Node) Incomplete() bool { 80 return n.IP == nil 81 } 82 83 // checks whether n is a valid complete node. 84 func (n *Node) validateComplete() error { 85 if n.Incomplete() { 86 return errors.New("incomplete node") 87 } 88 if n.UDP == 0 { 89 return errors.New("missing UDP port") 90 } 91 if n.TCP == 0 { 92 return errors.New("missing TCP port") 93 } 94 if n.IP.IsMulticast() || n.IP.IsUnspecified() { 95 return errors.New("invalid IP (multicast/unspecified)") 96 } 97 _, err := n.ID.Pubkey() // validate the key (on curve, etc.) 98 return err 99 } 100 101 // The string representation of a Node is a URL. 102 // Please see ParseNode for a description of the format. 103 func (n *Node) String() string { 104 u := url.URL{Scheme: "enode"} 105 if n.Incomplete() { 106 u.Host = fmt.Sprintf("%x", n.ID[:]) 107 } else { 108 addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)} 109 u.User = url.User(fmt.Sprintf("%x", n.ID[:])) 110 u.Host = addr.String() 111 if n.UDP != n.TCP { 112 u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP)) 113 } 114 } 115 return u.String() 116 } 117 118 var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$") 119 120 // ParseNode parses a node designator. 121 // 122 // There are two basic forms of node designators 123 // - incomplete nodes, which only have the public key (node ID) 124 // - complete nodes, which contain the public key and IP/Port information 125 // 126 // For incomplete nodes, the designator must look like one of these 127 // 128 // enode://<hex node id> 129 // <hex node id> 130 // 131 // For complete nodes, the node ID is encoded in the username portion 132 // of the URL, separated from the host by an @ sign. The hostname can 133 // only be given as an IP address, DNS domain names are not allowed. 134 // The port in the host name section is the TCP listening port. If the 135 // TCP and UDP (discovery) ports differ, the UDP port is specified as 136 // query parameter "discport". 137 // 138 // In the following example, the node URL describes 139 // a node with IP address 10.3.58.6, TCP listening port 30303 140 // and UDP discovery port 30301. 141 // 142 // enode://<hex node id>@10.3.58.6:30303?discport=30301 143 func ParseNode(rawurl string) (*Node, error) { 144 if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil { 145 id, err := HexID(m[1]) 146 if err != nil { 147 return nil, fmt.Errorf("invalid node ID (%v)", err) 148 } 149 return NewNode(id, nil, 0, 0), nil 150 } 151 return parseComplete(rawurl) 152 } 153 154 func parseComplete(rawurl string) (*Node, error) { 155 var ( 156 id NodeID 157 ip net.IP 158 tcpPort, udpPort uint64 159 ) 160 u, err := url.Parse(rawurl) 161 if err != nil { 162 return nil, err 163 } 164 if u.Scheme != "enode" { 165 return nil, errors.New("invalid URL scheme, want \"enode\"") 166 } 167 // Parse the Node ID from the user portion. 168 if u.User == nil { 169 return nil, errors.New("does not contain node ID") 170 } 171 if id, err = HexID(u.User.String()); err != nil { 172 return nil, fmt.Errorf("invalid node ID (%v)", err) 173 } 174 // Parse the IP address. 175 host, port, err := net.SplitHostPort(u.Host) 176 if err != nil { 177 return nil, fmt.Errorf("invalid host: %v", err) 178 } 179 if ip = net.ParseIP(host); ip == nil { 180 return nil, errors.New("invalid IP address") 181 } 182 // Ensure the IP is 4 bytes long for IPv4 addresses. 183 if ipv4 := ip.To4(); ipv4 != nil { 184 ip = ipv4 185 } 186 // Parse the port numbers. 187 if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil { 188 return nil, errors.New("invalid port") 189 } 190 udpPort = tcpPort 191 qv := u.Query() 192 if qv.Get("discport") != "" { 193 udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16) 194 if err != nil { 195 return nil, errors.New("invalid discport in query") 196 } 197 } 198 return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil 199 } 200 201 // MustParseNode parses a node URL. It panics if the URL is not valid. 202 func MustParseNode(rawurl string) *Node { 203 n, err := ParseNode(rawurl) 204 if err != nil { 205 panic("invalid node URL: " + err.Error()) 206 } 207 return n 208 } 209 210 // NodeID is a unique identifier for each node. 211 // The node identifier is a marshaled elliptic curve public key. 212 type NodeID [NodeIDBits / 8]byte 213 214 // NodeID prints as a long hexadecimal number. 215 func (n NodeID) String() string { 216 return fmt.Sprintf("%x", n[:]) 217 } 218 219 // The Go syntax representation of a NodeID is a call to HexID. 220 func (n NodeID) GoString() string { 221 return fmt.Sprintf("discover.HexID(\"%x\")", n[:]) 222 } 223 224 // TerminalString returns a shortened hex string for terminal logging. 225 func (n NodeID) TerminalString() string { 226 return hex.EncodeToString(n[:8]) 227 } 228 229 // HexID converts a hex string to a NodeID. 230 // The string may be prefixed with 0x. 231 func HexID(in string) (NodeID, error) { 232 var id NodeID 233 b, err := hex.DecodeString(strings.TrimPrefix(in, "0x")) 234 if err != nil { 235 return id, err 236 } else if len(b) != len(id) { 237 return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2) 238 } 239 copy(id[:], b) 240 return id, nil 241 } 242 243 // MustHexID converts a hex string to a NodeID. 244 // It panics if the string is not a valid NodeID. 245 func MustHexID(in string) NodeID { 246 id, err := HexID(in) 247 if err != nil { 248 panic(err) 249 } 250 return id 251 } 252 253 // PubkeyID returns a marshaled representation of the given public key. 254 func PubkeyID(pub *ecdsa.PublicKey) NodeID { 255 var id NodeID 256 pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y) 257 if len(pbytes)-1 != len(id) { 258 panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes))) 259 } 260 copy(id[:], pbytes[1:]) 261 return id 262 } 263 264 // Pubkey returns the public key represented by the node ID. 265 // It returns an error if the ID is not a point on the curve. 266 func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) { 267 p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)} 268 half := len(id) / 2 269 p.X.SetBytes(id[:half]) 270 p.Y.SetBytes(id[half:]) 271 if !p.Curve.IsOnCurve(p.X, p.Y) { 272 return nil, errors.New("id is invalid secp256k1 curve point") 273 } 274 return p, nil 275 } 276 277 // recoverNodeID computes the public key used to sign the 278 // given hash from the signature. 279 func recoverNodeID(hash, sig []byte) (id NodeID, err error) { 280 pubkey, err := secp256k1.RecoverPubkey(hash, sig) 281 if err != nil { 282 return id, err 283 } 284 if len(pubkey)-1 != len(id) { 285 return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8) 286 } 287 for i := range id { 288 id[i] = pubkey[i+1] 289 } 290 return id, nil 291 } 292 293 // distcmp compares the distances a->target and b->target. 294 // Returns -1 if a is closer to target, 1 if b is closer to target 295 // and 0 if they are equal. 296 func distcmp(target, a, b common.Hash) int { 297 for i := range target { 298 da := a[i] ^ target[i] 299 db := b[i] ^ target[i] 300 if da > db { 301 return 1 302 } else if da < db { 303 return -1 304 } 305 } 306 return 0 307 } 308 309 // table of leading zero counts for bytes [0..255] 310 var lzcount = [256]int{ 311 8, 7, 6, 6, 5, 5, 5, 5, 312 4, 4, 4, 4, 4, 4, 4, 4, 313 3, 3, 3, 3, 3, 3, 3, 3, 314 3, 3, 3, 3, 3, 3, 3, 3, 315 2, 2, 2, 2, 2, 2, 2, 2, 316 2, 2, 2, 2, 2, 2, 2, 2, 317 2, 2, 2, 2, 2, 2, 2, 2, 318 2, 2, 2, 2, 2, 2, 2, 2, 319 1, 1, 1, 1, 1, 1, 1, 1, 320 1, 1, 1, 1, 1, 1, 1, 1, 321 1, 1, 1, 1, 1, 1, 1, 1, 322 1, 1, 1, 1, 1, 1, 1, 1, 323 1, 1, 1, 1, 1, 1, 1, 1, 324 1, 1, 1, 1, 1, 1, 1, 1, 325 1, 1, 1, 1, 1, 1, 1, 1, 326 1, 1, 1, 1, 1, 1, 1, 1, 327 0, 0, 0, 0, 0, 0, 0, 0, 328 0, 0, 0, 0, 0, 0, 0, 0, 329 0, 0, 0, 0, 0, 0, 0, 0, 330 0, 0, 0, 0, 0, 0, 0, 0, 331 0, 0, 0, 0, 0, 0, 0, 0, 332 0, 0, 0, 0, 0, 0, 0, 0, 333 0, 0, 0, 0, 0, 0, 0, 0, 334 0, 0, 0, 0, 0, 0, 0, 0, 335 0, 0, 0, 0, 0, 0, 0, 0, 336 0, 0, 0, 0, 0, 0, 0, 0, 337 0, 0, 0, 0, 0, 0, 0, 0, 338 0, 0, 0, 0, 0, 0, 0, 0, 339 0, 0, 0, 0, 0, 0, 0, 0, 340 0, 0, 0, 0, 0, 0, 0, 0, 341 0, 0, 0, 0, 0, 0, 0, 0, 342 0, 0, 0, 0, 0, 0, 0, 0, 343 } 344 345 // logdist returns the logarithmic distance between a and b, log2(a ^ b). 346 func logdist(a, b common.Hash) int { 347 lz := 0 348 for i := range a { 349 x := a[i] ^ b[i] 350 if x == 0 { 351 lz += 8 352 } else { 353 lz += lzcount[x] 354 break 355 } 356 } 357 return len(a)*8 - lz 358 } 359 360 // hashAtDistance returns a random hash such that logdist(a, b) == n 361 func hashAtDistance(a common.Hash, n int) (b common.Hash) { 362 if n == 0 { 363 return a 364 } 365 // flip bit at position n, fill the rest with random bits 366 b = a 367 pos := len(a) - n/8 - 1 368 bit := byte(0x01) << (byte(n%8) - 1) 369 if bit == 0 { 370 pos++ 371 bit = 0x80 372 } 373 b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits 374 for i := pos + 1; i < len(a); i++ { 375 b[i] = byte(rand.Intn(255)) 376 } 377 return b 378 }