github.com/devfans/go-ethereum@v1.5.10-0.20170326212234-7419d0c38291/p2p/discover/node.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package discover
    18  
    19  import (
    20  	"crypto/ecdsa"
    21  	"crypto/elliptic"
    22  	"encoding/hex"
    23  	"errors"
    24  	"fmt"
    25  	"math/big"
    26  	"math/rand"
    27  	"net"
    28  	"net/url"
    29  	"regexp"
    30  	"strconv"
    31  	"strings"
    32  
    33  	"github.com/ethereum/go-ethereum/common"
    34  	"github.com/ethereum/go-ethereum/crypto"
    35  	"github.com/ethereum/go-ethereum/crypto/secp256k1"
    36  )
    37  
    38  const NodeIDBits = 512
    39  
    40  // Node represents a host on the network.
    41  // The fields of Node may not be modified.
    42  type Node struct {
    43  	IP       net.IP // len 4 for IPv4 or 16 for IPv6
    44  	UDP, TCP uint16 // port numbers
    45  	ID       NodeID // the node's public key
    46  
    47  	// This is a cached copy of sha3(ID) which is used for node
    48  	// distance calculations. This is part of Node in order to make it
    49  	// possible to write tests that need a node at a certain distance.
    50  	// In those tests, the content of sha will not actually correspond
    51  	// with ID.
    52  	sha common.Hash
    53  
    54  	// whether this node is currently being pinged in order to replace
    55  	// it in a bucket
    56  	contested bool
    57  }
    58  
    59  // NewNode creates a new node. It is mostly meant to be used for
    60  // testing purposes.
    61  func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
    62  	if ipv4 := ip.To4(); ipv4 != nil {
    63  		ip = ipv4
    64  	}
    65  	return &Node{
    66  		IP:  ip,
    67  		UDP: udpPort,
    68  		TCP: tcpPort,
    69  		ID:  id,
    70  		sha: crypto.Keccak256Hash(id[:]),
    71  	}
    72  }
    73  
    74  func (n *Node) addr() *net.UDPAddr {
    75  	return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)}
    76  }
    77  
    78  // Incomplete returns true for nodes with no IP address.
    79  func (n *Node) Incomplete() bool {
    80  	return n.IP == nil
    81  }
    82  
    83  // checks whether n is a valid complete node.
    84  func (n *Node) validateComplete() error {
    85  	if n.Incomplete() {
    86  		return errors.New("incomplete node")
    87  	}
    88  	if n.UDP == 0 {
    89  		return errors.New("missing UDP port")
    90  	}
    91  	if n.TCP == 0 {
    92  		return errors.New("missing TCP port")
    93  	}
    94  	if n.IP.IsMulticast() || n.IP.IsUnspecified() {
    95  		return errors.New("invalid IP (multicast/unspecified)")
    96  	}
    97  	_, err := n.ID.Pubkey() // validate the key (on curve, etc.)
    98  	return err
    99  }
   100  
   101  // The string representation of a Node is a URL.
   102  // Please see ParseNode for a description of the format.
   103  func (n *Node) String() string {
   104  	u := url.URL{Scheme: "enode"}
   105  	if n.Incomplete() {
   106  		u.Host = fmt.Sprintf("%x", n.ID[:])
   107  	} else {
   108  		addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)}
   109  		u.User = url.User(fmt.Sprintf("%x", n.ID[:]))
   110  		u.Host = addr.String()
   111  		if n.UDP != n.TCP {
   112  			u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP))
   113  		}
   114  	}
   115  	return u.String()
   116  }
   117  
   118  var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$")
   119  
   120  // ParseNode parses a node designator.
   121  //
   122  // There are two basic forms of node designators
   123  //   - incomplete nodes, which only have the public key (node ID)
   124  //   - complete nodes, which contain the public key and IP/Port information
   125  //
   126  // For incomplete nodes, the designator must look like one of these
   127  //
   128  //    enode://<hex node id>
   129  //    <hex node id>
   130  //
   131  // For complete nodes, the node ID is encoded in the username portion
   132  // of the URL, separated from the host by an @ sign. The hostname can
   133  // only be given as an IP address, DNS domain names are not allowed.
   134  // The port in the host name section is the TCP listening port. If the
   135  // TCP and UDP (discovery) ports differ, the UDP port is specified as
   136  // query parameter "discport".
   137  //
   138  // In the following example, the node URL describes
   139  // a node with IP address 10.3.58.6, TCP listening port 30303
   140  // and UDP discovery port 30301.
   141  //
   142  //    enode://<hex node id>@10.3.58.6:30303?discport=30301
   143  func ParseNode(rawurl string) (*Node, error) {
   144  	if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil {
   145  		id, err := HexID(m[1])
   146  		if err != nil {
   147  			return nil, fmt.Errorf("invalid node ID (%v)", err)
   148  		}
   149  		return NewNode(id, nil, 0, 0), nil
   150  	}
   151  	return parseComplete(rawurl)
   152  }
   153  
   154  func parseComplete(rawurl string) (*Node, error) {
   155  	var (
   156  		id               NodeID
   157  		ip               net.IP
   158  		tcpPort, udpPort uint64
   159  	)
   160  	u, err := url.Parse(rawurl)
   161  	if err != nil {
   162  		return nil, err
   163  	}
   164  	if u.Scheme != "enode" {
   165  		return nil, errors.New("invalid URL scheme, want \"enode\"")
   166  	}
   167  	// Parse the Node ID from the user portion.
   168  	if u.User == nil {
   169  		return nil, errors.New("does not contain node ID")
   170  	}
   171  	if id, err = HexID(u.User.String()); err != nil {
   172  		return nil, fmt.Errorf("invalid node ID (%v)", err)
   173  	}
   174  	// Parse the IP address.
   175  	host, port, err := net.SplitHostPort(u.Host)
   176  	if err != nil {
   177  		return nil, fmt.Errorf("invalid host: %v", err)
   178  	}
   179  	if ip = net.ParseIP(host); ip == nil {
   180  		return nil, errors.New("invalid IP address")
   181  	}
   182  	// Ensure the IP is 4 bytes long for IPv4 addresses.
   183  	if ipv4 := ip.To4(); ipv4 != nil {
   184  		ip = ipv4
   185  	}
   186  	// Parse the port numbers.
   187  	if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil {
   188  		return nil, errors.New("invalid port")
   189  	}
   190  	udpPort = tcpPort
   191  	qv := u.Query()
   192  	if qv.Get("discport") != "" {
   193  		udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16)
   194  		if err != nil {
   195  			return nil, errors.New("invalid discport in query")
   196  		}
   197  	}
   198  	return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil
   199  }
   200  
   201  // MustParseNode parses a node URL. It panics if the URL is not valid.
   202  func MustParseNode(rawurl string) *Node {
   203  	n, err := ParseNode(rawurl)
   204  	if err != nil {
   205  		panic("invalid node URL: " + err.Error())
   206  	}
   207  	return n
   208  }
   209  
   210  // NodeID is a unique identifier for each node.
   211  // The node identifier is a marshaled elliptic curve public key.
   212  type NodeID [NodeIDBits / 8]byte
   213  
   214  // NodeID prints as a long hexadecimal number.
   215  func (n NodeID) String() string {
   216  	return fmt.Sprintf("%x", n[:])
   217  }
   218  
   219  // The Go syntax representation of a NodeID is a call to HexID.
   220  func (n NodeID) GoString() string {
   221  	return fmt.Sprintf("discover.HexID(\"%x\")", n[:])
   222  }
   223  
   224  // TerminalString returns a shortened hex string for terminal logging.
   225  func (n NodeID) TerminalString() string {
   226  	return hex.EncodeToString(n[:8])
   227  }
   228  
   229  // HexID converts a hex string to a NodeID.
   230  // The string may be prefixed with 0x.
   231  func HexID(in string) (NodeID, error) {
   232  	var id NodeID
   233  	b, err := hex.DecodeString(strings.TrimPrefix(in, "0x"))
   234  	if err != nil {
   235  		return id, err
   236  	} else if len(b) != len(id) {
   237  		return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2)
   238  	}
   239  	copy(id[:], b)
   240  	return id, nil
   241  }
   242  
   243  // MustHexID converts a hex string to a NodeID.
   244  // It panics if the string is not a valid NodeID.
   245  func MustHexID(in string) NodeID {
   246  	id, err := HexID(in)
   247  	if err != nil {
   248  		panic(err)
   249  	}
   250  	return id
   251  }
   252  
   253  // PubkeyID returns a marshaled representation of the given public key.
   254  func PubkeyID(pub *ecdsa.PublicKey) NodeID {
   255  	var id NodeID
   256  	pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
   257  	if len(pbytes)-1 != len(id) {
   258  		panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
   259  	}
   260  	copy(id[:], pbytes[1:])
   261  	return id
   262  }
   263  
   264  // Pubkey returns the public key represented by the node ID.
   265  // It returns an error if the ID is not a point on the curve.
   266  func (id NodeID) Pubkey() (*ecdsa.PublicKey, error) {
   267  	p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
   268  	half := len(id) / 2
   269  	p.X.SetBytes(id[:half])
   270  	p.Y.SetBytes(id[half:])
   271  	if !p.Curve.IsOnCurve(p.X, p.Y) {
   272  		return nil, errors.New("id is invalid secp256k1 curve point")
   273  	}
   274  	return p, nil
   275  }
   276  
   277  // recoverNodeID computes the public key used to sign the
   278  // given hash from the signature.
   279  func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
   280  	pubkey, err := secp256k1.RecoverPubkey(hash, sig)
   281  	if err != nil {
   282  		return id, err
   283  	}
   284  	if len(pubkey)-1 != len(id) {
   285  		return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
   286  	}
   287  	for i := range id {
   288  		id[i] = pubkey[i+1]
   289  	}
   290  	return id, nil
   291  }
   292  
   293  // distcmp compares the distances a->target and b->target.
   294  // Returns -1 if a is closer to target, 1 if b is closer to target
   295  // and 0 if they are equal.
   296  func distcmp(target, a, b common.Hash) int {
   297  	for i := range target {
   298  		da := a[i] ^ target[i]
   299  		db := b[i] ^ target[i]
   300  		if da > db {
   301  			return 1
   302  		} else if da < db {
   303  			return -1
   304  		}
   305  	}
   306  	return 0
   307  }
   308  
   309  // table of leading zero counts for bytes [0..255]
   310  var lzcount = [256]int{
   311  	8, 7, 6, 6, 5, 5, 5, 5,
   312  	4, 4, 4, 4, 4, 4, 4, 4,
   313  	3, 3, 3, 3, 3, 3, 3, 3,
   314  	3, 3, 3, 3, 3, 3, 3, 3,
   315  	2, 2, 2, 2, 2, 2, 2, 2,
   316  	2, 2, 2, 2, 2, 2, 2, 2,
   317  	2, 2, 2, 2, 2, 2, 2, 2,
   318  	2, 2, 2, 2, 2, 2, 2, 2,
   319  	1, 1, 1, 1, 1, 1, 1, 1,
   320  	1, 1, 1, 1, 1, 1, 1, 1,
   321  	1, 1, 1, 1, 1, 1, 1, 1,
   322  	1, 1, 1, 1, 1, 1, 1, 1,
   323  	1, 1, 1, 1, 1, 1, 1, 1,
   324  	1, 1, 1, 1, 1, 1, 1, 1,
   325  	1, 1, 1, 1, 1, 1, 1, 1,
   326  	1, 1, 1, 1, 1, 1, 1, 1,
   327  	0, 0, 0, 0, 0, 0, 0, 0,
   328  	0, 0, 0, 0, 0, 0, 0, 0,
   329  	0, 0, 0, 0, 0, 0, 0, 0,
   330  	0, 0, 0, 0, 0, 0, 0, 0,
   331  	0, 0, 0, 0, 0, 0, 0, 0,
   332  	0, 0, 0, 0, 0, 0, 0, 0,
   333  	0, 0, 0, 0, 0, 0, 0, 0,
   334  	0, 0, 0, 0, 0, 0, 0, 0,
   335  	0, 0, 0, 0, 0, 0, 0, 0,
   336  	0, 0, 0, 0, 0, 0, 0, 0,
   337  	0, 0, 0, 0, 0, 0, 0, 0,
   338  	0, 0, 0, 0, 0, 0, 0, 0,
   339  	0, 0, 0, 0, 0, 0, 0, 0,
   340  	0, 0, 0, 0, 0, 0, 0, 0,
   341  	0, 0, 0, 0, 0, 0, 0, 0,
   342  	0, 0, 0, 0, 0, 0, 0, 0,
   343  }
   344  
   345  // logdist returns the logarithmic distance between a and b, log2(a ^ b).
   346  func logdist(a, b common.Hash) int {
   347  	lz := 0
   348  	for i := range a {
   349  		x := a[i] ^ b[i]
   350  		if x == 0 {
   351  			lz += 8
   352  		} else {
   353  			lz += lzcount[x]
   354  			break
   355  		}
   356  	}
   357  	return len(a)*8 - lz
   358  }
   359  
   360  // hashAtDistance returns a random hash such that logdist(a, b) == n
   361  func hashAtDistance(a common.Hash, n int) (b common.Hash) {
   362  	if n == 0 {
   363  		return a
   364  	}
   365  	// flip bit at position n, fill the rest with random bits
   366  	b = a
   367  	pos := len(a) - n/8 - 1
   368  	bit := byte(0x01) << (byte(n%8) - 1)
   369  	if bit == 0 {
   370  		pos++
   371  		bit = 0x80
   372  	}
   373  	b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
   374  	for i := pos + 1; i < len(a); i++ {
   375  		b[i] = byte(rand.Intn(255))
   376  	}
   377  	return b
   378  }