github.com/electroneum/electroneum-sc@v0.0.0-20230105223411-3bc1d078281e/core/state_transition.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package core
    18  
    19  import (
    20  	"fmt"
    21  	"math"
    22  	"math/big"
    23  
    24  	"github.com/electroneum/electroneum-sc/common"
    25  	cmath "github.com/electroneum/electroneum-sc/common/math"
    26  	"github.com/electroneum/electroneum-sc/core/types"
    27  	"github.com/electroneum/electroneum-sc/core/vm"
    28  	"github.com/electroneum/electroneum-sc/crypto"
    29  	"github.com/electroneum/electroneum-sc/params"
    30  )
    31  
    32  var emptyCodeHash = crypto.Keccak256Hash(nil)
    33  
    34  // The State Transitioning Model
    35  //
    36  // A state transition is a change made when a transaction is applied to the current world
    37  // state. The state transitioning model does all the necessary work to work out a valid new
    38  // state root.
    39  //
    40  //  1. Nonce handling
    41  //  2. Pre pay gas
    42  //  3. Create a new state object if the recipient is \0*32
    43  //  4. Value transfer
    44  //
    45  // == If contract creation ==
    46  //
    47  //	4a. Attempt to run transaction data
    48  //	4b. If valid, use result as code for the new state object
    49  //
    50  // == end ==
    51  //
    52  //  5. Run Script section
    53  //  6. Derive new state root
    54  type StateTransition struct {
    55  	gp         *GasPool
    56  	msg        Message
    57  	gas        uint64
    58  	gasPrice   *big.Int
    59  	gasFeeCap  *big.Int
    60  	gasTipCap  *big.Int
    61  	initialGas uint64
    62  	value      *big.Int
    63  	data       []byte
    64  	state      vm.StateDB
    65  	evm        *vm.EVM
    66  }
    67  
    68  // Message represents a message sent to a contract.
    69  type Message interface {
    70  	From() common.Address
    71  	To() *common.Address
    72  
    73  	GasPrice() *big.Int
    74  	GasFeeCap() *big.Int
    75  	GasTipCap() *big.Int
    76  	Gas() uint64
    77  	Value() *big.Int
    78  
    79  	Nonce() uint64
    80  	IsFake() bool
    81  	Data() []byte
    82  	AccessList() types.AccessList
    83  }
    84  
    85  // ExecutionResult includes all output after executing given evm
    86  // message no matter the execution itself is successful or not.
    87  type ExecutionResult struct {
    88  	UsedGas    uint64 // Total used gas but include the refunded gas
    89  	Err        error  // Any error encountered during the execution(listed in core/vm/errors.go)
    90  	ReturnData []byte // Returned data from evm(function result or data supplied with revert opcode)
    91  }
    92  
    93  // Unwrap returns the internal evm error which allows us for further
    94  // analysis outside.
    95  func (result *ExecutionResult) Unwrap() error {
    96  	return result.Err
    97  }
    98  
    99  // Failed returns the indicator whether the execution is successful or not
   100  func (result *ExecutionResult) Failed() bool { return result.Err != nil }
   101  
   102  // Return is a helper function to help caller distinguish between revert reason
   103  // and function return. Return returns the data after execution if no error occurs.
   104  func (result *ExecutionResult) Return() []byte {
   105  	if result.Err != nil {
   106  		return nil
   107  	}
   108  	return common.CopyBytes(result.ReturnData)
   109  }
   110  
   111  // Revert returns the concrete revert reason if the execution is aborted by `REVERT`
   112  // opcode. Note the reason can be nil if no data supplied with revert opcode.
   113  func (result *ExecutionResult) Revert() []byte {
   114  	if result.Err != vm.ErrExecutionReverted {
   115  		return nil
   116  	}
   117  	return common.CopyBytes(result.ReturnData)
   118  }
   119  
   120  // IntrinsicGas computes the 'intrinsic gas' for a message with the given data.
   121  func IntrinsicGas(data []byte, accessList types.AccessList, isContractCreation bool, isHomestead, isEIP2028 bool) (uint64, error) {
   122  	// Set the starting gas for the raw transaction
   123  	var gas uint64
   124  	if isContractCreation && isHomestead {
   125  		gas = params.TxGasContractCreation
   126  	} else {
   127  		gas = params.TxGas
   128  	}
   129  	// Bump the required gas by the amount of transactional data
   130  	if len(data) > 0 {
   131  		// Zero and non-zero bytes are priced differently
   132  		var nz uint64
   133  		for _, byt := range data {
   134  			if byt != 0 {
   135  				nz++
   136  			}
   137  		}
   138  		// Make sure we don't exceed uint64 for all data combinations
   139  		nonZeroGas := params.TxDataNonZeroGasFrontier
   140  		if isEIP2028 {
   141  			nonZeroGas = params.TxDataNonZeroGasEIP2028
   142  		}
   143  		if (math.MaxUint64-gas)/nonZeroGas < nz {
   144  			return 0, ErrGasUintOverflow
   145  		}
   146  		gas += nz * nonZeroGas
   147  
   148  		z := uint64(len(data)) - nz
   149  		if (math.MaxUint64-gas)/params.TxDataZeroGas < z {
   150  			return 0, ErrGasUintOverflow
   151  		}
   152  		gas += z * params.TxDataZeroGas
   153  	}
   154  	if accessList != nil {
   155  		gas += uint64(len(accessList)) * params.TxAccessListAddressGas
   156  		gas += uint64(accessList.StorageKeys()) * params.TxAccessListStorageKeyGas
   157  	}
   158  	return gas, nil
   159  }
   160  
   161  // NewStateTransition initialises and returns a new state transition object.
   162  func NewStateTransition(evm *vm.EVM, msg Message, gp *GasPool) *StateTransition {
   163  	return &StateTransition{
   164  		gp:        gp,
   165  		evm:       evm,
   166  		msg:       msg,
   167  		gasPrice:  msg.GasPrice(),
   168  		gasFeeCap: msg.GasFeeCap(),
   169  		gasTipCap: msg.GasTipCap(),
   170  		value:     msg.Value(),
   171  		data:      msg.Data(),
   172  		state:     evm.StateDB,
   173  	}
   174  }
   175  
   176  // ApplyMessage computes the new state by applying the given message
   177  // against the old state within the environment.
   178  //
   179  // ApplyMessage returns the bytes returned by any EVM execution (if it took place),
   180  // the gas used (which includes gas refunds) and an error if it failed. An error always
   181  // indicates a core error meaning that the message would always fail for that particular
   182  // state and would never be accepted within a block.
   183  func ApplyMessage(evm *vm.EVM, msg Message, gp *GasPool) (*ExecutionResult, error) {
   184  	return NewStateTransition(evm, msg, gp).TransitionDb()
   185  }
   186  
   187  // to returns the recipient of the message.
   188  func (st *StateTransition) to() common.Address {
   189  	if st.msg == nil || st.msg.To() == nil /* contract creation */ {
   190  		return common.Address{}
   191  	}
   192  	return *st.msg.To()
   193  }
   194  
   195  func (st *StateTransition) buyGas() error {
   196  	mgval := new(big.Int).SetUint64(st.msg.Gas())
   197  	mgval = mgval.Mul(mgval, st.gasPrice)
   198  	balanceCheck := mgval
   199  	if st.gasFeeCap != nil {
   200  		balanceCheck = new(big.Int).SetUint64(st.msg.Gas())
   201  		balanceCheck = balanceCheck.Mul(balanceCheck, st.gasFeeCap)
   202  		balanceCheck.Add(balanceCheck, st.value)
   203  	}
   204  	if have, want := st.state.GetBalance(st.msg.From()), balanceCheck; have.Cmp(want) < 0 {
   205  		return fmt.Errorf("%w: address %v have %v want %v", ErrInsufficientFunds, st.msg.From().Hex(), have, want)
   206  	}
   207  	if err := st.gp.SubGas(st.msg.Gas()); err != nil {
   208  		return err
   209  	}
   210  	st.gas += st.msg.Gas()
   211  
   212  	st.initialGas = st.msg.Gas()
   213  	st.state.SubBalance(st.msg.From(), mgval)
   214  	return nil
   215  }
   216  
   217  func (st *StateTransition) preCheck() error {
   218  	// Only check transactions that are not fake
   219  	if !st.msg.IsFake() {
   220  		// Make sure this transaction's nonce is correct.
   221  		stNonce := st.state.GetNonce(st.msg.From())
   222  		if msgNonce := st.msg.Nonce(); stNonce < msgNonce {
   223  			return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooHigh,
   224  				st.msg.From().Hex(), msgNonce, stNonce)
   225  		} else if stNonce > msgNonce {
   226  			return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooLow,
   227  				st.msg.From().Hex(), msgNonce, stNonce)
   228  		} else if stNonce+1 < stNonce {
   229  			return fmt.Errorf("%w: address %v, nonce: %d", ErrNonceMax,
   230  				st.msg.From().Hex(), stNonce)
   231  		}
   232  		// Make sure the sender is an EOA
   233  		if codeHash := st.state.GetCodeHash(st.msg.From()); codeHash != emptyCodeHash && codeHash != (common.Hash{}) {
   234  			return fmt.Errorf("%w: address %v, codehash: %s", ErrSenderNoEOA,
   235  				st.msg.From().Hex(), codeHash)
   236  		}
   237  	}
   238  	// Make sure that transaction gasFeeCap is greater than the baseFee (post london)
   239  	if st.evm.ChainConfig().IsLondon(st.evm.Context.BlockNumber) {
   240  		// Skip the checks if gas fields are zero and baseFee was explicitly disabled (eth_call)
   241  		if !st.evm.Config.NoBaseFee || st.gasFeeCap.BitLen() > 0 || st.gasTipCap.BitLen() > 0 {
   242  			if l := st.gasFeeCap.BitLen(); l > 256 {
   243  				return fmt.Errorf("%w: address %v, maxFeePerGas bit length: %d", ErrFeeCapVeryHigh,
   244  					st.msg.From().Hex(), l)
   245  			}
   246  			if l := st.gasTipCap.BitLen(); l > 256 {
   247  				return fmt.Errorf("%w: address %v, maxPriorityFeePerGas bit length: %d", ErrTipVeryHigh,
   248  					st.msg.From().Hex(), l)
   249  			}
   250  			if st.gasFeeCap.Cmp(st.gasTipCap) < 0 {
   251  				return fmt.Errorf("%w: address %v, maxPriorityFeePerGas: %s, maxFeePerGas: %s", ErrTipAboveFeeCap,
   252  					st.msg.From().Hex(), st.gasTipCap, st.gasFeeCap)
   253  			}
   254  			// This will panic if baseFee is nil, but basefee presence is verified
   255  			// as part of header validation.
   256  			if st.gasFeeCap.Cmp(st.evm.Context.BaseFee) < 0 {
   257  				return fmt.Errorf("%w: address %v, maxFeePerGas: %s baseFee: %s", ErrFeeCapTooLow,
   258  					st.msg.From().Hex(), st.gasFeeCap, st.evm.Context.BaseFee)
   259  			}
   260  		}
   261  	}
   262  	return st.buyGas()
   263  }
   264  
   265  // TransitionDb will transition the state by applying the current message and
   266  // returning the evm execution result with following fields.
   267  //
   268  //   - used gas: total gas used (including gas being refunded)
   269  //   - returndata: the returned data from evm
   270  //   - concrete execution error: various EVM errors which abort the execution, e.g.
   271  //     ErrOutOfGas, ErrExecutionReverted
   272  //
   273  // However if any consensus issue encountered, return the error directly with
   274  // nil evm execution result.
   275  func (st *StateTransition) TransitionDb() (*ExecutionResult, error) {
   276  	// First check this message satisfies all consensus rules before
   277  	// applying the message. The rules include these clauses
   278  	//
   279  	// 1. the nonce of the message caller is correct
   280  	// 2. caller has enough balance to cover transaction fee(gaslimit * gasprice)
   281  	// 3. the amount of gas required is available in the block
   282  	// 4. the purchased gas is enough to cover intrinsic usage
   283  	// 5. there is no overflow when calculating intrinsic gas
   284  	// 6. caller has enough balance to cover asset transfer for **topmost** call
   285  
   286  	// Check clauses 1-3, buy gas if everything is correct
   287  	if err := st.preCheck(); err != nil {
   288  		return nil, err
   289  	}
   290  
   291  	if st.evm.Config.Debug {
   292  		st.evm.Config.Tracer.CaptureTxStart(st.initialGas)
   293  		defer func() {
   294  			st.evm.Config.Tracer.CaptureTxEnd(st.gas)
   295  		}()
   296  	}
   297  
   298  	var (
   299  		msg              = st.msg
   300  		sender           = vm.AccountRef(msg.From())
   301  		rules            = st.evm.ChainConfig().Rules(st.evm.Context.BlockNumber, st.evm.Context.Random != nil)
   302  		contractCreation = msg.To() == nil
   303  	)
   304  
   305  	// Check clauses 4-5, subtract intrinsic gas if everything is correct
   306  	gas, err := IntrinsicGas(st.data, st.msg.AccessList(), contractCreation, rules.IsHomestead, rules.IsIstanbul)
   307  	if err != nil {
   308  		return nil, err
   309  	}
   310  	if st.gas < gas {
   311  		return nil, fmt.Errorf("%w: have %d, want %d", ErrIntrinsicGas, st.gas, gas)
   312  	}
   313  	st.gas -= gas
   314  
   315  	// Check clause 6
   316  	if msg.Value().Sign() > 0 && !st.evm.Context.CanTransfer(st.state, msg.From(), msg.Value()) {
   317  		return nil, fmt.Errorf("%w: address %v", ErrInsufficientFundsForTransfer, msg.From().Hex())
   318  	}
   319  
   320  	// Set up the initial access list.
   321  	if rules.IsBerlin {
   322  		st.state.PrepareAccessList(msg.From(), msg.To(), vm.ActivePrecompiles(rules), msg.AccessList())
   323  	}
   324  	var (
   325  		ret   []byte
   326  		vmerr error // vm errors do not effect consensus and are therefore not assigned to err
   327  	)
   328  	if contractCreation {
   329  		ret, _, st.gas, vmerr = st.evm.Create(sender, st.data, st.gas, st.value)
   330  	} else {
   331  		// Increment the nonce for the next transaction
   332  		st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1)
   333  		ret, st.gas, vmerr = st.evm.Call(sender, st.to(), st.data, st.gas, st.value)
   334  	}
   335  
   336  	if !rules.IsLondon {
   337  		// Before EIP-3529: refunds were capped to gasUsed / 2
   338  		st.refundGas(params.RefundQuotient)
   339  	} else {
   340  		// After EIP-3529: refunds are capped to gasUsed / 5
   341  		st.refundGas(params.RefundQuotientEIP3529)
   342  	}
   343  	effectiveTip := st.gasPrice
   344  	if rules.IsLondon {
   345  		effectiveTip = cmath.BigMin(st.gasTipCap, new(big.Int).Sub(st.gasFeeCap, st.evm.Context.BaseFee))
   346  	}
   347  	st.state.AddBalance(st.evm.Context.Coinbase, new(big.Int).Mul(new(big.Int).SetUint64(st.gasUsed()), effectiveTip))
   348  
   349  	return &ExecutionResult{
   350  		UsedGas:    st.gasUsed(),
   351  		Err:        vmerr,
   352  		ReturnData: ret,
   353  	}, nil
   354  }
   355  
   356  func (st *StateTransition) refundGas(refundQuotient uint64) {
   357  	// Apply refund counter, capped to a refund quotient
   358  	refund := st.gasUsed() / refundQuotient
   359  	if refund > st.state.GetRefund() {
   360  		refund = st.state.GetRefund()
   361  	}
   362  	st.gas += refund
   363  
   364  	// Return ETH for remaining gas, exchanged at the original rate.
   365  	remaining := new(big.Int).Mul(new(big.Int).SetUint64(st.gas), st.gasPrice)
   366  	st.state.AddBalance(st.msg.From(), remaining)
   367  
   368  	// Also return remaining gas to the block gas counter so it is
   369  	// available for the next transaction.
   370  	st.gp.AddGas(st.gas)
   371  }
   372  
   373  // gasUsed returns the amount of gas used up by the state transition.
   374  func (st *StateTransition) gasUsed() uint64 {
   375  	return st.initialGas - st.gas
   376  }