
F1 Fee Distribution Draft-02

Dev Ojha

January 3, 2019

Abstract

In a proof of stake blockchain, validators need to split the rewards
gained from transaction fees each block. Furthermore, these fees must
be fairly distributed to each of a validator’s constituent delegators. They
accrue this reward throughout the entire time they are delegated, and
they have a special operation to withdraw accrued rewards.

The F1 fee distribution scheme works for any algorithm to split funds
between validators each block, with minimal iteration, and the only ap-
proximations being due to finite decimal precision. Per block there is a
single iteration over the validator set, to enable reward algorithms that
differ by validator. No iteration is required to delegate, or withdraw. The
state usage is one state update per validator per block, and one state
entry per active delegation. It can optionally handle arbitrary inflation
schemes, and auto-bonding of rewards.

1 F1 Fee Distribution

1.1 Context

In a proof of stake blockchain, each validator has an associated stake. Trans-
action fees get rewarded to validators based on the incentive scheme of the
underlying proof of stake model. The fee distribution problem occurs in proof
of stake blockchains supporting delegation, as there is a need to distribute a
validator’s fee rewards to its delegators. The trivial solution of just giving the
rewards to each delegator every block is too expensive to perform on-chain.
So instead fee distribution algorithms have delegators perform a withdraw ac-
tion, which when performed yields the same total amount of fees as if they had
received them at every block.

This details F1, an approximation-free, slash-tolerant fee distribution algo-
rithm which allows validator commission-rates, inflation rates, and fee propor-
tions, which can all efficiently change per validator, every block. The algorithm
requires iterating over the bonded validators every block, and withdraws require
no iteration. This is cheap, due to staking logic already requiring iteration over
all validators, which causes the expensive state-reads to be cached.

The key point of how F1 works is that it tracks how much rewards a delegator
with 1 stake for a given validator would be entitled to if it had bonded at block

1



0 until the latest block. When a delegator bonds at block b, the amount of
rewards a delegator with 1 stake would have if bonded at block 0 until block
b is also persisted to state. When the delegator withdraws, they receive the
difference of these two values. Since rewards are distributed according to stake-
weighting, this amount of rewards can be scaled by the amount of stake a
delegator had. Section 1.2 describes this in more detail, with an argument for
it being approximation free. Section 2 details how to adapt this algorithm to
handle commission rates, slashing, and inflation.

1.2 Base algorithm

In this section, we show that the F1 base algorithm gives each delegator rewards
identical to that which they’d receive in the naive and correct fee distribution
algorithm that iterated over all delegators every block.

Even distribution of a validators rewards amongst its validators weighted by
stake means the following: Suppose a delegator delegates x stake to a validator
v at block h. Let the amount of stake the validator has at block i be si and the
amount of fees they receive at this height be fi. Then if a delegator contributing
x stake decides to withdraw at block n, the rewards they receive are

n∑
i=h

x

si
fi = x

n∑
i=h

fi
si

Note that si does not change every block, it only changes if the validator
gets slashed, or if any delegator alters the amount they have delegated. We’ll
relegate handling of slashes to subsection 2.2, and only consider the case with
no slashing here. We can change the iteration from being over every block, to
instead being over the set of blocks between two changes in validator v’s total
stake. Let each of these set of blocks be called a period. A new period begins
every time that validator’s total stake changes. Let the total amount of stake
for the validator in period p be np. Let Tp be the total fees that validator v
accrued in period p. Let h be the start of period pinit, and height n be the end
of pfinal. It follows that

x

n∑
i=h

fi
si

= x

pfinal∑
p=pinit

Tp

np

Let p0 represent the period which begins when the validator first bonds. The
central idea to the F1 model is that at the end of the kth period, the following is
stored at a state location indexable by k:

∑k
i=0

Ti

ni
. Let the index of the current

period be f . When a delegator wants to delegate or withdraw their reward,
they first create a new entry in state to end the current period. Then this entry
is created using the previous entry as follows:

Entryf =

f∑
i=0

Ti

ni
=

f−1∑
i=0

Ti

ni
+

Tf

nf
= Entryf−1 +

Tf

nf

2



Where Tf is the fees the validator has accrued in period f , and nf is the val-
idators total amount of stake in period f .

The withdrawer’s delegation object has the index k for the period which
they ended by bonding. (They start receiving rewards for period k + 1) The
reward they should receive when withdrawing is:

x

f∑
i=k+1

Ti

ni
= x

((
f∑

i=0

Ti

ni

)
−

(
k∑

i=0

Ti

ni

))
= x (Entryf − Entryk)

It is clear from the equations that this payout mechanism maintains correct-
ness, and requires no iterations. It just needed the two state reads for these
entries.

Tf is a separate variable in state for the amount of fees this validator has
accrued since the last update to its power. This variable is incremented at every
block by however much fees this validator received that block. On the update
to the validators power, this variable is used to create the entry in state at f ,
and is then reset to 0.

This fee distribution proposal is agnostic to how all of the blocks fees are
divied up between validators. This creates many nice properties, for example it
is possible to only rewarding validators who signed that block.

2 Additional add-ons

2.1 Commission Rates

Commission rates are the idea that a validator can take a fixed x% cut of all
of their received fees, before redistributing evenly to the constituent delegators.
This can easily be done as follows:

In block h a validator receives fh fees. Instead of incrementing that validators
“total accrued fees this period variable” by fh, it is instead incremented by
(1 − commission rate) ∗ fp. Then commission rate ∗ fp is deposited directly
to the validator’s account. This allows for efficient updates to a validator’s
commission rate every block if desired. More generally, each validator could
have a function which takes their fees as input, and outputs a set of outputs to
pay these fees too. (i.e. x% going to themselves, y% to delegators, z% burnt)

2.2 Slashing

Slashing is distinct from withdrawals, since it lowers the stake of all of the
delegator’s by a fixed percentage. Since no one is charged gas for slashes, a
slash cannot iterate over all delegators. Thus we can no longer just multiply
by x over the difference in stake. This section describes a simple solution that
should suffice for most chains needs. An asymptotically optimal solution is
provided in section 2.4. TODO: Consider removing this section in favor of just
using the current section 2.4?

3



The solution here is to instead store each period created by a slash in the
validators state. Then when withdrawing, you must iterate over all slashes
between when you started and ended. Suppose you delegated at period 0, a
y% slash occured at period 2, and your withdrawal creates period 4. Then you
receive funds from periods 0 to 2 as normal. The equations for funds you receive
for periods 2 to 4 now uses (1−y)x for your stake instead of just x stake. When
there are multiple slashes, you just account for the accumulated slash factor.

In practice this will not really be an efficiency hit, as the number of slashes
is expected to be 0 or 1 for most validators. Validators that get slashed more
will naturally lose their delegators. A malicious validator that gets itself slashed
many times would increase the gas to withdraw linearly, but the economic loss
of funds due to the slashes is expected to far out-weigh the extra overhead the
honest withdrawer must pay for due to the gas. (TODO: frame that above
sentence in terms of griefing factors, as thats more correct)

2.3 Inflation

Inflation is the idea that we want every staked coin to create more staking
tokens as time progresses. The purpose being to drive down the relative worth
of unstaked tokens. Each block, every staked token should produce x staking
tokens as inflation, where x is calculated from a function inflation which takes
state and the block information as input. Let xi represent the evaluation of
inflation in the ith block. The goal of this section is to auto-bond inflation
in the fee distribution model without iteration. This is done by preserving the
invariant that every state entry contains the rewards one would have if they had
bonded one stake at genesis until that corresponding block.

In state a variable should be kept for the number of tokens one would have
now due to inflation, given that they bonded one token at genesis. This is∏now

0 (1 + xi). Each period now stores this total inflation product along with
what it already stores per-period.

Let Ri be the fee rewards in block i, and ni be the total amount bonded to
that validator in that block. The correct amount of rewards which 1 token at
genesis should have now is:

Reward(now) =

now∑
i=0

 i∏
j=0

1 + xj

 ∗ Ri

ni

The term in the sum is the amount of stake one stake becomes due to inflation,
multiplied by the amount of fees per stake.

Now we cast this into the period frame of view. Recall that we build the
rewards by creating a state entry for the rewards of the previous period, and
keeping track of the rewards within this period. Thus we first define the correct
amount of rewards for each successive period, proving correctness of this via
induction. We then show that the state entry that gets efficiently built up block
by block is equal to this value for the latest period.

4



Let start, end denote the start/end of a period.
Suppose that ∀f > 0, Reward(end(f)) is correctly constructed as

Reward(end(f)) = Reward(end(f − 1)) +

end(f)∑
i=start(f)

 i∏
j=0

1 + xj

 Ri

ni

and that for f = 0, Reward(end(0)) = 0. (With period 1 being defined as
the period that has the first bond into it) It must be shown that assuming the
supposition ∀f ≤ f0,

Reward(end(f0 + 1)) = Reward(end(f0)) +

end(f0+1)∑
i=start(f0+1)

 i∏
j=0

1 + xj

 Ri

ni

Using the definition of Reward, it follows that:

end(f0+1)∑
i=0

 i∏
j=0

1 + xj

∗Ri

ni
=

end(f0)∑
i=0

 i∏
j=0

1 + xj

∗Ri

ni
+

end(f0+1)∑
i=start(f0+1)

 i∏
j=0

1 + xj

 Ri

ni

Since the first summation on the right hand side is Reward(end(f0)), the
supposition is proven true. Consequently, the reward for just period f adjusted
for the amount of inflation 1 token at genesis would produce, is:

end(f)∑
i=start(f)

 i∏
j=0

1 + xj

 Ri

ni

TODO: make this proof + pre-amble less verbose, and just wrap up into a
lemma. Maybe just leave this proof or the last part to the reader, since it easily
follows from summation bounds.

Now note that

end(f)∑
i=start(f)

 i∏
j=0

1 + xj

 Ri

ni
=

end(f−1)∏
j=0

1 + xj

 end(f)∑
i=start(f)

 i∏
j=start(f)

1 + xj

 Ri

ni

By definition of period, and inflation being applied every block,

ni = nstart(f)

(∏i
j=start(f) 1 + xj

)
. This cancels out the product in the sum-

mation, therefore

end(f)∑
i=start(f)

 i∏
j=0

1 + xj

 Ri

ni
=

end(f−1)∏
j=0

1 + xj

∑end(f)
i=start(f) Ri

nstart(f)

Thus every block, each validator just has to add the total amount of fees
(The Ri term) that goes to delegates to some per-period term. When creating a
new period, nstart(f) can be cached in state, and the product is already stored in

5



the previous periods state entry. You then get the next period’s nstart(f) from
the consensus’ power entry for this validator. This is thus extremely efficient
per block.

When withdrawing, you take the difference as before, which yields the amount
of rewards you would have obtained with (

∏begin bonding period
0 1+x) stake from

the block you began bonding at until now. (
∏begin bonding period

0 1+x) is known,
since its included in the state entry for when you bonded. You then divide the
entitled fees by (

∏begin bonding period
0 1 +x) to normalize it to being the amount

of rewards you’re entitled to from 1 stake at that block to now. Then as before,
you multiply by the amount of stake you had initially bonded.
TODO: (Does the difference equating to that make sense, or should it be shown
explicitly)
TODO: Does this need to explain how the originally bonded tokens are refunded,
or is that clear?

The inflation function could vary per block, and per validator if ever a need
rose. If the inflation rate is the same for everyone then there can be a single
global store for the entries corresponding to the product of inflations. Inflation
creation can trivially be epoched as long as inflation isn’t required within the
epoch, through changes to the inflation function.

2.4 Withdrawing with no iteration over slashes

Notice that a slash is the same as a negative inflation rate for a validator in
one block. For example a 20% slash is equivalent to a −20% inflation for a
validator in a block. Given correctness of auto-bonding inflation with different
inflation rates per-validator, it follows that handling slashes can be correctly
done by simply subtracting the validators inflation factor in that block to be
the negative of the slash factor. This significantly simplifies the withdrawal
procedure.

2.5 Auto bonding fees

TODO: Fill this out. Core idea: you use the same mechanism as previously,
but you just don’t take that optimization with ni and the nstart relation. Fairly
simple to do.

2.6 Delegation updates

Updating your delegation amount is equivalent to withdrawing earned rewards
and a fully independent new delegation occurring in the same block. The same
applies for redelegation. From the view of fee distribution, partial redelegation
is the same as a delegation update + a new delegation.

6



2.7 Jailing / being kicked out of the validator set

This basically requires no change. In each block you only iterate over the cur-
rently bonded validators. So you simply don’t update the ”total accrued fees
this period” variable for jailed / non-bonded validators. Withdrawing requires
no special casing here!

3 State Requirements

State entries can be pruned quite effectively. Suppose for the sake of exposition
that there is at most one delegation / withdrawal to a particular validator in
any given block. Then each delegation is responsible for one addition to state.
Only the next period, and this delegator’s withdrawal could depend on this
entry. Thus once this delegator withdraws, this state entry can be pruned.
For the entry created by the delegator’s withdrawal, that is only required by
the creation of the next period. Thus once the next period is created, that
withdrawal’s period can be deleted.

This can be easily adapted to the case where there are multiple delegations /
withdrawals per block, by maintaining a reference count in each period starting
state entry.

The slash entries for a validator can only be pruned when all of that valida-
tor’s delegators have their bonding period starting after the slash. This seems
ineffective to keep track of, thus it is not worth it. Each slash should instead
remain in state until the validator unbonds and all delegators have their fees
withdrawn.

4 Implementers Considerations

TODO: Convert this section into a proper conclusion
This is an extremely simple scheme with many nice benefits.

• The overhead per block is a simple iteration over the bonded validator
set, which occurs anyway. (Thus it can be implemented “for-free” with
an optimized code-base)

• Withdrawing earned fees only requires iterating over slashes since when
you bonded. (Which is a negligible iteration)

• There are no approximations in any of the calculations. (modulo minor
errata resulting from fixed precision decimals used in divisions)

• Supports arbitrary inflation models. (Thus could even vary upon block
signers)

• Supports arbitrary fee distribution amongst the validator set. (Thus can
account for things like only online validators get fees, which has important
incentivization impacts)

7



• The above two can change on a live chain with no issues.

• Validator commission rates can be changed every block

• The simplicity of this scheme lends itself well to implementation

Thus this scheme has efficiency improvements, simplicity improvements, and
expressiveness improvements over the currently proposed schemes. With a cor-
rect fee distribution amongst the validator set, this solves the existing problem
where one could withhold their signature for risk-free gain.

5 TO DOs

• A global fee pool can be described.

• Mention storage optimization for how to prune slashing entries in the
uniform inflation and iteration over slashing case

• Add equation numbers

• perhaps re-organize so that the no iteration

• Section on decimal precision considerations (would unums help?), and
mitigating errors in calculation with floats and decimals. – This probably
belongs in a corrollary markdown file in the implementation

• Consider indicating that the withdraw action need not be a tx type and
could instead happen ’transparently’ when more coins are needed, if a
chain desired this for UX / p2p efficiency.

8


	F1 Fee Distribution
	Context
	Base algorithm

	Additional add-ons
	Commission Rates
	Slashing
	Inflation
	Withdrawing with no iteration over slashes
	Auto bonding fees
	Delegation updates
	Jailing / being kicked out of the validator set

	State Requirements
	Implementers Considerations
	TO DOs

