github.com/fjballest/golang@v0.0.0-20151209143359-e4c5fe594ca8/src/testing/benchmark.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package testing
     6  
     7  import (
     8  	"flag"
     9  	"fmt"
    10  	"os"
    11  	"runtime"
    12  	"sync"
    13  	"sync/atomic"
    14  	"time"
    15  )
    16  
    17  var matchBenchmarks = flag.String("test.bench", "", "regular expression to select benchmarks to run")
    18  var benchTime = flag.Duration("test.benchtime", 1*time.Second, "approximate run time for each benchmark")
    19  var benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks")
    20  
    21  // Global lock to ensure only one benchmark runs at a time.
    22  var benchmarkLock sync.Mutex
    23  
    24  // Used for every benchmark for measuring memory.
    25  var memStats runtime.MemStats
    26  
    27  // An internal type but exported because it is cross-package; part of the implementation
    28  // of the "go test" command.
    29  type InternalBenchmark struct {
    30  	Name string
    31  	F    func(b *B)
    32  }
    33  
    34  // B is a type passed to Benchmark functions to manage benchmark
    35  // timing and to specify the number of iterations to run.
    36  //
    37  // A benchmark ends when its Benchmark function returns or calls any of the methods
    38  // FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called
    39  // only from the goroutine running the Benchmark function.
    40  // The other reporting methods, such as the variations of Log and Error,
    41  // may be called simultaneously from multiple goroutines.
    42  //
    43  // Like in tests, benchmark logs are accumulated during execution
    44  // and dumped to standard error when done. Unlike in tests, benchmark logs
    45  // are always printed, so as not to hide output whose existence may be
    46  // affecting benchmark results.
    47  type B struct {
    48  	common
    49  	N                int
    50  	previousN        int           // number of iterations in the previous run
    51  	previousDuration time.Duration // total duration of the previous run
    52  	benchmark        InternalBenchmark
    53  	bytes            int64
    54  	timerOn          bool
    55  	showAllocResult  bool
    56  	result           BenchmarkResult
    57  	parallelism      int // RunParallel creates parallelism*GOMAXPROCS goroutines
    58  	// The initial states of memStats.Mallocs and memStats.TotalAlloc.
    59  	startAllocs uint64
    60  	startBytes  uint64
    61  	// The net total of this test after being run.
    62  	netAllocs uint64
    63  	netBytes  uint64
    64  }
    65  
    66  // StartTimer starts timing a test.  This function is called automatically
    67  // before a benchmark starts, but it can also used to resume timing after
    68  // a call to StopTimer.
    69  func (b *B) StartTimer() {
    70  	if !b.timerOn {
    71  		runtime.ReadMemStats(&memStats)
    72  		b.startAllocs = memStats.Mallocs
    73  		b.startBytes = memStats.TotalAlloc
    74  		b.start = time.Now()
    75  		b.timerOn = true
    76  	}
    77  }
    78  
    79  // StopTimer stops timing a test.  This can be used to pause the timer
    80  // while performing complex initialization that you don't
    81  // want to measure.
    82  func (b *B) StopTimer() {
    83  	if b.timerOn {
    84  		b.duration += time.Now().Sub(b.start)
    85  		runtime.ReadMemStats(&memStats)
    86  		b.netAllocs += memStats.Mallocs - b.startAllocs
    87  		b.netBytes += memStats.TotalAlloc - b.startBytes
    88  		b.timerOn = false
    89  	}
    90  }
    91  
    92  // ResetTimer zeros the elapsed benchmark time and memory allocation counters.
    93  // It does not affect whether the timer is running.
    94  func (b *B) ResetTimer() {
    95  	if b.timerOn {
    96  		runtime.ReadMemStats(&memStats)
    97  		b.startAllocs = memStats.Mallocs
    98  		b.startBytes = memStats.TotalAlloc
    99  		b.start = time.Now()
   100  	}
   101  	b.duration = 0
   102  	b.netAllocs = 0
   103  	b.netBytes = 0
   104  }
   105  
   106  // SetBytes records the number of bytes processed in a single operation.
   107  // If this is called, the benchmark will report ns/op and MB/s.
   108  func (b *B) SetBytes(n int64) { b.bytes = n }
   109  
   110  // ReportAllocs enables malloc statistics for this benchmark.
   111  // It is equivalent to setting -test.benchmem, but it only affects the
   112  // benchmark function that calls ReportAllocs.
   113  func (b *B) ReportAllocs() {
   114  	b.showAllocResult = true
   115  }
   116  
   117  func (b *B) nsPerOp() int64 {
   118  	if b.N <= 0 {
   119  		return 0
   120  	}
   121  	return b.duration.Nanoseconds() / int64(b.N)
   122  }
   123  
   124  // runN runs a single benchmark for the specified number of iterations.
   125  func (b *B) runN(n int) {
   126  	benchmarkLock.Lock()
   127  	defer benchmarkLock.Unlock()
   128  	// Try to get a comparable environment for each run
   129  	// by clearing garbage from previous runs.
   130  	runtime.GC()
   131  	b.N = n
   132  	b.parallelism = 1
   133  	b.ResetTimer()
   134  	b.StartTimer()
   135  	b.benchmark.F(b)
   136  	b.StopTimer()
   137  	b.previousN = n
   138  	b.previousDuration = b.duration
   139  }
   140  
   141  func min(x, y int) int {
   142  	if x > y {
   143  		return y
   144  	}
   145  	return x
   146  }
   147  
   148  func max(x, y int) int {
   149  	if x < y {
   150  		return y
   151  	}
   152  	return x
   153  }
   154  
   155  // roundDown10 rounds a number down to the nearest power of 10.
   156  func roundDown10(n int) int {
   157  	var tens = 0
   158  	// tens = floor(log_10(n))
   159  	for n >= 10 {
   160  		n = n / 10
   161  		tens++
   162  	}
   163  	// result = 10^tens
   164  	result := 1
   165  	for i := 0; i < tens; i++ {
   166  		result *= 10
   167  	}
   168  	return result
   169  }
   170  
   171  // roundUp rounds x up to a number of the form [1eX, 2eX, 3eX, 5eX].
   172  func roundUp(n int) int {
   173  	base := roundDown10(n)
   174  	switch {
   175  	case n <= base:
   176  		return base
   177  	case n <= (2 * base):
   178  		return 2 * base
   179  	case n <= (3 * base):
   180  		return 3 * base
   181  	case n <= (5 * base):
   182  		return 5 * base
   183  	default:
   184  		return 10 * base
   185  	}
   186  }
   187  
   188  // run times the benchmark function in a separate goroutine.
   189  func (b *B) run() BenchmarkResult {
   190  	go b.launch()
   191  	<-b.signal
   192  	return b.result
   193  }
   194  
   195  // launch launches the benchmark function.  It gradually increases the number
   196  // of benchmark iterations until the benchmark runs for the requested benchtime.
   197  // It prints timing information in this form
   198  //		testing.BenchmarkHello	100000		19 ns/op
   199  // launch is run by the run function as a separate goroutine.
   200  func (b *B) launch() {
   201  	// Run the benchmark for a single iteration in case it's expensive.
   202  	n := 1
   203  
   204  	// Signal that we're done whether we return normally
   205  	// or by FailNow's runtime.Goexit.
   206  	defer func() {
   207  		b.signal <- b
   208  	}()
   209  
   210  	b.runN(n)
   211  	// Run the benchmark for at least the specified amount of time.
   212  	d := *benchTime
   213  	for !b.failed && b.duration < d && n < 1e9 {
   214  		last := n
   215  		// Predict required iterations.
   216  		if b.nsPerOp() == 0 {
   217  			n = 1e9
   218  		} else {
   219  			n = int(d.Nanoseconds() / b.nsPerOp())
   220  		}
   221  		// Run more iterations than we think we'll need (1.2x).
   222  		// Don't grow too fast in case we had timing errors previously.
   223  		// Be sure to run at least one more than last time.
   224  		n = max(min(n+n/5, 100*last), last+1)
   225  		// Round up to something easy to read.
   226  		n = roundUp(n)
   227  		b.runN(n)
   228  	}
   229  	b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes}
   230  }
   231  
   232  // The results of a benchmark run.
   233  type BenchmarkResult struct {
   234  	N         int           // The number of iterations.
   235  	T         time.Duration // The total time taken.
   236  	Bytes     int64         // Bytes processed in one iteration.
   237  	MemAllocs uint64        // The total number of memory allocations.
   238  	MemBytes  uint64        // The total number of bytes allocated.
   239  }
   240  
   241  func (r BenchmarkResult) NsPerOp() int64 {
   242  	if r.N <= 0 {
   243  		return 0
   244  	}
   245  	return r.T.Nanoseconds() / int64(r.N)
   246  }
   247  
   248  func (r BenchmarkResult) mbPerSec() float64 {
   249  	if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 {
   250  		return 0
   251  	}
   252  	return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds()
   253  }
   254  
   255  func (r BenchmarkResult) AllocsPerOp() int64 {
   256  	if r.N <= 0 {
   257  		return 0
   258  	}
   259  	return int64(r.MemAllocs) / int64(r.N)
   260  }
   261  
   262  func (r BenchmarkResult) AllocedBytesPerOp() int64 {
   263  	if r.N <= 0 {
   264  		return 0
   265  	}
   266  	return int64(r.MemBytes) / int64(r.N)
   267  }
   268  
   269  func (r BenchmarkResult) String() string {
   270  	mbs := r.mbPerSec()
   271  	mb := ""
   272  	if mbs != 0 {
   273  		mb = fmt.Sprintf("\t%7.2f MB/s", mbs)
   274  	}
   275  	nsop := r.NsPerOp()
   276  	ns := fmt.Sprintf("%10d ns/op", nsop)
   277  	if r.N > 0 && nsop < 100 {
   278  		// The format specifiers here make sure that
   279  		// the ones digits line up for all three possible formats.
   280  		if nsop < 10 {
   281  			ns = fmt.Sprintf("%13.2f ns/op", float64(r.T.Nanoseconds())/float64(r.N))
   282  		} else {
   283  			ns = fmt.Sprintf("%12.1f ns/op", float64(r.T.Nanoseconds())/float64(r.N))
   284  		}
   285  	}
   286  	return fmt.Sprintf("%8d\t%s%s", r.N, ns, mb)
   287  }
   288  
   289  func (r BenchmarkResult) MemString() string {
   290  	return fmt.Sprintf("%8d B/op\t%8d allocs/op",
   291  		r.AllocedBytesPerOp(), r.AllocsPerOp())
   292  }
   293  
   294  // benchmarkName returns full name of benchmark including procs suffix.
   295  func benchmarkName(name string, n int) string {
   296  	if n != 1 {
   297  		return fmt.Sprintf("%s-%d", name, n)
   298  	}
   299  	return name
   300  }
   301  
   302  // An internal function but exported because it is cross-package; part of the implementation
   303  // of the "go test" command.
   304  func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) {
   305  	// If no flag was specified, don't run benchmarks.
   306  	if len(*matchBenchmarks) == 0 {
   307  		return
   308  	}
   309  	// Collect matching benchmarks and determine longest name.
   310  	maxprocs := 1
   311  	for _, procs := range cpuList {
   312  		if procs > maxprocs {
   313  			maxprocs = procs
   314  		}
   315  	}
   316  	maxlen := 0
   317  	var bs []InternalBenchmark
   318  	for _, Benchmark := range benchmarks {
   319  		matched, err := matchString(*matchBenchmarks, Benchmark.Name)
   320  		if err != nil {
   321  			fmt.Fprintf(os.Stderr, "testing: invalid regexp for -test.bench: %s\n", err)
   322  			os.Exit(1)
   323  		}
   324  		if matched {
   325  			bs = append(bs, Benchmark)
   326  			benchName := benchmarkName(Benchmark.Name, maxprocs)
   327  			if l := len(benchName); l > maxlen {
   328  				maxlen = l
   329  			}
   330  		}
   331  	}
   332  	for _, Benchmark := range bs {
   333  		for _, procs := range cpuList {
   334  			runtime.GOMAXPROCS(procs)
   335  			b := &B{
   336  				common: common{
   337  					signal: make(chan interface{}),
   338  				},
   339  				benchmark: Benchmark,
   340  			}
   341  			benchName := benchmarkName(Benchmark.Name, procs)
   342  			fmt.Printf("%-*s\t", maxlen, benchName)
   343  			r := b.run()
   344  			if b.failed {
   345  				// The output could be very long here, but probably isn't.
   346  				// We print it all, regardless, because we don't want to trim the reason
   347  				// the benchmark failed.
   348  				fmt.Printf("--- FAIL: %s\n%s", benchName, b.output)
   349  				continue
   350  			}
   351  			results := r.String()
   352  			if *benchmarkMemory || b.showAllocResult {
   353  				results += "\t" + r.MemString()
   354  			}
   355  			fmt.Println(results)
   356  			// Unlike with tests, we ignore the -chatty flag and always print output for
   357  			// benchmarks since the output generation time will skew the results.
   358  			if len(b.output) > 0 {
   359  				b.trimOutput()
   360  				fmt.Printf("--- BENCH: %s\n%s", benchName, b.output)
   361  			}
   362  			if p := runtime.GOMAXPROCS(-1); p != procs {
   363  				fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p)
   364  			}
   365  		}
   366  	}
   367  }
   368  
   369  // trimOutput shortens the output from a benchmark, which can be very long.
   370  func (b *B) trimOutput() {
   371  	// The output is likely to appear multiple times because the benchmark
   372  	// is run multiple times, but at least it will be seen. This is not a big deal
   373  	// because benchmarks rarely print, but just in case, we trim it if it's too long.
   374  	const maxNewlines = 10
   375  	for nlCount, j := 0, 0; j < len(b.output); j++ {
   376  		if b.output[j] == '\n' {
   377  			nlCount++
   378  			if nlCount >= maxNewlines {
   379  				b.output = append(b.output[:j], "\n\t... [output truncated]\n"...)
   380  				break
   381  			}
   382  		}
   383  	}
   384  }
   385  
   386  // A PB is used by RunParallel for running parallel benchmarks.
   387  type PB struct {
   388  	globalN *uint64 // shared between all worker goroutines iteration counter
   389  	grain   uint64  // acquire that many iterations from globalN at once
   390  	cache   uint64  // local cache of acquired iterations
   391  	bN      uint64  // total number of iterations to execute (b.N)
   392  }
   393  
   394  // Next reports whether there are more iterations to execute.
   395  func (pb *PB) Next() bool {
   396  	if pb.cache == 0 {
   397  		n := atomic.AddUint64(pb.globalN, pb.grain)
   398  		if n <= pb.bN {
   399  			pb.cache = pb.grain
   400  		} else if n < pb.bN+pb.grain {
   401  			pb.cache = pb.bN + pb.grain - n
   402  		} else {
   403  			return false
   404  		}
   405  	}
   406  	pb.cache--
   407  	return true
   408  }
   409  
   410  // RunParallel runs a benchmark in parallel.
   411  // It creates multiple goroutines and distributes b.N iterations among them.
   412  // The number of goroutines defaults to GOMAXPROCS. To increase parallelism for
   413  // non-CPU-bound benchmarks, call SetParallelism before RunParallel.
   414  // RunParallel is usually used with the go test -cpu flag.
   415  //
   416  // The body function will be run in each goroutine. It should set up any
   417  // goroutine-local state and then iterate until pb.Next returns false.
   418  // It should not use the StartTimer, StopTimer, or ResetTimer functions,
   419  // because they have global effect.
   420  func (b *B) RunParallel(body func(*PB)) {
   421  	// Calculate grain size as number of iterations that take ~100µs.
   422  	// 100µs is enough to amortize the overhead and provide sufficient
   423  	// dynamic load balancing.
   424  	grain := uint64(0)
   425  	if b.previousN > 0 && b.previousDuration > 0 {
   426  		grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration)
   427  	}
   428  	if grain < 1 {
   429  		grain = 1
   430  	}
   431  	// We expect the inner loop and function call to take at least 10ns,
   432  	// so do not do more than 100µs/10ns=1e4 iterations.
   433  	if grain > 1e4 {
   434  		grain = 1e4
   435  	}
   436  
   437  	n := uint64(0)
   438  	numProcs := b.parallelism * runtime.GOMAXPROCS(0)
   439  	var wg sync.WaitGroup
   440  	wg.Add(numProcs)
   441  	for p := 0; p < numProcs; p++ {
   442  		go func() {
   443  			defer wg.Done()
   444  			pb := &PB{
   445  				globalN: &n,
   446  				grain:   grain,
   447  				bN:      uint64(b.N),
   448  			}
   449  			body(pb)
   450  		}()
   451  	}
   452  	wg.Wait()
   453  	if n <= uint64(b.N) && !b.Failed() {
   454  		b.Fatal("RunParallel: body exited without pb.Next() == false")
   455  	}
   456  }
   457  
   458  // SetParallelism sets the number of goroutines used by RunParallel to p*GOMAXPROCS.
   459  // There is usually no need to call SetParallelism for CPU-bound benchmarks.
   460  // If p is less than 1, this call will have no effect.
   461  func (b *B) SetParallelism(p int) {
   462  	if p >= 1 {
   463  		b.parallelism = p
   464  	}
   465  }
   466  
   467  // Benchmark benchmarks a single function. Useful for creating
   468  // custom benchmarks that do not use the "go test" command.
   469  func Benchmark(f func(b *B)) BenchmarkResult {
   470  	b := &B{
   471  		common: common{
   472  			signal: make(chan interface{}),
   473  		},
   474  		benchmark: InternalBenchmark{"", f},
   475  	}
   476  	return b.run()
   477  }