
ZebraPack: Fast, friendly serialization
GolangDFW Meetup, 2017 February 16

Jason E. Aten, Ph.D.
Computer Scientist/Gopher

ZebraPack

a data description language and serialization format. Like Gobs version 2.0.

remove gray areas from the language bindings. Provides for declared schemas, sane
data evolution, and more compact encoding.

maintain easy compatibility with all the dynamic languages that already have msgpack2
support.

a day's work to adapt an existing language binding to read zebrapack: the schema are in
msgpack2, and then one simply keeps a hashmap to translate between small integer <->
�eld names/type.

MIT licensed. https://github.com/glycerine/zebrapack

zebrapack: the main idea

//given this definition, defined in Go:
type A struct {
 Name string `zid:"0"`
 Bday time.Time `zid:"1"`
 Phone string `zid:"2"`
 Sibs int `zid:"3"`
 GPA float64 `zid:"4" msg:",deprecated"` // a deprecated field.
 Friend bool `zid:"5"`
}

zebrapack: the main idea 2

original(msgpack2) -> schema(msgpack2) + each instance(msgpack2)
-------- -------------- -------------
a := A{ zebra.StructT{ map{
 "Name": "Atlanta", 0: {"Name", String}, 0: "Atlanta",
 "Bday": tm("1990-12-20"), 1: {"Bday", Timestamp}, 1: "1990-12-20",
 "Phone": "650-555-1212", 2: {"Phone", String}, 2: "650-555-1212",
 "Sibs": 3, 3: {"Sibs", Int64}, 3: 3,
 "GPA" : 3.95, 4: {"GPA", Float64}, 4: 3.95,
 "Friend":true, 5: {"Friend", Bool}, 5: true,
} } }

motivation Why start with [msgpack2](http://msgpack.org)?

msgpack2 is simple, fast, and extremely portable.

It has an implementation in every language you've heard of, and some you haven't
(some 50 libraries are available).

It has a simple and short spec.

msgpack2 is dynamic-language friendly because it is largely self-describing.

most signi�cantly: the existing library github.com/tinylib/msgp is extremely well tuned,
and generates Go bindings by reading your Go source.

Problems with msgpack2

poorly de�ned language binding (signed/unsigned/bitwidth of integer?)

a.k.a. insu�ciently strong typing.

weak support for data evolution. i.e. no con�ict detection, no omitempty support from
the prior libraries => they crash on unexpected �elds.

Problem example

the widely emulated C-encoder for msgpack chooses to encode signed positive integers
as unsigned integers.

This causes crashes in readers who were expected a signed integer

which they may have originated themselves in the original struct.

the existing practice for msgpack2 language bindings allows the data types to change as
they are read and re-serialized.

Simple copying of a serialized struct can change the types of data from signed to
unsigned.

This is horrible.

Addressing the problems

for language binding: strongly de�ne the types of �elds.

simply parse from the Go source. No separate IDL, your Go code is your one source of
truth.

For e�ciency and data evolution: adopt a new convention about how to encode the �eld
names of structs. Use small integer �elds.

Addressing the problems II

Structs are encoded in msgpack2 using maps, as usual.

maps that represent structs are now keyed by integers.

Rather than strings as keys

these integers are associated with a �eld name and type in a (separable) schema.

The schema is also de�ned and encoded in msgpack2.

Result

resulting binary encoding is very similar in style to protobufs/Thrift/Capn'Proto.

However it is much more friendly to dynamic languages; e.g. R, python, zygo

Also it is screaming fast.

Benchmarking Reads

benchmark iter time/iter bytes alloc allocs
--------- ---- --------- ----------- ------
BenchmarkZebraPackUnmarshal-4 10000000 227 ns/op 0 B/op 0 allocs/op
BenchmarkGencodeUnmarshal-4 10000000 229 ns/op 112 B/op 3 allocs/op
BenchmarkFlatBuffersUnmarshal-4 10000000 232 ns/op 32 B/op 2 allocs/op
BenchmarkGogoprotobufUnmarshal-4 10000000 232 ns/op 96 B/op 3 allocs/op
BenchmarkCapNProtoUnmarshal-4 10000000 258 ns/op 0 B/op 0 allocs/op
BenchmarkMsgpUnmarshal-4 5000000 296 ns/op 32 B/op 2 allocs/op
BenchmarkGoprotobufUnmarshal-4 2000000 688 ns/op 432 B/op 9 allocs/op
BenchmarkProtobufUnmarshal-4 2000000 707 ns/op 192 B/op 10 allocs/op
BenchmarkGobUnmarshal-4 2000000 886 ns/op 112 B/op 3 allocs/op
BenchmarkHproseUnmarshal-4 1000000 1045 ns/op 320 B/op 10 allocs/op
BenchmarkCapNProto2Unmarshal-4 1000000 1359 ns/op 608 B/op 12 allocs/op
BenchmarkXdrUnmarshal-4 1000000 1659 ns/op 239 B/op 11 allocs/op
BenchmarkBinaryUnmarshal-4 1000000 1907 ns/op 336 B/op 22 allocs/op
BenchmarkVmihailencoMsgpackUnmarshal-4 1000000 2085 ns/op 384 B/op 13 allocs/op
BenchmarkUgorjiCodecMsgpackUnmarshal-4 500000 2620 ns/op 3008 B/op 6 allocs/op
BenchmarkUgorjiCodecBincUnmarshal-4 500000 2795 ns/op 3168 B/op 9 allocs/op
BenchmarkSerealUnmarshal-4 500000 3271 ns/op 1008 B/op 34 allocs/op
BenchmarkJsonUnmarshal-4 200000 5576 ns/op 495 B/op 8 allocs/op

Benchmarking Writes

benchmark iter time/iter bytes alloc allocs
--------- ---- --------- ----------- ------
BenchmarkZebraPackMarshal-4 10000000 115 ns/op 0 B/op 0 allocs/op
BenchmarkGogoprotobufMarshal-4 10000000 148 ns/op 64 B/op 1 allocs/op
BenchmarkMsgpMarshal-4 10000000 161 ns/op 128 B/op 1 allocs/op
BenchmarkGencodeMarshal-4 10000000 176 ns/op 80 B/op 2 allocs/op
BenchmarkFlatBufferMarshal-4 5000000 347 ns/op 0 B/op 0 allocs/op
BenchmarkCapNProtoMarshal-4 3000000 506 ns/op 56 B/op 2 allocs/op
BenchmarkGoprotobufMarshal-4 3000000 617 ns/op 312 B/op 4 allocs/op
BenchmarkGobMarshal-4 2000000 887 ns/op 48 B/op 2 allocs/op
BenchmarkProtobufMarshal-4 2000000 912 ns/op 200 B/op 7 allocs/op
BenchmarkHproseMarshal-4 1000000 1052 ns/op 473 B/op 8 allocs/op
BenchmarkCapNProto2Marshal-4 1000000 1214 ns/op 436 B/op 7 allocs/op
BenchmarkBinaryMarshal-4 1000000 1427 ns/op 256 B/op 16 allocs/op
BenchmarkVmihailencoMsgpackMarshal-4 1000000 1772 ns/op 368 B/op 6 allocs/op
BenchmarkXdrMarshal-4 1000000 1802 ns/op 455 B/op 20 allocs/op
BenchmarkJsonMarshal-4 1000000 2500 ns/op 536 B/op 6 allocs/op
BenchmarkUgorjiCodecBincMarshal-4 500000 2514 ns/op 2784 B/op 8 allocs/op
BenchmarkSerealMarshal-4 500000 2729 ns/op 912 B/op 21 allocs/op
BenchmarkUgorjiCodecMsgpackMarshal-4 500000 3274 ns/op 2752 B/op 8 allocs/op

Advantages and advances: pulling the best ideas from other formats

Once we have a schema, we can be very strongly typed, and be very e�cient.

We borrow the idea of �eld deprecation from FlatBu�ers

For con�icting update detection, we use CapnProto's �eld numbering discipline

(contiguous integers from 0..N-1).

support for the omitempty tag

in ZebraPack, all �elds are omitempty

If they are empty they won't be serialized on the wire. Like FlatBu�ers and Protobufs, this
enables one to de�ne a very large schema of possibilities, and then only transmit a very
small (e�cient) portion that is currently relevant over the wire.

Credit to Philip Hofer

Full credit: the ZebraPack code descends from the fantastic msgpack2 code generator
https://github.com/tinylib/msgp by Philip Hofer.

deprecating �elds

type A struct {
 Name string `zid:"0"`
 Bday time.Time `zid:"1"`
 Phone string `zid:"2"`
 Sibs int `zid:"3"`
 GPA float64 `zid:"4" msg:",deprecated"` // a deprecated field.
 Friend bool `zid:"5"`
}

deprecating �elds II

type A struct {
 Name string `zid:"0"`
 Bday time.Time `zid:"1"`
 Phone string `zid:"2"`
 Sibs int `zid:"3"`
 GPA struct{} `zid:"4" msg:",deprecated"` // a deprecated field should have its type changed to struct{}, as well as being marked msg:",deprecated"
 Friend bool `zid:"5"`
}

Safety rules during data evolution

Rules for safe data changes: To preserve forwards/backwards compatible changes, you
must *never remove a �eld* from a struct, once that �eld has been de�ned and used.

In the example above, the zid:"4" tag must stay in place, to prevent someone else from
ever using 4 again.

This allows sane data forward evolution, without tears, fears, or crashing of servers.

The fact that struct{} �elds take up no space also means that there is no need to worry
about loss of performance when deprecating.

We retain all �elds ever used for their zebra ids, and the compiled Go code wastes no
extra space for the deprecated �elds.

schema details

Precisely de�ned format

see the repo for examples and details.

https://github.com/glycerine/zebrapack

`zebrapack -msgp ̀as a msgpack2 code-
generator

`msg:",omitempty"` tags on struct �elds

If you're using `zebrapack -msgp` to generate msgpack2 serialization code, then you can
use the omitempty tag on your struct �elds.

In the following example,

type Hedgehog struct {
Furriness string msg:",omitempty"
}

If Furriness is the empty string, the �eld will not be serialized, thus saving the space of the
�eld name on the wire.

It is safe to re-use structs even with ̀ omitempty`

`addzid` utility

The addzid utility (in the cmd/addzid subdir) can help you
get started. Running `addzid mysource.go` on a .go source �le
will add the zid:"0"... �elds automatically. This makes adding ZebraPack
serialization to existing Go projects easy.

See https://github.com/glycerine/zebrapack/blob/master/cmd/addzid/README.md
for more detail.

What's next. New ideas.

microschema

handle cycles in an object graph, by detecting

(large) repeated references and encoding pointers as object IDs.

your idea here.

(One idea from meetup: optional bitmap to designate set/unset �eld, as in �atbu�ers).

Thank you

Jason E. Aten, Ph.D.
Computer Scientist/Gopher
j.e.aten@gmail.com (mailto:j.e.aten@gmail.com)

mailto:j.e.aten@gmail.com

