github.com/hlts2/go@v0.0.0-20170904000733-812b34efaed8/src/cmd/link/internal/ld/data.go (about)

     1  // Derived from Inferno utils/6l/obj.c and utils/6l/span.c
     2  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c
     3  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c
     4  //
     5  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     6  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     7  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     8  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     9  //	Portions Copyright © 2004,2006 Bruce Ellis
    10  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    11  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    12  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    13  //
    14  // Permission is hereby granted, free of charge, to any person obtaining a copy
    15  // of this software and associated documentation files (the "Software"), to deal
    16  // in the Software without restriction, including without limitation the rights
    17  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    18  // copies of the Software, and to permit persons to whom the Software is
    19  // furnished to do so, subject to the following conditions:
    20  //
    21  // The above copyright notice and this permission notice shall be included in
    22  // all copies or substantial portions of the Software.
    23  //
    24  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    25  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    26  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    27  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    28  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    29  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    30  // THE SOFTWARE.
    31  
    32  package ld
    33  
    34  import (
    35  	"cmd/internal/gcprog"
    36  	"cmd/internal/objabi"
    37  	"cmd/internal/sys"
    38  	"fmt"
    39  	"log"
    40  	"os"
    41  	"sort"
    42  	"strconv"
    43  	"strings"
    44  	"sync"
    45  )
    46  
    47  func Symgrow(s *Symbol, siz int64) {
    48  	if int64(int(siz)) != siz {
    49  		log.Fatalf("symgrow size %d too long", siz)
    50  	}
    51  	if int64(len(s.P)) >= siz {
    52  		return
    53  	}
    54  	if cap(s.P) < int(siz) {
    55  		p := make([]byte, 2*(siz+1))
    56  		s.P = append(p[:0], s.P...)
    57  	}
    58  	s.P = s.P[:siz]
    59  }
    60  
    61  func Addrel(s *Symbol) *Reloc {
    62  	s.R = append(s.R, Reloc{})
    63  	return &s.R[len(s.R)-1]
    64  }
    65  
    66  func setuintxx(ctxt *Link, s *Symbol, off int64, v uint64, wid int64) int64 {
    67  	if s.Type == 0 {
    68  		s.Type = SDATA
    69  	}
    70  	s.Attr |= AttrReachable
    71  	if s.Size < off+wid {
    72  		s.Size = off + wid
    73  		Symgrow(s, s.Size)
    74  	}
    75  
    76  	switch wid {
    77  	case 1:
    78  		s.P[off] = uint8(v)
    79  	case 2:
    80  		ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v))
    81  	case 4:
    82  		ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v))
    83  	case 8:
    84  		ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v)
    85  	}
    86  
    87  	return off + wid
    88  }
    89  
    90  func Addbytes(s *Symbol, bytes []byte) int64 {
    91  	if s.Type == 0 {
    92  		s.Type = SDATA
    93  	}
    94  	s.Attr |= AttrReachable
    95  	s.P = append(s.P, bytes...)
    96  	s.Size = int64(len(s.P))
    97  
    98  	return s.Size
    99  }
   100  
   101  func adduintxx(ctxt *Link, s *Symbol, v uint64, wid int) int64 {
   102  	off := s.Size
   103  	setuintxx(ctxt, s, off, v, int64(wid))
   104  	return off
   105  }
   106  
   107  func Adduint8(ctxt *Link, s *Symbol, v uint8) int64 {
   108  	off := s.Size
   109  	if s.Type == 0 {
   110  		s.Type = SDATA
   111  	}
   112  	s.Attr |= AttrReachable
   113  	s.Size++
   114  	s.P = append(s.P, v)
   115  
   116  	return off
   117  }
   118  
   119  func Adduint16(ctxt *Link, s *Symbol, v uint16) int64 {
   120  	return adduintxx(ctxt, s, uint64(v), 2)
   121  }
   122  
   123  func Adduint32(ctxt *Link, s *Symbol, v uint32) int64 {
   124  	return adduintxx(ctxt, s, uint64(v), 4)
   125  }
   126  
   127  func Adduint64(ctxt *Link, s *Symbol, v uint64) int64 {
   128  	return adduintxx(ctxt, s, v, 8)
   129  }
   130  
   131  func adduint(ctxt *Link, s *Symbol, v uint64) int64 {
   132  	return adduintxx(ctxt, s, v, SysArch.PtrSize)
   133  }
   134  
   135  func setuint8(ctxt *Link, s *Symbol, r int64, v uint8) int64 {
   136  	return setuintxx(ctxt, s, r, uint64(v), 1)
   137  }
   138  
   139  func setuint32(ctxt *Link, s *Symbol, r int64, v uint32) int64 {
   140  	return setuintxx(ctxt, s, r, uint64(v), 4)
   141  }
   142  
   143  func setuint(ctxt *Link, s *Symbol, r int64, v uint64) int64 {
   144  	return setuintxx(ctxt, s, r, v, int64(SysArch.PtrSize))
   145  }
   146  
   147  func Addaddrplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 {
   148  	if s.Type == 0 {
   149  		s.Type = SDATA
   150  	}
   151  	s.Attr |= AttrReachable
   152  	i := s.Size
   153  	s.Size += int64(ctxt.Arch.PtrSize)
   154  	Symgrow(s, s.Size)
   155  	r := Addrel(s)
   156  	r.Sym = t
   157  	r.Off = int32(i)
   158  	r.Siz = uint8(ctxt.Arch.PtrSize)
   159  	r.Type = objabi.R_ADDR
   160  	r.Add = add
   161  	return i + int64(r.Siz)
   162  }
   163  
   164  func Addpcrelplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 {
   165  	if s.Type == 0 {
   166  		s.Type = SDATA
   167  	}
   168  	s.Attr |= AttrReachable
   169  	i := s.Size
   170  	s.Size += 4
   171  	Symgrow(s, s.Size)
   172  	r := Addrel(s)
   173  	r.Sym = t
   174  	r.Off = int32(i)
   175  	r.Add = add
   176  	r.Type = objabi.R_PCREL
   177  	r.Siz = 4
   178  	if SysArch.Family == sys.S390X {
   179  		r.Variant = RV_390_DBL
   180  	}
   181  	return i + int64(r.Siz)
   182  }
   183  
   184  func Addaddr(ctxt *Link, s *Symbol, t *Symbol) int64 {
   185  	return Addaddrplus(ctxt, s, t, 0)
   186  }
   187  
   188  func setaddrplus(ctxt *Link, s *Symbol, off int64, t *Symbol, add int64) int64 {
   189  	if s.Type == 0 {
   190  		s.Type = SDATA
   191  	}
   192  	s.Attr |= AttrReachable
   193  	if off+int64(ctxt.Arch.PtrSize) > s.Size {
   194  		s.Size = off + int64(ctxt.Arch.PtrSize)
   195  		Symgrow(s, s.Size)
   196  	}
   197  
   198  	r := Addrel(s)
   199  	r.Sym = t
   200  	r.Off = int32(off)
   201  	r.Siz = uint8(ctxt.Arch.PtrSize)
   202  	r.Type = objabi.R_ADDR
   203  	r.Add = add
   204  	return off + int64(r.Siz)
   205  }
   206  
   207  func setaddr(ctxt *Link, s *Symbol, off int64, t *Symbol) int64 {
   208  	return setaddrplus(ctxt, s, off, t, 0)
   209  }
   210  
   211  func addsize(ctxt *Link, s *Symbol, t *Symbol) int64 {
   212  	if s.Type == 0 {
   213  		s.Type = SDATA
   214  	}
   215  	s.Attr |= AttrReachable
   216  	i := s.Size
   217  	s.Size += int64(ctxt.Arch.PtrSize)
   218  	Symgrow(s, s.Size)
   219  	r := Addrel(s)
   220  	r.Sym = t
   221  	r.Off = int32(i)
   222  	r.Siz = uint8(ctxt.Arch.PtrSize)
   223  	r.Type = objabi.R_SIZE
   224  	return i + int64(r.Siz)
   225  }
   226  
   227  func addaddrplus4(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 {
   228  	if s.Type == 0 {
   229  		s.Type = SDATA
   230  	}
   231  	s.Attr |= AttrReachable
   232  	i := s.Size
   233  	s.Size += 4
   234  	Symgrow(s, s.Size)
   235  	r := Addrel(s)
   236  	r.Sym = t
   237  	r.Off = int32(i)
   238  	r.Siz = 4
   239  	r.Type = objabi.R_ADDR
   240  	r.Add = add
   241  	return i + int64(r.Siz)
   242  }
   243  
   244  /*
   245   * divide-and-conquer list-link (by Sub) sort of Symbol* by Value.
   246   * Used for sub-symbols when loading host objects (see e.g. ldelf.go).
   247   */
   248  
   249  func listsort(l *Symbol) *Symbol {
   250  	if l == nil || l.Sub == nil {
   251  		return l
   252  	}
   253  
   254  	l1 := l
   255  	l2 := l
   256  	for {
   257  		l2 = l2.Sub
   258  		if l2 == nil {
   259  			break
   260  		}
   261  		l2 = l2.Sub
   262  		if l2 == nil {
   263  			break
   264  		}
   265  		l1 = l1.Sub
   266  	}
   267  
   268  	l2 = l1.Sub
   269  	l1.Sub = nil
   270  	l1 = listsort(l)
   271  	l2 = listsort(l2)
   272  
   273  	/* set up lead element */
   274  	if l1.Value < l2.Value {
   275  		l = l1
   276  		l1 = l1.Sub
   277  	} else {
   278  		l = l2
   279  		l2 = l2.Sub
   280  	}
   281  
   282  	le := l
   283  
   284  	for {
   285  		if l1 == nil {
   286  			for l2 != nil {
   287  				le.Sub = l2
   288  				le = l2
   289  				l2 = l2.Sub
   290  			}
   291  
   292  			le.Sub = nil
   293  			break
   294  		}
   295  
   296  		if l2 == nil {
   297  			for l1 != nil {
   298  				le.Sub = l1
   299  				le = l1
   300  				l1 = l1.Sub
   301  			}
   302  
   303  			break
   304  		}
   305  
   306  		if l1.Value < l2.Value {
   307  			le.Sub = l1
   308  			le = l1
   309  			l1 = l1.Sub
   310  		} else {
   311  			le.Sub = l2
   312  			le = l2
   313  			l2 = l2.Sub
   314  		}
   315  	}
   316  
   317  	le.Sub = nil
   318  	return l
   319  }
   320  
   321  // isRuntimeDepPkg returns whether pkg is the runtime package or its dependency
   322  func isRuntimeDepPkg(pkg string) bool {
   323  	switch pkg {
   324  	case "runtime",
   325  		"sync/atomic": // runtime may call to sync/atomic, due to go:linkname
   326  		return true
   327  	}
   328  	return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test")
   329  }
   330  
   331  // Estimate the max size needed to hold any new trampolines created for this function. This
   332  // is used to determine when the section can be split if it becomes too large, to ensure that
   333  // the trampolines are in the same section as the function that uses them.
   334  func maxSizeTrampolinesPPC64(s *Symbol, isTramp bool) uint64 {
   335  	// If Thearch.Trampoline is nil, then trampoline support is not available on this arch.
   336  	// A trampoline does not need any dependent trampolines.
   337  	if Thearch.Trampoline == nil || isTramp {
   338  		return 0
   339  	}
   340  
   341  	n := uint64(0)
   342  	for ri := range s.R {
   343  		r := &s.R[ri]
   344  		if r.Type.IsDirectJump() {
   345  			n++
   346  		}
   347  	}
   348  	// Trampolines in ppc64 are 4 instructions.
   349  	return n * 16
   350  }
   351  
   352  // detect too-far jumps in function s, and add trampolines if necessary
   353  // ARM, PPC64 & PPC64LE support trampoline insertion for internal and external linking
   354  // On PPC64 & PPC64LE the text sections might be split but will still insert trampolines
   355  // where necessary.
   356  func trampoline(ctxt *Link, s *Symbol) {
   357  	if Thearch.Trampoline == nil {
   358  		return // no need or no support of trampolines on this arch
   359  	}
   360  
   361  	for ri := range s.R {
   362  		r := &s.R[ri]
   363  		if !r.Type.IsDirectJump() {
   364  			continue
   365  		}
   366  		if Symaddr(r.Sym) == 0 && r.Sym.Type != SDYNIMPORT {
   367  			if r.Sym.File != s.File {
   368  				if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) {
   369  					Errorf(s, "unresolved inter-package jump to %s(%s)", r.Sym, r.Sym.File)
   370  				}
   371  				// runtime and its dependent packages may call to each other.
   372  				// they are fine, as they will be laid down together.
   373  			}
   374  			continue
   375  		}
   376  
   377  		Thearch.Trampoline(ctxt, r, s)
   378  	}
   379  
   380  }
   381  
   382  // resolve relocations in s.
   383  func relocsym(ctxt *Link, s *Symbol) {
   384  	var r *Reloc
   385  	var rs *Symbol
   386  	var i16 int16
   387  	var off int32
   388  	var siz int32
   389  	var fl int32
   390  	var o int64
   391  
   392  	for ri := int32(0); ri < int32(len(s.R)); ri++ {
   393  		r = &s.R[ri]
   394  
   395  		r.Done = true
   396  		off = r.Off
   397  		siz = int32(r.Siz)
   398  		if off < 0 || off+siz > int32(len(s.P)) {
   399  			rname := ""
   400  			if r.Sym != nil {
   401  				rname = r.Sym.Name
   402  			}
   403  			Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P))
   404  			continue
   405  		}
   406  
   407  		if r.Sym != nil && (r.Sym.Type&(SMASK|SHIDDEN) == 0 || r.Sym.Type&SMASK == SXREF) {
   408  			// When putting the runtime but not main into a shared library
   409  			// these symbols are undefined and that's OK.
   410  			if Buildmode == BuildmodeShared {
   411  				if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" {
   412  					r.Sym.Type = SDYNIMPORT
   413  				} else if strings.HasPrefix(r.Sym.Name, "go.info.") {
   414  					// Skip go.info symbols. They are only needed to communicate
   415  					// DWARF info between the compiler and linker.
   416  					continue
   417  				}
   418  			} else {
   419  				Errorf(s, "relocation target %s not defined", r.Sym.Name)
   420  				continue
   421  			}
   422  		}
   423  
   424  		if r.Type >= 256 {
   425  			continue
   426  		}
   427  		if r.Siz == 0 { // informational relocation - no work to do
   428  			continue
   429  		}
   430  
   431  		// We need to be able to reference dynimport symbols when linking against
   432  		// shared libraries, and Solaris needs it always
   433  		if Headtype != objabi.Hsolaris && r.Sym != nil && r.Sym.Type == SDYNIMPORT && !ctxt.DynlinkingGo() {
   434  			if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") {
   435  				Errorf(s, "unhandled relocation for %s (type %d (%s) rtype %d (%s))", r.Sym.Name, r.Sym.Type, r.Sym.Type, r.Type, RelocName(r.Type))
   436  			}
   437  		}
   438  		if r.Sym != nil && r.Sym.Type != STLSBSS && r.Type != objabi.R_WEAKADDROFF && !r.Sym.Attr.Reachable() {
   439  			Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name)
   440  		}
   441  
   442  		// TODO(mundaym): remove this special case - see issue 14218.
   443  		if SysArch.Family == sys.S390X {
   444  			switch r.Type {
   445  			case objabi.R_PCRELDBL:
   446  				r.Type = objabi.R_PCREL
   447  				r.Variant = RV_390_DBL
   448  			case objabi.R_CALL:
   449  				r.Variant = RV_390_DBL
   450  			}
   451  		}
   452  
   453  		switch r.Type {
   454  		default:
   455  			switch siz {
   456  			default:
   457  				Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
   458  			case 1:
   459  				o = int64(s.P[off])
   460  			case 2:
   461  				o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:]))
   462  			case 4:
   463  				o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:]))
   464  			case 8:
   465  				o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:]))
   466  			}
   467  			if !Thearch.Archreloc(ctxt, r, s, &o) {
   468  				Errorf(s, "unknown reloc to %v: %d (%s)", r.Sym.Name, r.Type, RelocName(r.Type))
   469  			}
   470  		case objabi.R_TLS_LE:
   471  			isAndroidX86 := objabi.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386))
   472  
   473  			if Linkmode == LinkExternal && Iself && !isAndroidX86 {
   474  				r.Done = false
   475  				if r.Sym == nil {
   476  					r.Sym = ctxt.Tlsg
   477  				}
   478  				r.Xsym = r.Sym
   479  				r.Xadd = r.Add
   480  				o = 0
   481  				if SysArch.Family != sys.AMD64 {
   482  					o = r.Add
   483  				}
   484  				break
   485  			}
   486  
   487  			if Iself && SysArch.Family == sys.ARM {
   488  				// On ELF ARM, the thread pointer is 8 bytes before
   489  				// the start of the thread-local data block, so add 8
   490  				// to the actual TLS offset (r->sym->value).
   491  				// This 8 seems to be a fundamental constant of
   492  				// ELF on ARM (or maybe Glibc on ARM); it is not
   493  				// related to the fact that our own TLS storage happens
   494  				// to take up 8 bytes.
   495  				o = 8 + r.Sym.Value
   496  			} else if Iself || Headtype == objabi.Hplan9 || Headtype == objabi.Hdarwin || isAndroidX86 {
   497  				o = int64(ctxt.Tlsoffset) + r.Add
   498  			} else if Headtype == objabi.Hwindows {
   499  				o = r.Add
   500  			} else {
   501  				log.Fatalf("unexpected R_TLS_LE relocation for %v", Headtype)
   502  			}
   503  		case objabi.R_TLS_IE:
   504  			isAndroidX86 := objabi.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386))
   505  
   506  			if Linkmode == LinkExternal && Iself && !isAndroidX86 {
   507  				r.Done = false
   508  				if r.Sym == nil {
   509  					r.Sym = ctxt.Tlsg
   510  				}
   511  				r.Xsym = r.Sym
   512  				r.Xadd = r.Add
   513  				o = 0
   514  				if SysArch.Family != sys.AMD64 {
   515  					o = r.Add
   516  				}
   517  				break
   518  			}
   519  			if Buildmode == BuildmodePIE && Iself {
   520  				// We are linking the final executable, so we
   521  				// can optimize any TLS IE relocation to LE.
   522  				if Thearch.TLSIEtoLE == nil {
   523  					log.Fatalf("internal linking of TLS IE not supported on %v", SysArch.Family)
   524  				}
   525  				Thearch.TLSIEtoLE(s, int(off), int(r.Siz))
   526  				o = int64(ctxt.Tlsoffset)
   527  				// TODO: o += r.Add when SysArch.Family != sys.AMD64?
   528  				// Why do we treat r.Add differently on AMD64?
   529  				// Is the external linker using Xadd at all?
   530  			} else {
   531  				log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name)
   532  			}
   533  		case objabi.R_ADDR:
   534  			if Linkmode == LinkExternal && r.Sym.Type != SCONST {
   535  				r.Done = false
   536  
   537  				// set up addend for eventual relocation via outer symbol.
   538  				rs = r.Sym
   539  
   540  				r.Xadd = r.Add
   541  				for rs.Outer != nil {
   542  					r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
   543  					rs = rs.Outer
   544  				}
   545  
   546  				if rs.Type != SHOSTOBJ && rs.Type != SDYNIMPORT && rs.Sect == nil {
   547  					Errorf(s, "missing section for relocation target %s", rs.Name)
   548  				}
   549  				r.Xsym = rs
   550  
   551  				o = r.Xadd
   552  				if Iself {
   553  					if SysArch.Family == sys.AMD64 {
   554  						o = 0
   555  					}
   556  				} else if Headtype == objabi.Hdarwin {
   557  					// ld64 for arm64 has a bug where if the address pointed to by o exists in the
   558  					// symbol table (dynid >= 0), or is inside a symbol that exists in the symbol
   559  					// table, then it will add o twice into the relocated value.
   560  					// The workaround is that on arm64 don't ever add symaddr to o and always use
   561  					// extern relocation by requiring rs->dynid >= 0.
   562  					if rs.Type != SHOSTOBJ {
   563  						if SysArch.Family == sys.ARM64 && rs.Dynid < 0 {
   564  							Errorf(s, "R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o)
   565  						}
   566  						if SysArch.Family != sys.ARM64 {
   567  							o += Symaddr(rs)
   568  						}
   569  					}
   570  				} else if Headtype == objabi.Hwindows {
   571  					// nothing to do
   572  				} else {
   573  					Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype)
   574  				}
   575  
   576  				break
   577  			}
   578  
   579  			o = Symaddr(r.Sym) + r.Add
   580  
   581  			// On amd64, 4-byte offsets will be sign-extended, so it is impossible to
   582  			// access more than 2GB of static data; fail at link time is better than
   583  			// fail at runtime. See https://golang.org/issue/7980.
   584  			// Instead of special casing only amd64, we treat this as an error on all
   585  			// 64-bit architectures so as to be future-proof.
   586  			if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 {
   587  				Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add)
   588  				errorexit()
   589  			}
   590  		case objabi.R_DWARFREF:
   591  			if r.Sym.Sect == nil {
   592  				Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name)
   593  			}
   594  
   595  			if Linkmode == LinkExternal {
   596  				r.Done = false
   597  				// PE code emits IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL
   598  				// for R_DWARFREF relocations, while R_ADDR is replaced with
   599  				// IMAGE_REL_I386_DIR32, IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_AMD64_ADDR32.
   600  				// Do not replace R_DWARFREF with R_ADDR for windows -
   601  				// let PE code emit correct relocations.
   602  				if Headtype != objabi.Hwindows {
   603  					r.Type = objabi.R_ADDR
   604  				}
   605  
   606  				r.Xsym = ctxt.Syms.ROLookup(r.Sym.Sect.Name, 0)
   607  				r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr)
   608  
   609  				o = r.Xadd
   610  				rs = r.Xsym
   611  				if Iself && SysArch.Family == sys.AMD64 {
   612  					o = 0
   613  				}
   614  				break
   615  			}
   616  			o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr)
   617  		case objabi.R_WEAKADDROFF:
   618  			if !r.Sym.Attr.Reachable() {
   619  				continue
   620  			}
   621  			fallthrough
   622  		case objabi.R_ADDROFF:
   623  			// The method offset tables using this relocation expect the offset to be relative
   624  			// to the start of the first text section, even if there are multiple.
   625  
   626  			if r.Sym.Sect.Name == ".text" {
   627  				o = Symaddr(r.Sym) - int64(Segtext.Sections[0].Vaddr) + r.Add
   628  			} else {
   629  				o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add
   630  			}
   631  
   632  			// r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call.
   633  		case objabi.R_GOTPCREL:
   634  			if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin && r.Sym != nil && r.Sym.Type != SCONST {
   635  				r.Done = false
   636  				r.Xadd = r.Add
   637  				r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk
   638  				r.Xsym = r.Sym
   639  
   640  				o = r.Xadd
   641  				o += int64(r.Siz)
   642  				break
   643  			}
   644  			fallthrough
   645  		case objabi.R_CALL, objabi.R_PCREL:
   646  			if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != SCONST && (r.Sym.Sect != s.Sect || r.Type == objabi.R_GOTPCREL) {
   647  				r.Done = false
   648  
   649  				// set up addend for eventual relocation via outer symbol.
   650  				rs = r.Sym
   651  
   652  				r.Xadd = r.Add
   653  				for rs.Outer != nil {
   654  					r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
   655  					rs = rs.Outer
   656  				}
   657  
   658  				r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk
   659  				if rs.Type != SHOSTOBJ && rs.Type != SDYNIMPORT && rs.Sect == nil {
   660  					Errorf(s, "missing section for relocation target %s", rs.Name)
   661  				}
   662  				r.Xsym = rs
   663  
   664  				o = r.Xadd
   665  				if Iself {
   666  					if SysArch.Family == sys.AMD64 {
   667  						o = 0
   668  					}
   669  				} else if Headtype == objabi.Hdarwin {
   670  					if r.Type == objabi.R_CALL {
   671  						if rs.Type != SHOSTOBJ {
   672  							o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr)
   673  						}
   674  						o -= int64(r.Off) // relative to section offset, not symbol
   675  					} else if SysArch.Family == sys.ARM {
   676  						// see ../arm/asm.go:/machoreloc1
   677  						o += Symaddr(rs) - int64(s.Value) - int64(r.Off)
   678  					} else {
   679  						o += int64(r.Siz)
   680  					}
   681  				} else if Headtype == objabi.Hwindows && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL
   682  					// PE/COFF's PC32 relocation uses the address after the relocated
   683  					// bytes as the base. Compensate by skewing the addend.
   684  					o += int64(r.Siz)
   685  				} else {
   686  					Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype)
   687  				}
   688  
   689  				break
   690  			}
   691  
   692  			o = 0
   693  			if r.Sym != nil {
   694  				o += Symaddr(r.Sym)
   695  			}
   696  
   697  			o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz))
   698  		case objabi.R_SIZE:
   699  			o = r.Sym.Size + r.Add
   700  		}
   701  
   702  		if r.Variant != RV_NONE {
   703  			o = Thearch.Archrelocvariant(ctxt, r, s, o)
   704  		}
   705  
   706  		if false {
   707  			nam := "<nil>"
   708  			if r.Sym != nil {
   709  				nam = r.Sym.Name
   710  			}
   711  			fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d (%s)/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, RelocName(r.Type), r.Variant, o)
   712  		}
   713  		switch siz {
   714  		default:
   715  			Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
   716  			fallthrough
   717  
   718  			// TODO(rsc): Remove.
   719  		case 1:
   720  			s.P[off] = byte(int8(o))
   721  		case 2:
   722  			if o != int64(int16(o)) {
   723  				Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o)
   724  			}
   725  			i16 = int16(o)
   726  			ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16))
   727  		case 4:
   728  			if r.Type == objabi.R_PCREL || r.Type == objabi.R_CALL {
   729  				if o != int64(int32(o)) {
   730  					Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o)
   731  				}
   732  			} else {
   733  				if o != int64(int32(o)) && o != int64(uint32(o)) {
   734  					Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o))
   735  				}
   736  			}
   737  
   738  			fl = int32(o)
   739  			ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl))
   740  		case 8:
   741  			ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o))
   742  		}
   743  	}
   744  }
   745  
   746  func (ctxt *Link) reloc() {
   747  	if ctxt.Debugvlog != 0 {
   748  		ctxt.Logf("%5.2f reloc\n", Cputime())
   749  	}
   750  
   751  	for _, s := range ctxt.Textp {
   752  		relocsym(ctxt, s)
   753  	}
   754  	for _, sym := range datap {
   755  		relocsym(ctxt, sym)
   756  	}
   757  	for _, s := range dwarfp {
   758  		relocsym(ctxt, s)
   759  	}
   760  }
   761  
   762  func dynrelocsym(ctxt *Link, s *Symbol) {
   763  	if Headtype == objabi.Hwindows && Linkmode != LinkExternal {
   764  		rel := ctxt.Syms.Lookup(".rel", 0)
   765  		if s == rel {
   766  			return
   767  		}
   768  		for ri := 0; ri < len(s.R); ri++ {
   769  			r := &s.R[ri]
   770  			targ := r.Sym
   771  			if targ == nil {
   772  				continue
   773  			}
   774  			if !targ.Attr.Reachable() {
   775  				if r.Type == objabi.R_WEAKADDROFF {
   776  					continue
   777  				}
   778  				Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name)
   779  			}
   780  			if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files.
   781  				targ.Plt = int32(rel.Size)
   782  				r.Sym = rel
   783  				r.Add = int64(targ.Plt)
   784  
   785  				// jmp *addr
   786  				if SysArch.Family == sys.I386 {
   787  					Adduint8(ctxt, rel, 0xff)
   788  					Adduint8(ctxt, rel, 0x25)
   789  					Addaddr(ctxt, rel, targ)
   790  					Adduint8(ctxt, rel, 0x90)
   791  					Adduint8(ctxt, rel, 0x90)
   792  				} else {
   793  					Adduint8(ctxt, rel, 0xff)
   794  					Adduint8(ctxt, rel, 0x24)
   795  					Adduint8(ctxt, rel, 0x25)
   796  					addaddrplus4(ctxt, rel, targ, 0)
   797  					Adduint8(ctxt, rel, 0x90)
   798  				}
   799  			} else if r.Sym.Plt >= 0 {
   800  				r.Sym = rel
   801  				r.Add = int64(targ.Plt)
   802  			}
   803  		}
   804  
   805  		return
   806  	}
   807  
   808  	for ri := 0; ri < len(s.R); ri++ {
   809  		r := &s.R[ri]
   810  		if Buildmode == BuildmodePIE && Linkmode == LinkInternal {
   811  			// It's expected that some relocations will be done
   812  			// later by relocsym (R_TLS_LE, R_ADDROFF), so
   813  			// don't worry if Adddynrel returns false.
   814  			Thearch.Adddynrel(ctxt, s, r)
   815  			continue
   816  		}
   817  		if r.Sym != nil && r.Sym.Type == SDYNIMPORT || r.Type >= 256 {
   818  			if r.Sym != nil && !r.Sym.Attr.Reachable() {
   819  				Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name)
   820  			}
   821  			if !Thearch.Adddynrel(ctxt, s, r) {
   822  				Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d (%s) stype=%d (%s))", r.Sym.Name, r.Type, RelocName(r.Type), r.Sym.Type, r.Sym.Type)
   823  			}
   824  		}
   825  	}
   826  }
   827  
   828  func dynreloc(ctxt *Link, data *[SXREF][]*Symbol) {
   829  	// -d suppresses dynamic loader format, so we may as well not
   830  	// compute these sections or mark their symbols as reachable.
   831  	if *FlagD && Headtype != objabi.Hwindows {
   832  		return
   833  	}
   834  	if ctxt.Debugvlog != 0 {
   835  		ctxt.Logf("%5.2f dynreloc\n", Cputime())
   836  	}
   837  
   838  	for _, s := range ctxt.Textp {
   839  		dynrelocsym(ctxt, s)
   840  	}
   841  	for _, syms := range data {
   842  		for _, sym := range syms {
   843  			dynrelocsym(ctxt, sym)
   844  		}
   845  	}
   846  	if Iself {
   847  		elfdynhash(ctxt)
   848  	}
   849  }
   850  
   851  func Codeblk(ctxt *Link, addr int64, size int64) {
   852  	CodeblkPad(ctxt, addr, size, zeros[:])
   853  }
   854  func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) {
   855  	if *flagA {
   856  		ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset())
   857  	}
   858  
   859  	blk(ctxt, ctxt.Textp, addr, size, pad)
   860  
   861  	/* again for printing */
   862  	if !*flagA {
   863  		return
   864  	}
   865  
   866  	syms := ctxt.Textp
   867  	for i, sym := range syms {
   868  		if !sym.Attr.Reachable() {
   869  			continue
   870  		}
   871  		if sym.Value >= addr {
   872  			syms = syms[i:]
   873  			break
   874  		}
   875  	}
   876  
   877  	eaddr := addr + size
   878  	var q []byte
   879  	for _, sym := range syms {
   880  		if !sym.Attr.Reachable() {
   881  			continue
   882  		}
   883  		if sym.Value >= eaddr {
   884  			break
   885  		}
   886  
   887  		if addr < sym.Value {
   888  			ctxt.Logf("%-20s %.8x|", "_", uint64(addr))
   889  			for ; addr < sym.Value; addr++ {
   890  				ctxt.Logf(" %.2x", 0)
   891  			}
   892  			ctxt.Logf("\n")
   893  		}
   894  
   895  		ctxt.Logf("%.6x\t%-20s\n", uint64(addr), sym.Name)
   896  		q = sym.P
   897  
   898  		for len(q) >= 16 {
   899  			ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16])
   900  			addr += 16
   901  			q = q[16:]
   902  		}
   903  
   904  		if len(q) > 0 {
   905  			ctxt.Logf("%.6x\t% x\n", uint64(addr), q)
   906  			addr += int64(len(q))
   907  		}
   908  	}
   909  
   910  	if addr < eaddr {
   911  		ctxt.Logf("%-20s %.8x|", "_", uint64(addr))
   912  		for ; addr < eaddr; addr++ {
   913  			ctxt.Logf(" %.2x", 0)
   914  		}
   915  	}
   916  }
   917  
   918  func blk(ctxt *Link, syms []*Symbol, addr, size int64, pad []byte) {
   919  	for i, s := range syms {
   920  		if s.Type&SSUB == 0 && s.Value >= addr {
   921  			syms = syms[i:]
   922  			break
   923  		}
   924  	}
   925  
   926  	eaddr := addr + size
   927  	for _, s := range syms {
   928  		if s.Type&SSUB != 0 {
   929  			continue
   930  		}
   931  		if s.Value >= eaddr {
   932  			break
   933  		}
   934  		if s.Value < addr {
   935  			Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type)
   936  			errorexit()
   937  		}
   938  		if addr < s.Value {
   939  			strnputPad("", int(s.Value-addr), pad)
   940  			addr = s.Value
   941  		}
   942  		Cwrite(s.P)
   943  		addr += int64(len(s.P))
   944  		if addr < s.Value+s.Size {
   945  			strnputPad("", int(s.Value+s.Size-addr), pad)
   946  			addr = s.Value + s.Size
   947  		}
   948  		if addr != s.Value+s.Size {
   949  			Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size)
   950  			errorexit()
   951  		}
   952  		if s.Value+s.Size >= eaddr {
   953  			break
   954  		}
   955  	}
   956  
   957  	if addr < eaddr {
   958  		strnputPad("", int(eaddr-addr), pad)
   959  	}
   960  	Cflush()
   961  }
   962  
   963  func Datblk(ctxt *Link, addr int64, size int64) {
   964  	if *flagA {
   965  		ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset())
   966  	}
   967  
   968  	blk(ctxt, datap, addr, size, zeros[:])
   969  
   970  	/* again for printing */
   971  	if !*flagA {
   972  		return
   973  	}
   974  
   975  	syms := datap
   976  	for i, sym := range syms {
   977  		if sym.Value >= addr {
   978  			syms = syms[i:]
   979  			break
   980  		}
   981  	}
   982  
   983  	eaddr := addr + size
   984  	for _, sym := range syms {
   985  		if sym.Value >= eaddr {
   986  			break
   987  		}
   988  		if addr < sym.Value {
   989  			ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr))
   990  			addr = sym.Value
   991  		}
   992  
   993  		ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr))
   994  		for i, b := range sym.P {
   995  			if i > 0 && i%16 == 0 {
   996  				ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i))
   997  			}
   998  			ctxt.Logf(" %.2x", b)
   999  		}
  1000  
  1001  		addr += int64(len(sym.P))
  1002  		for ; addr < sym.Value+sym.Size; addr++ {
  1003  			ctxt.Logf(" %.2x", 0)
  1004  		}
  1005  		ctxt.Logf("\n")
  1006  
  1007  		if Linkmode != LinkExternal {
  1008  			continue
  1009  		}
  1010  		for _, r := range sym.R {
  1011  			rsname := ""
  1012  			if r.Sym != nil {
  1013  				rsname = r.Sym.Name
  1014  			}
  1015  			typ := "?"
  1016  			switch r.Type {
  1017  			case objabi.R_ADDR:
  1018  				typ = "addr"
  1019  			case objabi.R_PCREL:
  1020  				typ = "pcrel"
  1021  			case objabi.R_CALL:
  1022  				typ = "call"
  1023  			}
  1024  			ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add)
  1025  		}
  1026  	}
  1027  
  1028  	if addr < eaddr {
  1029  		ctxt.Logf("\t%.8x| 00 ...\n", uint(addr))
  1030  	}
  1031  	ctxt.Logf("\t%.8x|\n", uint(eaddr))
  1032  }
  1033  
  1034  func Dwarfblk(ctxt *Link, addr int64, size int64) {
  1035  	if *flagA {
  1036  		ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset())
  1037  	}
  1038  
  1039  	blk(ctxt, dwarfp, addr, size, zeros[:])
  1040  }
  1041  
  1042  var zeros [512]byte
  1043  
  1044  // strnput writes the first n bytes of s.
  1045  // If n is larger than len(s),
  1046  // it is padded with NUL bytes.
  1047  func strnput(s string, n int) {
  1048  	strnputPad(s, n, zeros[:])
  1049  }
  1050  
  1051  // strnput writes the first n bytes of s.
  1052  // If n is larger than len(s),
  1053  // it is padded with the bytes in pad (repeated as needed).
  1054  func strnputPad(s string, n int, pad []byte) {
  1055  	if len(s) >= n {
  1056  		Cwritestring(s[:n])
  1057  	} else {
  1058  		Cwritestring(s)
  1059  		n -= len(s)
  1060  		for n > len(pad) {
  1061  			Cwrite(pad)
  1062  			n -= len(pad)
  1063  
  1064  		}
  1065  		Cwrite(pad[:n])
  1066  	}
  1067  }
  1068  
  1069  var strdata []*Symbol
  1070  
  1071  func addstrdata1(ctxt *Link, arg string) {
  1072  	eq := strings.Index(arg, "=")
  1073  	dot := strings.LastIndex(arg[:eq+1], ".")
  1074  	if eq < 0 || dot < 0 {
  1075  		Exitf("-X flag requires argument of the form importpath.name=value")
  1076  	}
  1077  	addstrdata(ctxt, objabi.PathToPrefix(arg[:dot])+arg[dot:eq], arg[eq+1:])
  1078  }
  1079  
  1080  func addstrdata(ctxt *Link, name string, value string) {
  1081  	p := fmt.Sprintf("%s.str", name)
  1082  	sp := ctxt.Syms.Lookup(p, 0)
  1083  
  1084  	Addstring(sp, value)
  1085  	sp.Type = SRODATA
  1086  
  1087  	s := ctxt.Syms.Lookup(name, 0)
  1088  	s.Size = 0
  1089  	s.Attr |= AttrDuplicateOK
  1090  	reachable := s.Attr.Reachable()
  1091  	Addaddr(ctxt, s, sp)
  1092  	adduintxx(ctxt, s, uint64(len(value)), SysArch.PtrSize)
  1093  
  1094  	// addstring, addaddr, etc., mark the symbols as reachable.
  1095  	// In this case that is not necessarily true, so stick to what
  1096  	// we know before entering this function.
  1097  	s.Attr.Set(AttrReachable, reachable)
  1098  
  1099  	strdata = append(strdata, s)
  1100  
  1101  	sp.Attr.Set(AttrReachable, reachable)
  1102  }
  1103  
  1104  func (ctxt *Link) checkstrdata() {
  1105  	for _, s := range strdata {
  1106  		if s.Type == STEXT {
  1107  			Errorf(s, "cannot use -X with text symbol")
  1108  		} else if s.Gotype != nil && s.Gotype.Name != "type.string" {
  1109  			Errorf(s, "cannot use -X with non-string symbol")
  1110  		}
  1111  	}
  1112  }
  1113  
  1114  func Addstring(s *Symbol, str string) int64 {
  1115  	if s.Type == 0 {
  1116  		s.Type = SNOPTRDATA
  1117  	}
  1118  	s.Attr |= AttrReachable
  1119  	r := s.Size
  1120  	if s.Name == ".shstrtab" {
  1121  		elfsetstring(s, str, int(r))
  1122  	}
  1123  	s.P = append(s.P, str...)
  1124  	s.P = append(s.P, 0)
  1125  	s.Size = int64(len(s.P))
  1126  	return r
  1127  }
  1128  
  1129  // addgostring adds str, as a Go string value, to s. symname is the name of the
  1130  // symbol used to define the string data and must be unique per linked object.
  1131  func addgostring(ctxt *Link, s *Symbol, symname, str string) {
  1132  	sym := ctxt.Syms.Lookup(symname, 0)
  1133  	if sym.Type != Sxxx {
  1134  		Errorf(s, "duplicate symname in addgostring: %s", symname)
  1135  	}
  1136  	sym.Attr |= AttrReachable
  1137  	sym.Attr |= AttrLocal
  1138  	sym.Type = SRODATA
  1139  	sym.Size = int64(len(str))
  1140  	sym.P = []byte(str)
  1141  	Addaddr(ctxt, s, sym)
  1142  	adduint(ctxt, s, uint64(len(str)))
  1143  }
  1144  
  1145  func addinitarrdata(ctxt *Link, s *Symbol) {
  1146  	p := s.Name + ".ptr"
  1147  	sp := ctxt.Syms.Lookup(p, 0)
  1148  	sp.Type = SINITARR
  1149  	sp.Size = 0
  1150  	sp.Attr |= AttrDuplicateOK
  1151  	Addaddr(ctxt, sp, s)
  1152  }
  1153  
  1154  func dosymtype(ctxt *Link) {
  1155  	switch Buildmode {
  1156  	case BuildmodeCArchive, BuildmodeCShared:
  1157  		for _, s := range ctxt.Syms.Allsym {
  1158  			// Create a new entry in the .init_array section that points to the
  1159  			// library initializer function.
  1160  			if s.Name == *flagEntrySymbol {
  1161  				addinitarrdata(ctxt, s)
  1162  			}
  1163  		}
  1164  	}
  1165  }
  1166  
  1167  // symalign returns the required alignment for the given symbol s.
  1168  func symalign(s *Symbol) int32 {
  1169  	min := int32(Thearch.Minalign)
  1170  	if s.Align >= min {
  1171  		return s.Align
  1172  	} else if s.Align != 0 {
  1173  		return min
  1174  	}
  1175  	if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") {
  1176  		// String data is just bytes.
  1177  		// If we align it, we waste a lot of space to padding.
  1178  		return min
  1179  	}
  1180  	align := int32(Thearch.Maxalign)
  1181  	for int64(align) > s.Size && align > min {
  1182  		align >>= 1
  1183  	}
  1184  	return align
  1185  }
  1186  
  1187  func aligndatsize(datsize int64, s *Symbol) int64 {
  1188  	return Rnd(datsize, int64(symalign(s)))
  1189  }
  1190  
  1191  const debugGCProg = false
  1192  
  1193  type GCProg struct {
  1194  	ctxt *Link
  1195  	sym  *Symbol
  1196  	w    gcprog.Writer
  1197  }
  1198  
  1199  func (p *GCProg) Init(ctxt *Link, name string) {
  1200  	p.ctxt = ctxt
  1201  	p.sym = ctxt.Syms.Lookup(name, 0)
  1202  	p.w.Init(p.writeByte(ctxt))
  1203  	if debugGCProg {
  1204  		fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name)
  1205  		p.w.Debug(os.Stderr)
  1206  	}
  1207  }
  1208  
  1209  func (p *GCProg) writeByte(ctxt *Link) func(x byte) {
  1210  	return func(x byte) {
  1211  		Adduint8(ctxt, p.sym, x)
  1212  	}
  1213  }
  1214  
  1215  func (p *GCProg) End(size int64) {
  1216  	p.w.ZeroUntil(size / int64(SysArch.PtrSize))
  1217  	p.w.End()
  1218  	if debugGCProg {
  1219  		fmt.Fprintf(os.Stderr, "ld: end GCProg\n")
  1220  	}
  1221  }
  1222  
  1223  func (p *GCProg) AddSym(s *Symbol) {
  1224  	typ := s.Gotype
  1225  	// Things without pointers should be in SNOPTRDATA or SNOPTRBSS;
  1226  	// everything we see should have pointers and should therefore have a type.
  1227  	if typ == nil {
  1228  		switch s.Name {
  1229  		case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss":
  1230  			// Ignore special symbols that are sometimes laid out
  1231  			// as real symbols. See comment about dyld on darwin in
  1232  			// the address function.
  1233  			return
  1234  		}
  1235  		Errorf(s, "missing Go type information for global symbol: size %d", s.Size)
  1236  		return
  1237  	}
  1238  
  1239  	ptrsize := int64(SysArch.PtrSize)
  1240  	nptr := decodetypePtrdata(p.ctxt.Arch, typ) / ptrsize
  1241  
  1242  	if debugGCProg {
  1243  		fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr)
  1244  	}
  1245  
  1246  	if decodetypeUsegcprog(typ) == 0 {
  1247  		// Copy pointers from mask into program.
  1248  		mask := decodetypeGcmask(p.ctxt, typ)
  1249  		for i := int64(0); i < nptr; i++ {
  1250  			if (mask[i/8]>>uint(i%8))&1 != 0 {
  1251  				p.w.Ptr(s.Value/ptrsize + i)
  1252  			}
  1253  		}
  1254  		return
  1255  	}
  1256  
  1257  	// Copy program.
  1258  	prog := decodetypeGcprog(p.ctxt, typ)
  1259  	p.w.ZeroUntil(s.Value / ptrsize)
  1260  	p.w.Append(prog[4:], nptr)
  1261  }
  1262  
  1263  // dataSortKey is used to sort a slice of data symbol *Symbol pointers.
  1264  // The sort keys are kept inline to improve cache behavior while sorting.
  1265  type dataSortKey struct {
  1266  	size int64
  1267  	name string
  1268  	sym  *Symbol
  1269  }
  1270  
  1271  type bySizeAndName []dataSortKey
  1272  
  1273  func (d bySizeAndName) Len() int      { return len(d) }
  1274  func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
  1275  func (d bySizeAndName) Less(i, j int) bool {
  1276  	s1, s2 := d[i], d[j]
  1277  	if s1.size != s2.size {
  1278  		return s1.size < s2.size
  1279  	}
  1280  	return s1.name < s2.name
  1281  }
  1282  
  1283  const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31)
  1284  
  1285  func checkdatsize(ctxt *Link, datsize int64, symn SymKind) {
  1286  	if datsize > cutoff {
  1287  		Errorf(nil, "too much data in section %v (over %d bytes)", symn, cutoff)
  1288  	}
  1289  }
  1290  
  1291  // datap is a collection of reachable data symbols in address order.
  1292  // Generated by dodata.
  1293  var datap []*Symbol
  1294  
  1295  func (ctxt *Link) dodata() {
  1296  	if ctxt.Debugvlog != 0 {
  1297  		ctxt.Logf("%5.2f dodata\n", Cputime())
  1298  	}
  1299  
  1300  	if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin {
  1301  		// The values in moduledata are filled out by relocations
  1302  		// pointing to the addresses of these special symbols.
  1303  		// Typically these symbols have no size and are not laid
  1304  		// out with their matching section.
  1305  		//
  1306  		// However on darwin, dyld will find the special symbol
  1307  		// in the first loaded module, even though it is local.
  1308  		//
  1309  		// (An hypothesis, formed without looking in the dyld sources:
  1310  		// these special symbols have no size, so their address
  1311  		// matches a real symbol. The dynamic linker assumes we
  1312  		// want the normal symbol with the same address and finds
  1313  		// it in the other module.)
  1314  		//
  1315  		// To work around this we lay out the symbls whose
  1316  		// addresses are vital for multi-module programs to work
  1317  		// as normal symbols, and give them a little size.
  1318  		bss := ctxt.Syms.Lookup("runtime.bss", 0)
  1319  		bss.Size = 8
  1320  		bss.Attr.Set(AttrSpecial, false)
  1321  
  1322  		ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(AttrSpecial, false)
  1323  
  1324  		data := ctxt.Syms.Lookup("runtime.data", 0)
  1325  		data.Size = 8
  1326  		data.Attr.Set(AttrSpecial, false)
  1327  
  1328  		ctxt.Syms.Lookup("runtime.edata", 0).Attr.Set(AttrSpecial, false)
  1329  
  1330  		types := ctxt.Syms.Lookup("runtime.types", 0)
  1331  		types.Type = STYPE
  1332  		types.Size = 8
  1333  		types.Attr.Set(AttrSpecial, false)
  1334  
  1335  		etypes := ctxt.Syms.Lookup("runtime.etypes", 0)
  1336  		etypes.Type = SFUNCTAB
  1337  		etypes.Attr.Set(AttrSpecial, false)
  1338  	}
  1339  
  1340  	// Collect data symbols by type into data.
  1341  	var data [SXREF][]*Symbol
  1342  	for _, s := range ctxt.Syms.Allsym {
  1343  		if !s.Attr.Reachable() || s.Attr.Special() {
  1344  			continue
  1345  		}
  1346  		if s.Type <= STEXT || s.Type >= SXREF {
  1347  			continue
  1348  		}
  1349  		data[s.Type] = append(data[s.Type], s)
  1350  	}
  1351  
  1352  	// Now that we have the data symbols, but before we start
  1353  	// to assign addresses, record all the necessary
  1354  	// dynamic relocations. These will grow the relocation
  1355  	// symbol, which is itself data.
  1356  	//
  1357  	// On darwin, we need the symbol table numbers for dynreloc.
  1358  	if Headtype == objabi.Hdarwin {
  1359  		machosymorder(ctxt)
  1360  	}
  1361  	dynreloc(ctxt, &data)
  1362  
  1363  	if UseRelro() {
  1364  		// "read only" data with relocations needs to go in its own section
  1365  		// when building a shared library. We do this by boosting objects of
  1366  		// type SXXX with relocations to type SXXXRELRO.
  1367  		for _, symnro := range readOnly {
  1368  			symnrelro := relROMap[symnro]
  1369  
  1370  			ro := []*Symbol{}
  1371  			relro := data[symnrelro]
  1372  
  1373  			for _, s := range data[symnro] {
  1374  				isRelro := len(s.R) > 0
  1375  				switch s.Type {
  1376  				case STYPE, STYPERELRO, SGOFUNCRELRO:
  1377  					// Symbols are not sorted yet, so it is possible
  1378  					// that an Outer symbol has been changed to a
  1379  					// relro Type before it reaches here.
  1380  					isRelro = true
  1381  				}
  1382  				if isRelro {
  1383  					s.Type = symnrelro
  1384  					if s.Outer != nil {
  1385  						s.Outer.Type = s.Type
  1386  					}
  1387  					relro = append(relro, s)
  1388  				} else {
  1389  					ro = append(ro, s)
  1390  				}
  1391  			}
  1392  
  1393  			// Check that we haven't made two symbols with the same .Outer into
  1394  			// different types (because references two symbols with non-nil Outer
  1395  			// become references to the outer symbol + offset it's vital that the
  1396  			// symbol and the outer end up in the same section).
  1397  			for _, s := range relro {
  1398  				if s.Outer != nil && s.Outer.Type != s.Type {
  1399  					Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)",
  1400  						s.Outer.Name, s.Type, s.Outer.Type)
  1401  				}
  1402  			}
  1403  
  1404  			data[symnro] = ro
  1405  			data[symnrelro] = relro
  1406  		}
  1407  	}
  1408  
  1409  	// Sort symbols.
  1410  	var dataMaxAlign [SXREF]int32
  1411  	var wg sync.WaitGroup
  1412  	for symn := range data {
  1413  		symn := SymKind(symn)
  1414  		wg.Add(1)
  1415  		go func() {
  1416  			data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn])
  1417  			wg.Done()
  1418  		}()
  1419  	}
  1420  	wg.Wait()
  1421  
  1422  	// Allocate sections.
  1423  	// Data is processed before segtext, because we need
  1424  	// to see all symbols in the .data and .bss sections in order
  1425  	// to generate garbage collection information.
  1426  	datsize := int64(0)
  1427  
  1428  	// Writable data sections that do not need any specialized handling.
  1429  	writable := []SymKind{
  1430  		SELFSECT,
  1431  		SMACHO,
  1432  		SMACHOGOT,
  1433  		SWINDOWS,
  1434  	}
  1435  	for _, symn := range writable {
  1436  		for _, s := range data[symn] {
  1437  			sect := addsection(&Segdata, s.Name, 06)
  1438  			sect.Align = symalign(s)
  1439  			datsize = Rnd(datsize, int64(sect.Align))
  1440  			sect.Vaddr = uint64(datsize)
  1441  			s.Sect = sect
  1442  			s.Type = SDATA
  1443  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1444  			datsize += s.Size
  1445  			sect.Length = uint64(datsize) - sect.Vaddr
  1446  		}
  1447  		checkdatsize(ctxt, datsize, symn)
  1448  	}
  1449  
  1450  	// .got (and .toc on ppc64)
  1451  	if len(data[SELFGOT]) > 0 {
  1452  		sect := addsection(&Segdata, ".got", 06)
  1453  		sect.Align = dataMaxAlign[SELFGOT]
  1454  		datsize = Rnd(datsize, int64(sect.Align))
  1455  		sect.Vaddr = uint64(datsize)
  1456  		var toc *Symbol
  1457  		for _, s := range data[SELFGOT] {
  1458  			datsize = aligndatsize(datsize, s)
  1459  			s.Sect = sect
  1460  			s.Type = SDATA
  1461  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1462  
  1463  			// Resolve .TOC. symbol for this object file (ppc64)
  1464  			toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version))
  1465  			if toc != nil {
  1466  				toc.Sect = sect
  1467  				toc.Outer = s
  1468  				toc.Sub = s.Sub
  1469  				s.Sub = toc
  1470  
  1471  				toc.Value = 0x8000
  1472  			}
  1473  
  1474  			datsize += s.Size
  1475  		}
  1476  		checkdatsize(ctxt, datsize, SELFGOT)
  1477  		sect.Length = uint64(datsize) - sect.Vaddr
  1478  	}
  1479  
  1480  	/* pointer-free data */
  1481  	sect := addsection(&Segdata, ".noptrdata", 06)
  1482  	sect.Align = dataMaxAlign[SNOPTRDATA]
  1483  	datsize = Rnd(datsize, int64(sect.Align))
  1484  	sect.Vaddr = uint64(datsize)
  1485  	ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect
  1486  	ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect
  1487  	for _, s := range data[SNOPTRDATA] {
  1488  		datsize = aligndatsize(datsize, s)
  1489  		s.Sect = sect
  1490  		s.Type = SDATA
  1491  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1492  		datsize += s.Size
  1493  	}
  1494  	checkdatsize(ctxt, datsize, SNOPTRDATA)
  1495  	sect.Length = uint64(datsize) - sect.Vaddr
  1496  
  1497  	hasinitarr := *FlagLinkshared
  1498  
  1499  	/* shared library initializer */
  1500  	switch Buildmode {
  1501  	case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared, BuildmodePlugin:
  1502  		hasinitarr = true
  1503  	}
  1504  	if hasinitarr {
  1505  		sect := addsection(&Segdata, ".init_array", 06)
  1506  		sect.Align = dataMaxAlign[SINITARR]
  1507  		datsize = Rnd(datsize, int64(sect.Align))
  1508  		sect.Vaddr = uint64(datsize)
  1509  		for _, s := range data[SINITARR] {
  1510  			datsize = aligndatsize(datsize, s)
  1511  			s.Sect = sect
  1512  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1513  			datsize += s.Size
  1514  		}
  1515  		sect.Length = uint64(datsize) - sect.Vaddr
  1516  		checkdatsize(ctxt, datsize, SINITARR)
  1517  	}
  1518  
  1519  	/* data */
  1520  	sect = addsection(&Segdata, ".data", 06)
  1521  	sect.Align = dataMaxAlign[SDATA]
  1522  	datsize = Rnd(datsize, int64(sect.Align))
  1523  	sect.Vaddr = uint64(datsize)
  1524  	ctxt.Syms.Lookup("runtime.data", 0).Sect = sect
  1525  	ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect
  1526  	var gc GCProg
  1527  	gc.Init(ctxt, "runtime.gcdata")
  1528  	for _, s := range data[SDATA] {
  1529  		s.Sect = sect
  1530  		s.Type = SDATA
  1531  		datsize = aligndatsize(datsize, s)
  1532  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1533  		gc.AddSym(s)
  1534  		datsize += s.Size
  1535  	}
  1536  	checkdatsize(ctxt, datsize, SDATA)
  1537  	sect.Length = uint64(datsize) - sect.Vaddr
  1538  	gc.End(int64(sect.Length))
  1539  
  1540  	/* bss */
  1541  	sect = addsection(&Segdata, ".bss", 06)
  1542  	sect.Align = dataMaxAlign[SBSS]
  1543  	datsize = Rnd(datsize, int64(sect.Align))
  1544  	sect.Vaddr = uint64(datsize)
  1545  	ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect
  1546  	ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect
  1547  	gc = GCProg{}
  1548  	gc.Init(ctxt, "runtime.gcbss")
  1549  	for _, s := range data[SBSS] {
  1550  		s.Sect = sect
  1551  		datsize = aligndatsize(datsize, s)
  1552  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1553  		gc.AddSym(s)
  1554  		datsize += s.Size
  1555  	}
  1556  	checkdatsize(ctxt, datsize, SBSS)
  1557  	sect.Length = uint64(datsize) - sect.Vaddr
  1558  	gc.End(int64(sect.Length))
  1559  
  1560  	/* pointer-free bss */
  1561  	sect = addsection(&Segdata, ".noptrbss", 06)
  1562  	sect.Align = dataMaxAlign[SNOPTRBSS]
  1563  	datsize = Rnd(datsize, int64(sect.Align))
  1564  	sect.Vaddr = uint64(datsize)
  1565  	ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect
  1566  	ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect
  1567  	for _, s := range data[SNOPTRBSS] {
  1568  		datsize = aligndatsize(datsize, s)
  1569  		s.Sect = sect
  1570  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1571  		datsize += s.Size
  1572  	}
  1573  
  1574  	sect.Length = uint64(datsize) - sect.Vaddr
  1575  	ctxt.Syms.Lookup("runtime.end", 0).Sect = sect
  1576  	checkdatsize(ctxt, datsize, SNOPTRBSS)
  1577  
  1578  	if len(data[STLSBSS]) > 0 {
  1579  		var sect *Section
  1580  		if Iself && (Linkmode == LinkExternal || !*FlagD) {
  1581  			sect = addsection(&Segdata, ".tbss", 06)
  1582  			sect.Align = int32(SysArch.PtrSize)
  1583  			sect.Vaddr = 0
  1584  		}
  1585  		datsize = 0
  1586  
  1587  		for _, s := range data[STLSBSS] {
  1588  			datsize = aligndatsize(datsize, s)
  1589  			s.Sect = sect
  1590  			s.Value = datsize
  1591  			datsize += s.Size
  1592  		}
  1593  		checkdatsize(ctxt, datsize, STLSBSS)
  1594  
  1595  		if sect != nil {
  1596  			sect.Length = uint64(datsize)
  1597  		}
  1598  	}
  1599  
  1600  	/*
  1601  	 * We finished data, begin read-only data.
  1602  	 * Not all systems support a separate read-only non-executable data section.
  1603  	 * ELF systems do.
  1604  	 * OS X and Plan 9 do not.
  1605  	 * Windows PE may, but if so we have not implemented it.
  1606  	 * And if we're using external linking mode, the point is moot,
  1607  	 * since it's not our decision; that code expects the sections in
  1608  	 * segtext.
  1609  	 */
  1610  	var segro *Segment
  1611  	if Iself && Linkmode == LinkInternal {
  1612  		segro = &Segrodata
  1613  	} else {
  1614  		segro = &Segtext
  1615  	}
  1616  
  1617  	datsize = 0
  1618  
  1619  	/* read-only executable ELF, Mach-O sections */
  1620  	if len(data[STEXT]) != 0 {
  1621  		Errorf(nil, "dodata found an STEXT symbol: %s", data[STEXT][0].Name)
  1622  	}
  1623  	for _, s := range data[SELFRXSECT] {
  1624  		sect := addsection(&Segtext, s.Name, 04)
  1625  		sect.Align = symalign(s)
  1626  		datsize = Rnd(datsize, int64(sect.Align))
  1627  		sect.Vaddr = uint64(datsize)
  1628  		s.Sect = sect
  1629  		s.Type = SRODATA
  1630  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1631  		datsize += s.Size
  1632  		sect.Length = uint64(datsize) - sect.Vaddr
  1633  		checkdatsize(ctxt, datsize, SELFRXSECT)
  1634  	}
  1635  
  1636  	/* read-only data */
  1637  	sect = addsection(segro, ".rodata", 04)
  1638  
  1639  	sect.Vaddr = 0
  1640  	ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect
  1641  	ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect
  1642  	if !UseRelro() {
  1643  		ctxt.Syms.Lookup("runtime.types", 0).Sect = sect
  1644  		ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect
  1645  	}
  1646  	for _, symn := range readOnly {
  1647  		align := dataMaxAlign[symn]
  1648  		if sect.Align < align {
  1649  			sect.Align = align
  1650  		}
  1651  	}
  1652  	datsize = Rnd(datsize, int64(sect.Align))
  1653  	for _, symn := range readOnly {
  1654  		for _, s := range data[symn] {
  1655  			datsize = aligndatsize(datsize, s)
  1656  			s.Sect = sect
  1657  			s.Type = SRODATA
  1658  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1659  			datsize += s.Size
  1660  		}
  1661  		checkdatsize(ctxt, datsize, symn)
  1662  	}
  1663  	sect.Length = uint64(datsize) - sect.Vaddr
  1664  
  1665  	/* read-only ELF, Mach-O sections */
  1666  	for _, s := range data[SELFROSECT] {
  1667  		sect = addsection(segro, s.Name, 04)
  1668  		sect.Align = symalign(s)
  1669  		datsize = Rnd(datsize, int64(sect.Align))
  1670  		sect.Vaddr = uint64(datsize)
  1671  		s.Sect = sect
  1672  		s.Type = SRODATA
  1673  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1674  		datsize += s.Size
  1675  		sect.Length = uint64(datsize) - sect.Vaddr
  1676  	}
  1677  	checkdatsize(ctxt, datsize, SELFROSECT)
  1678  
  1679  	for _, s := range data[SMACHOPLT] {
  1680  		sect = addsection(segro, s.Name, 04)
  1681  		sect.Align = symalign(s)
  1682  		datsize = Rnd(datsize, int64(sect.Align))
  1683  		sect.Vaddr = uint64(datsize)
  1684  		s.Sect = sect
  1685  		s.Type = SRODATA
  1686  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1687  		datsize += s.Size
  1688  		sect.Length = uint64(datsize) - sect.Vaddr
  1689  	}
  1690  	checkdatsize(ctxt, datsize, SMACHOPLT)
  1691  
  1692  	// There is some data that are conceptually read-only but are written to by
  1693  	// relocations. On GNU systems, we can arrange for the dynamic linker to
  1694  	// mprotect sections after relocations are applied by giving them write
  1695  	// permissions in the object file and calling them ".data.rel.ro.FOO". We
  1696  	// divide the .rodata section between actual .rodata and .data.rel.ro.rodata,
  1697  	// but for the other sections that this applies to, we just write a read-only
  1698  	// .FOO section or a read-write .data.rel.ro.FOO section depending on the
  1699  	// situation.
  1700  	// TODO(mwhudson): It would make sense to do this more widely, but it makes
  1701  	// the system linker segfault on darwin.
  1702  	addrelrosection := func(suffix string) *Section {
  1703  		return addsection(segro, suffix, 04)
  1704  	}
  1705  
  1706  	if UseRelro() {
  1707  		addrelrosection = func(suffix string) *Section {
  1708  			seg := &Segrelrodata
  1709  			if Linkmode == LinkExternal {
  1710  				// Using a separate segment with an external
  1711  				// linker results in some programs moving
  1712  				// their data sections unexpectedly, which
  1713  				// corrupts the moduledata. So we use the
  1714  				// rodata segment and let the external linker
  1715  				// sort out a rel.ro segment.
  1716  				seg = &Segrodata
  1717  			}
  1718  			return addsection(seg, ".data.rel.ro"+suffix, 06)
  1719  		}
  1720  		/* data only written by relocations */
  1721  		sect = addrelrosection("")
  1722  
  1723  		sect.Vaddr = 0
  1724  		ctxt.Syms.Lookup("runtime.types", 0).Sect = sect
  1725  		ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect
  1726  		for _, symnro := range readOnly {
  1727  			symn := relROMap[symnro]
  1728  			align := dataMaxAlign[symn]
  1729  			if sect.Align < align {
  1730  				sect.Align = align
  1731  			}
  1732  		}
  1733  		datsize = Rnd(datsize, int64(sect.Align))
  1734  		for _, symnro := range readOnly {
  1735  			symn := relROMap[symnro]
  1736  			for _, s := range data[symn] {
  1737  				datsize = aligndatsize(datsize, s)
  1738  				if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect {
  1739  					Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name)
  1740  				}
  1741  				s.Sect = sect
  1742  				s.Type = SRODATA
  1743  				s.Value = int64(uint64(datsize) - sect.Vaddr)
  1744  				datsize += s.Size
  1745  			}
  1746  			checkdatsize(ctxt, datsize, symn)
  1747  		}
  1748  
  1749  		sect.Length = uint64(datsize) - sect.Vaddr
  1750  	}
  1751  
  1752  	/* typelink */
  1753  	sect = addrelrosection(".typelink")
  1754  	sect.Align = dataMaxAlign[STYPELINK]
  1755  	datsize = Rnd(datsize, int64(sect.Align))
  1756  	sect.Vaddr = uint64(datsize)
  1757  	typelink := ctxt.Syms.Lookup("runtime.typelink", 0)
  1758  	typelink.Sect = sect
  1759  	typelink.Type = SRODATA
  1760  	datsize += typelink.Size
  1761  	checkdatsize(ctxt, datsize, STYPELINK)
  1762  	sect.Length = uint64(datsize) - sect.Vaddr
  1763  
  1764  	/* itablink */
  1765  	sect = addrelrosection(".itablink")
  1766  	sect.Align = dataMaxAlign[SITABLINK]
  1767  	datsize = Rnd(datsize, int64(sect.Align))
  1768  	sect.Vaddr = uint64(datsize)
  1769  	ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect
  1770  	ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect
  1771  	for _, s := range data[SITABLINK] {
  1772  		datsize = aligndatsize(datsize, s)
  1773  		s.Sect = sect
  1774  		s.Type = SRODATA
  1775  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1776  		datsize += s.Size
  1777  	}
  1778  	checkdatsize(ctxt, datsize, SITABLINK)
  1779  	sect.Length = uint64(datsize) - sect.Vaddr
  1780  
  1781  	/* gosymtab */
  1782  	sect = addrelrosection(".gosymtab")
  1783  	sect.Align = dataMaxAlign[SSYMTAB]
  1784  	datsize = Rnd(datsize, int64(sect.Align))
  1785  	sect.Vaddr = uint64(datsize)
  1786  	ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect
  1787  	ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect
  1788  	for _, s := range data[SSYMTAB] {
  1789  		datsize = aligndatsize(datsize, s)
  1790  		s.Sect = sect
  1791  		s.Type = SRODATA
  1792  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1793  		datsize += s.Size
  1794  	}
  1795  	checkdatsize(ctxt, datsize, SSYMTAB)
  1796  	sect.Length = uint64(datsize) - sect.Vaddr
  1797  
  1798  	/* gopclntab */
  1799  	sect = addrelrosection(".gopclntab")
  1800  	sect.Align = dataMaxAlign[SPCLNTAB]
  1801  	datsize = Rnd(datsize, int64(sect.Align))
  1802  	sect.Vaddr = uint64(datsize)
  1803  	ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect
  1804  	ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect
  1805  	for _, s := range data[SPCLNTAB] {
  1806  		datsize = aligndatsize(datsize, s)
  1807  		s.Sect = sect
  1808  		s.Type = SRODATA
  1809  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1810  		datsize += s.Size
  1811  	}
  1812  	checkdatsize(ctxt, datsize, SRODATA)
  1813  	sect.Length = uint64(datsize) - sect.Vaddr
  1814  
  1815  	// 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits.
  1816  	if datsize != int64(uint32(datsize)) {
  1817  		Errorf(nil, "read-only data segment too large: %d", datsize)
  1818  	}
  1819  
  1820  	for symn := SELFRXSECT; symn < SXREF; symn++ {
  1821  		datap = append(datap, data[symn]...)
  1822  	}
  1823  
  1824  	dwarfgeneratedebugsyms(ctxt)
  1825  
  1826  	var i int
  1827  	for ; i < len(dwarfp); i++ {
  1828  		s := dwarfp[i]
  1829  		if s.Type != SDWARFSECT {
  1830  			break
  1831  		}
  1832  
  1833  		sect = addsection(&Segdwarf, s.Name, 04)
  1834  		sect.Align = 1
  1835  		datsize = Rnd(datsize, int64(sect.Align))
  1836  		sect.Vaddr = uint64(datsize)
  1837  		s.Sect = sect
  1838  		s.Type = SRODATA
  1839  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1840  		datsize += s.Size
  1841  		sect.Length = uint64(datsize) - sect.Vaddr
  1842  	}
  1843  	checkdatsize(ctxt, datsize, SDWARFSECT)
  1844  
  1845  	for i < len(dwarfp) {
  1846  		curType := dwarfp[i].Type
  1847  		var sect *Section
  1848  		switch curType {
  1849  		case SDWARFINFO:
  1850  			sect = addsection(&Segdwarf, ".debug_info", 04)
  1851  		case SDWARFRANGE:
  1852  			sect = addsection(&Segdwarf, ".debug_ranges", 04)
  1853  		case SDWARFLOC:
  1854  			sect = addsection(&Segdwarf, ".debug_loc", 04)
  1855  		default:
  1856  			Errorf(dwarfp[i], "unknown DWARF section %v", curType)
  1857  		}
  1858  
  1859  		sect.Align = 1
  1860  		datsize = Rnd(datsize, int64(sect.Align))
  1861  		sect.Vaddr = uint64(datsize)
  1862  		for ; i < len(dwarfp); i++ {
  1863  			s := dwarfp[i]
  1864  			if s.Type != curType {
  1865  				break
  1866  			}
  1867  			s.Sect = sect
  1868  			s.Type = SRODATA
  1869  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1870  			s.Attr |= AttrLocal
  1871  			datsize += s.Size
  1872  		}
  1873  		sect.Length = uint64(datsize) - sect.Vaddr
  1874  		checkdatsize(ctxt, datsize, curType)
  1875  	}
  1876  
  1877  	/* number the sections */
  1878  	n := int32(1)
  1879  
  1880  	for _, sect := range Segtext.Sections {
  1881  		sect.Extnum = int16(n)
  1882  		n++
  1883  	}
  1884  	for _, sect := range Segrodata.Sections {
  1885  		sect.Extnum = int16(n)
  1886  		n++
  1887  	}
  1888  	for _, sect := range Segrelrodata.Sections {
  1889  		sect.Extnum = int16(n)
  1890  		n++
  1891  	}
  1892  	for _, sect := range Segdata.Sections {
  1893  		sect.Extnum = int16(n)
  1894  		n++
  1895  	}
  1896  	for _, sect := range Segdwarf.Sections {
  1897  		sect.Extnum = int16(n)
  1898  		n++
  1899  	}
  1900  }
  1901  
  1902  func dodataSect(ctxt *Link, symn SymKind, syms []*Symbol) (result []*Symbol, maxAlign int32) {
  1903  	if Headtype == objabi.Hdarwin {
  1904  		// Some symbols may no longer belong in syms
  1905  		// due to movement in machosymorder.
  1906  		newSyms := make([]*Symbol, 0, len(syms))
  1907  		for _, s := range syms {
  1908  			if s.Type == symn {
  1909  				newSyms = append(newSyms, s)
  1910  			}
  1911  		}
  1912  		syms = newSyms
  1913  	}
  1914  
  1915  	var head, tail *Symbol
  1916  	symsSort := make([]dataSortKey, 0, len(syms))
  1917  	for _, s := range syms {
  1918  		if s.Attr.OnList() {
  1919  			log.Fatalf("symbol %s listed multiple times", s.Name)
  1920  		}
  1921  		s.Attr |= AttrOnList
  1922  		switch {
  1923  		case s.Size < int64(len(s.P)):
  1924  			Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P))
  1925  		case s.Size < 0:
  1926  			Errorf(s, "negative size (%d bytes)", s.Size)
  1927  		case s.Size > cutoff:
  1928  			Errorf(s, "symbol too large (%d bytes)", s.Size)
  1929  		}
  1930  
  1931  		// If the usually-special section-marker symbols are being laid
  1932  		// out as regular symbols, put them either at the beginning or
  1933  		// end of their section.
  1934  		if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin {
  1935  			switch s.Name {
  1936  			case "runtime.text", "runtime.bss", "runtime.data", "runtime.types":
  1937  				head = s
  1938  				continue
  1939  			case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes":
  1940  				tail = s
  1941  				continue
  1942  			}
  1943  		}
  1944  
  1945  		key := dataSortKey{
  1946  			size: s.Size,
  1947  			name: s.Name,
  1948  			sym:  s,
  1949  		}
  1950  
  1951  		switch s.Type {
  1952  		case SELFGOT:
  1953  			// For ppc64, we want to interleave the .got and .toc sections
  1954  			// from input files. Both are type SELFGOT, so in that case
  1955  			// we skip size comparison and fall through to the name
  1956  			// comparison (conveniently, .got sorts before .toc).
  1957  			key.size = 0
  1958  		}
  1959  
  1960  		symsSort = append(symsSort, key)
  1961  	}
  1962  
  1963  	sort.Sort(bySizeAndName(symsSort))
  1964  
  1965  	off := 0
  1966  	if head != nil {
  1967  		syms[0] = head
  1968  		off++
  1969  	}
  1970  	for i, symSort := range symsSort {
  1971  		syms[i+off] = symSort.sym
  1972  		align := symalign(symSort.sym)
  1973  		if maxAlign < align {
  1974  			maxAlign = align
  1975  		}
  1976  	}
  1977  	if tail != nil {
  1978  		syms[len(syms)-1] = tail
  1979  	}
  1980  
  1981  	if Iself && symn == SELFROSECT {
  1982  		// Make .rela and .rela.plt contiguous, the ELF ABI requires this
  1983  		// and Solaris actually cares.
  1984  		reli, plti := -1, -1
  1985  		for i, s := range syms {
  1986  			switch s.Name {
  1987  			case ".rel.plt", ".rela.plt":
  1988  				plti = i
  1989  			case ".rel", ".rela":
  1990  				reli = i
  1991  			}
  1992  		}
  1993  		if reli >= 0 && plti >= 0 && plti != reli+1 {
  1994  			var first, second int
  1995  			if plti > reli {
  1996  				first, second = reli, plti
  1997  			} else {
  1998  				first, second = plti, reli
  1999  			}
  2000  			rel, plt := syms[reli], syms[plti]
  2001  			copy(syms[first+2:], syms[first+1:second])
  2002  			syms[first+0] = rel
  2003  			syms[first+1] = plt
  2004  
  2005  			// Make sure alignment doesn't introduce a gap.
  2006  			// Setting the alignment explicitly prevents
  2007  			// symalign from basing it on the size and
  2008  			// getting it wrong.
  2009  			rel.Align = int32(SysArch.RegSize)
  2010  			plt.Align = int32(SysArch.RegSize)
  2011  		}
  2012  	}
  2013  
  2014  	return syms, maxAlign
  2015  }
  2016  
  2017  // Add buildid to beginning of text segment, on non-ELF systems.
  2018  // Non-ELF binary formats are not always flexible enough to
  2019  // give us a place to put the Go build ID. On those systems, we put it
  2020  // at the very beginning of the text segment.
  2021  // This ``header'' is read by cmd/go.
  2022  func (ctxt *Link) textbuildid() {
  2023  	if Iself || Buildmode == BuildmodePlugin || *flagBuildid == "" {
  2024  		return
  2025  	}
  2026  
  2027  	sym := ctxt.Syms.Lookup("go.buildid", 0)
  2028  	sym.Attr |= AttrReachable
  2029  	// The \xff is invalid UTF-8, meant to make it less likely
  2030  	// to find one of these accidentally.
  2031  	data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff"
  2032  	sym.Type = STEXT
  2033  	sym.P = []byte(data)
  2034  	sym.Size = int64(len(sym.P))
  2035  
  2036  	ctxt.Textp = append(ctxt.Textp, nil)
  2037  	copy(ctxt.Textp[1:], ctxt.Textp)
  2038  	ctxt.Textp[0] = sym
  2039  }
  2040  
  2041  // assign addresses to text
  2042  func (ctxt *Link) textaddress() {
  2043  	addsection(&Segtext, ".text", 05)
  2044  
  2045  	// Assign PCs in text segment.
  2046  	// Could parallelize, by assigning to text
  2047  	// and then letting threads copy down, but probably not worth it.
  2048  	sect := Segtext.Sections[0]
  2049  
  2050  	sect.Align = int32(Funcalign)
  2051  
  2052  	text := ctxt.Syms.Lookup("runtime.text", 0)
  2053  	text.Sect = sect
  2054  
  2055  	if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin {
  2056  		etext := ctxt.Syms.Lookup("runtime.etext", 0)
  2057  		etext.Sect = sect
  2058  
  2059  		ctxt.Textp = append(ctxt.Textp, etext, nil)
  2060  		copy(ctxt.Textp[1:], ctxt.Textp)
  2061  		ctxt.Textp[0] = text
  2062  	}
  2063  
  2064  	va := uint64(*FlagTextAddr)
  2065  	n := 1
  2066  	sect.Vaddr = va
  2067  	ntramps := 0
  2068  	for _, sym := range ctxt.Textp {
  2069  		sect, n, va = assignAddress(ctxt, sect, n, sym, va, false)
  2070  
  2071  		trampoline(ctxt, sym) // resolve jumps, may add trampolines if jump too far
  2072  
  2073  		// lay down trampolines after each function
  2074  		for ; ntramps < len(ctxt.tramps); ntramps++ {
  2075  			tramp := ctxt.tramps[ntramps]
  2076  			sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true)
  2077  		}
  2078  	}
  2079  
  2080  	sect.Length = va - sect.Vaddr
  2081  	ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect
  2082  
  2083  	// merge tramps into Textp, keeping Textp in address order
  2084  	if ntramps != 0 {
  2085  		newtextp := make([]*Symbol, 0, len(ctxt.Textp)+ntramps)
  2086  		i := 0
  2087  		for _, sym := range ctxt.Textp {
  2088  			for ; i < ntramps && ctxt.tramps[i].Value < sym.Value; i++ {
  2089  				newtextp = append(newtextp, ctxt.tramps[i])
  2090  			}
  2091  			newtextp = append(newtextp, sym)
  2092  		}
  2093  		newtextp = append(newtextp, ctxt.tramps[i:ntramps]...)
  2094  
  2095  		ctxt.Textp = newtextp
  2096  	}
  2097  }
  2098  
  2099  // assigns address for a text symbol, returns (possibly new) section, its number, and the address
  2100  // Note: once we have trampoline insertion support for external linking, this function
  2101  // will not need to create new text sections, and so no need to return sect and n.
  2102  func assignAddress(ctxt *Link, sect *Section, n int, sym *Symbol, va uint64, isTramp bool) (*Section, int, uint64) {
  2103  	sym.Sect = sect
  2104  	if sym.Type&SSUB != 0 {
  2105  		return sect, n, va
  2106  	}
  2107  	if sym.Align != 0 {
  2108  		va = uint64(Rnd(int64(va), int64(sym.Align)))
  2109  	} else {
  2110  		va = uint64(Rnd(int64(va), int64(Funcalign)))
  2111  	}
  2112  	sym.Value = 0
  2113  	for sub := sym; sub != nil; sub = sub.Sub {
  2114  		sub.Value += int64(va)
  2115  	}
  2116  
  2117  	funcsize := uint64(MINFUNC) // spacing required for findfunctab
  2118  	if sym.Size > MINFUNC {
  2119  		funcsize = uint64(sym.Size)
  2120  	}
  2121  
  2122  	// On ppc64x a text section should not be larger than 2^26 bytes due to the size of
  2123  	// call target offset field in the bl instruction.  Splitting into smaller text
  2124  	// sections smaller than this limit allows the GNU linker to modify the long calls
  2125  	// appropriately.  The limit allows for the space needed for tables inserted by the linker.
  2126  
  2127  	// If this function doesn't fit in the current text section, then create a new one.
  2128  
  2129  	// Only break at outermost syms.
  2130  
  2131  	if SysArch.InFamily(sys.PPC64) && sym.Outer == nil && Iself && Linkmode == LinkExternal && va-sect.Vaddr+funcsize+maxSizeTrampolinesPPC64(sym, isTramp) > 0x1c00000 {
  2132  
  2133  		// Set the length for the previous text section
  2134  		sect.Length = va - sect.Vaddr
  2135  
  2136  		// Create new section, set the starting Vaddr
  2137  		sect = addsection(&Segtext, ".text", 05)
  2138  		sect.Vaddr = va
  2139  		sym.Sect = sect
  2140  
  2141  		// Create a symbol for the start of the secondary text sections
  2142  		ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0).Sect = sect
  2143  		n++
  2144  	}
  2145  	va += funcsize
  2146  
  2147  	return sect, n, va
  2148  }
  2149  
  2150  // assign addresses
  2151  func (ctxt *Link) address() {
  2152  	va := uint64(*FlagTextAddr)
  2153  	Segtext.Rwx = 05
  2154  	Segtext.Vaddr = va
  2155  	Segtext.Fileoff = uint64(HEADR)
  2156  	for _, s := range Segtext.Sections {
  2157  		va = uint64(Rnd(int64(va), int64(s.Align)))
  2158  		s.Vaddr = va
  2159  		va += s.Length
  2160  	}
  2161  
  2162  	Segtext.Length = va - uint64(*FlagTextAddr)
  2163  	Segtext.Filelen = Segtext.Length
  2164  	if Headtype == objabi.Hnacl {
  2165  		va += 32 // room for the "halt sled"
  2166  	}
  2167  
  2168  	if len(Segrodata.Sections) > 0 {
  2169  		// align to page boundary so as not to mix
  2170  		// rodata and executable text.
  2171  		//
  2172  		// Note: gold or GNU ld will reduce the size of the executable
  2173  		// file by arranging for the relro segment to end at a page
  2174  		// boundary, and overlap the end of the text segment with the
  2175  		// start of the relro segment in the file.  The PT_LOAD segments
  2176  		// will be such that the last page of the text segment will be
  2177  		// mapped twice, once r-x and once starting out rw- and, after
  2178  		// relocation processing, changed to r--.
  2179  		//
  2180  		// Ideally the last page of the text segment would not be
  2181  		// writable even for this short period.
  2182  		va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2183  
  2184  		Segrodata.Rwx = 04
  2185  		Segrodata.Vaddr = va
  2186  		Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
  2187  		Segrodata.Filelen = 0
  2188  		for _, s := range Segrodata.Sections {
  2189  			va = uint64(Rnd(int64(va), int64(s.Align)))
  2190  			s.Vaddr = va
  2191  			va += s.Length
  2192  		}
  2193  
  2194  		Segrodata.Length = va - Segrodata.Vaddr
  2195  		Segrodata.Filelen = Segrodata.Length
  2196  	}
  2197  	if len(Segrelrodata.Sections) > 0 {
  2198  		// align to page boundary so as not to mix
  2199  		// rodata, rel-ro data, and executable text.
  2200  		va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2201  
  2202  		Segrelrodata.Rwx = 06
  2203  		Segrelrodata.Vaddr = va
  2204  		Segrelrodata.Fileoff = va - Segrodata.Vaddr + Segrodata.Fileoff
  2205  		Segrelrodata.Filelen = 0
  2206  		for _, s := range Segrelrodata.Sections {
  2207  			va = uint64(Rnd(int64(va), int64(s.Align)))
  2208  			s.Vaddr = va
  2209  			va += s.Length
  2210  		}
  2211  
  2212  		Segrelrodata.Length = va - Segrelrodata.Vaddr
  2213  		Segrelrodata.Filelen = Segrelrodata.Length
  2214  	}
  2215  
  2216  	va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2217  	Segdata.Rwx = 06
  2218  	Segdata.Vaddr = va
  2219  	Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
  2220  	Segdata.Filelen = 0
  2221  	if Headtype == objabi.Hwindows {
  2222  		Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN))
  2223  	}
  2224  	if Headtype == objabi.Hplan9 {
  2225  		Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen
  2226  	}
  2227  	var data *Section
  2228  	var noptr *Section
  2229  	var bss *Section
  2230  	var noptrbss *Section
  2231  	var vlen int64
  2232  	for i, s := range Segdata.Sections {
  2233  		if Iself && s.Name == ".tbss" {
  2234  			continue
  2235  		}
  2236  		vlen = int64(s.Length)
  2237  		if i+1 < len(Segdata.Sections) && !(Iself && Segdata.Sections[i+1].Name == ".tbss") {
  2238  			vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr)
  2239  		}
  2240  		s.Vaddr = va
  2241  		va += uint64(vlen)
  2242  		Segdata.Length = va - Segdata.Vaddr
  2243  		if s.Name == ".data" {
  2244  			data = s
  2245  		}
  2246  		if s.Name == ".noptrdata" {
  2247  			noptr = s
  2248  		}
  2249  		if s.Name == ".bss" {
  2250  			bss = s
  2251  		}
  2252  		if s.Name == ".noptrbss" {
  2253  			noptrbss = s
  2254  		}
  2255  	}
  2256  
  2257  	Segdata.Filelen = bss.Vaddr - Segdata.Vaddr
  2258  
  2259  	va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2260  	Segdwarf.Rwx = 06
  2261  	Segdwarf.Vaddr = va
  2262  	Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(*FlagRound)))
  2263  	Segdwarf.Filelen = 0
  2264  	if Headtype == objabi.Hwindows {
  2265  		Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN)))
  2266  	}
  2267  	for i, s := range Segdwarf.Sections {
  2268  		vlen = int64(s.Length)
  2269  		if i+1 < len(Segdwarf.Sections) {
  2270  			vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr)
  2271  		}
  2272  		s.Vaddr = va
  2273  		va += uint64(vlen)
  2274  		if Headtype == objabi.Hwindows {
  2275  			va = uint64(Rnd(int64(va), PEFILEALIGN))
  2276  		}
  2277  		Segdwarf.Length = va - Segdwarf.Vaddr
  2278  	}
  2279  
  2280  	Segdwarf.Filelen = va - Segdwarf.Vaddr
  2281  
  2282  	var (
  2283  		text     = Segtext.Sections[0]
  2284  		rodata   = ctxt.Syms.Lookup("runtime.rodata", 0).Sect
  2285  		itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect
  2286  		symtab   = ctxt.Syms.Lookup("runtime.symtab", 0).Sect
  2287  		pclntab  = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect
  2288  		types    = ctxt.Syms.Lookup("runtime.types", 0).Sect
  2289  	)
  2290  	lasttext := text
  2291  	// Could be multiple .text sections
  2292  	for _, sect := range Segtext.Sections {
  2293  		if sect.Name == ".text" {
  2294  			lasttext = sect
  2295  		}
  2296  	}
  2297  
  2298  	for _, s := range datap {
  2299  		if s.Sect != nil {
  2300  			s.Value += int64(s.Sect.Vaddr)
  2301  		}
  2302  		for sub := s.Sub; sub != nil; sub = sub.Sub {
  2303  			sub.Value += s.Value
  2304  		}
  2305  	}
  2306  
  2307  	for _, sym := range dwarfp {
  2308  		if sym.Sect != nil {
  2309  			sym.Value += int64(sym.Sect.Vaddr)
  2310  		}
  2311  		for sub := sym.Sub; sub != nil; sub = sub.Sub {
  2312  			sub.Value += sym.Value
  2313  		}
  2314  	}
  2315  
  2316  	if Buildmode == BuildmodeShared {
  2317  		s := ctxt.Syms.Lookup("go.link.abihashbytes", 0)
  2318  		sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0)
  2319  		s.Sect = sectSym.Sect
  2320  		s.Value = int64(sectSym.Sect.Vaddr + 16)
  2321  	}
  2322  
  2323  	ctxt.xdefine("runtime.text", STEXT, int64(text.Vaddr))
  2324  	ctxt.xdefine("runtime.etext", STEXT, int64(lasttext.Vaddr+lasttext.Length))
  2325  
  2326  	// If there are multiple text sections, create runtime.text.n for
  2327  	// their section Vaddr, using n for index
  2328  	n := 1
  2329  	for _, sect := range Segtext.Sections[1:] {
  2330  		if sect.Name == ".text" {
  2331  			symname := fmt.Sprintf("runtime.text.%d", n)
  2332  			ctxt.xdefine(symname, STEXT, int64(sect.Vaddr))
  2333  			n++
  2334  		} else {
  2335  			break
  2336  		}
  2337  	}
  2338  
  2339  	ctxt.xdefine("runtime.rodata", SRODATA, int64(rodata.Vaddr))
  2340  	ctxt.xdefine("runtime.erodata", SRODATA, int64(rodata.Vaddr+rodata.Length))
  2341  	ctxt.xdefine("runtime.types", SRODATA, int64(types.Vaddr))
  2342  	ctxt.xdefine("runtime.etypes", SRODATA, int64(types.Vaddr+types.Length))
  2343  	ctxt.xdefine("runtime.itablink", SRODATA, int64(itablink.Vaddr))
  2344  	ctxt.xdefine("runtime.eitablink", SRODATA, int64(itablink.Vaddr+itablink.Length))
  2345  
  2346  	sym := ctxt.Syms.Lookup("runtime.gcdata", 0)
  2347  	sym.Attr |= AttrLocal
  2348  	ctxt.xdefine("runtime.egcdata", SRODATA, Symaddr(sym)+sym.Size)
  2349  	ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = sym.Sect
  2350  
  2351  	sym = ctxt.Syms.Lookup("runtime.gcbss", 0)
  2352  	sym.Attr |= AttrLocal
  2353  	ctxt.xdefine("runtime.egcbss", SRODATA, Symaddr(sym)+sym.Size)
  2354  	ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = sym.Sect
  2355  
  2356  	ctxt.xdefine("runtime.symtab", SRODATA, int64(symtab.Vaddr))
  2357  	ctxt.xdefine("runtime.esymtab", SRODATA, int64(symtab.Vaddr+symtab.Length))
  2358  	ctxt.xdefine("runtime.pclntab", SRODATA, int64(pclntab.Vaddr))
  2359  	ctxt.xdefine("runtime.epclntab", SRODATA, int64(pclntab.Vaddr+pclntab.Length))
  2360  	ctxt.xdefine("runtime.noptrdata", SNOPTRDATA, int64(noptr.Vaddr))
  2361  	ctxt.xdefine("runtime.enoptrdata", SNOPTRDATA, int64(noptr.Vaddr+noptr.Length))
  2362  	ctxt.xdefine("runtime.bss", SBSS, int64(bss.Vaddr))
  2363  	ctxt.xdefine("runtime.ebss", SBSS, int64(bss.Vaddr+bss.Length))
  2364  	ctxt.xdefine("runtime.data", SDATA, int64(data.Vaddr))
  2365  	ctxt.xdefine("runtime.edata", SDATA, int64(data.Vaddr+data.Length))
  2366  	ctxt.xdefine("runtime.noptrbss", SNOPTRBSS, int64(noptrbss.Vaddr))
  2367  	ctxt.xdefine("runtime.enoptrbss", SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length))
  2368  	ctxt.xdefine("runtime.end", SBSS, int64(Segdata.Vaddr+Segdata.Length))
  2369  }
  2370  
  2371  // add a trampoline with symbol s (to be laid down after the current function)
  2372  func (ctxt *Link) AddTramp(s *Symbol) {
  2373  	s.Type = STEXT
  2374  	s.Attr |= AttrReachable
  2375  	s.Attr |= AttrOnList
  2376  	ctxt.tramps = append(ctxt.tramps, s)
  2377  	if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 {
  2378  		ctxt.Logf("trampoline %s inserted\n", s)
  2379  	}
  2380  }