github.com/jhump/golang-x-tools@v0.0.0-20220218190644-4958d6d39439/internal/lsp/source/rename_check.go (about)

     1  // Copyright 2019 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  //
     5  // Taken from golang.org/x/tools/refactor/rename.
     6  
     7  package source
     8  
     9  import (
    10  	"fmt"
    11  	"go/ast"
    12  	"go/token"
    13  	"go/types"
    14  	"reflect"
    15  	"strconv"
    16  	"strings"
    17  	"unicode"
    18  
    19  	"github.com/jhump/golang-x-tools/go/ast/astutil"
    20  	"github.com/jhump/golang-x-tools/refactor/satisfy"
    21  )
    22  
    23  // errorf reports an error (e.g. conflict) and prevents file modification.
    24  func (r *renamer) errorf(pos token.Pos, format string, args ...interface{}) {
    25  	r.hadConflicts = true
    26  	r.errors += fmt.Sprintf(format, args...)
    27  }
    28  
    29  // check performs safety checks of the renaming of the 'from' object to r.to.
    30  func (r *renamer) check(from types.Object) {
    31  	if r.objsToUpdate[from] {
    32  		return
    33  	}
    34  	r.objsToUpdate[from] = true
    35  
    36  	// NB: order of conditions is important.
    37  	if from_, ok := from.(*types.PkgName); ok {
    38  		r.checkInFileBlock(from_)
    39  	} else if from_, ok := from.(*types.Label); ok {
    40  		r.checkLabel(from_)
    41  	} else if isPackageLevel(from) {
    42  		r.checkInPackageBlock(from)
    43  	} else if v, ok := from.(*types.Var); ok && v.IsField() {
    44  		r.checkStructField(v)
    45  	} else if f, ok := from.(*types.Func); ok && recv(f) != nil {
    46  		r.checkMethod(f)
    47  	} else if isLocal(from) {
    48  		r.checkInLocalScope(from)
    49  	} else {
    50  		r.errorf(from.Pos(), "unexpected %s object %q (please report a bug)\n",
    51  			objectKind(from), from)
    52  	}
    53  }
    54  
    55  // checkInFileBlock performs safety checks for renames of objects in the file block,
    56  // i.e. imported package names.
    57  func (r *renamer) checkInFileBlock(from *types.PkgName) {
    58  	// Check import name is not "init".
    59  	if r.to == "init" {
    60  		r.errorf(from.Pos(), "%q is not a valid imported package name", r.to)
    61  	}
    62  
    63  	// Check for conflicts between file and package block.
    64  	if prev := from.Pkg().Scope().Lookup(r.to); prev != nil {
    65  		r.errorf(from.Pos(), "renaming this %s %q to %q would conflict",
    66  			objectKind(from), from.Name(), r.to)
    67  		r.errorf(prev.Pos(), "\twith this package member %s",
    68  			objectKind(prev))
    69  		return // since checkInPackageBlock would report redundant errors
    70  	}
    71  
    72  	// Check for conflicts in lexical scope.
    73  	r.checkInLexicalScope(from, r.packages[from.Pkg()])
    74  }
    75  
    76  // checkInPackageBlock performs safety checks for renames of
    77  // func/var/const/type objects in the package block.
    78  func (r *renamer) checkInPackageBlock(from types.Object) {
    79  	// Check that there are no references to the name from another
    80  	// package if the renaming would make it unexported.
    81  	if ast.IsExported(from.Name()) && !ast.IsExported(r.to) {
    82  		for typ, pkg := range r.packages {
    83  			if typ == from.Pkg() {
    84  				continue
    85  			}
    86  			if id := someUse(pkg.GetTypesInfo(), from); id != nil &&
    87  				!r.checkExport(id, typ, from) {
    88  				break
    89  			}
    90  		}
    91  	}
    92  
    93  	pkg := r.packages[from.Pkg()]
    94  	if pkg == nil {
    95  		return
    96  	}
    97  
    98  	// Check that in the package block, "init" is a function, and never referenced.
    99  	if r.to == "init" {
   100  		kind := objectKind(from)
   101  		if kind == "func" {
   102  			// Reject if intra-package references to it exist.
   103  			for id, obj := range pkg.GetTypesInfo().Uses {
   104  				if obj == from {
   105  					r.errorf(from.Pos(),
   106  						"renaming this func %q to %q would make it a package initializer",
   107  						from.Name(), r.to)
   108  					r.errorf(id.Pos(), "\tbut references to it exist")
   109  					break
   110  				}
   111  			}
   112  		} else {
   113  			r.errorf(from.Pos(), "you cannot have a %s at package level named %q",
   114  				kind, r.to)
   115  		}
   116  	}
   117  
   118  	// Check for conflicts between package block and all file blocks.
   119  	for _, f := range pkg.GetSyntax() {
   120  		fileScope := pkg.GetTypesInfo().Scopes[f]
   121  		b, prev := fileScope.LookupParent(r.to, token.NoPos)
   122  		if b == fileScope {
   123  			r.errorf(from.Pos(), "renaming this %s %q to %q would conflict", objectKind(from), from.Name(), r.to)
   124  			var prevPos token.Pos
   125  			if prev != nil {
   126  				prevPos = prev.Pos()
   127  			}
   128  			r.errorf(prevPos, "\twith this %s", objectKind(prev))
   129  			return // since checkInPackageBlock would report redundant errors
   130  		}
   131  	}
   132  
   133  	// Check for conflicts in lexical scope.
   134  	if from.Exported() {
   135  		for _, pkg := range r.packages {
   136  			r.checkInLexicalScope(from, pkg)
   137  		}
   138  	} else {
   139  		r.checkInLexicalScope(from, pkg)
   140  	}
   141  }
   142  
   143  func (r *renamer) checkInLocalScope(from types.Object) {
   144  	pkg := r.packages[from.Pkg()]
   145  	r.checkInLexicalScope(from, pkg)
   146  }
   147  
   148  // checkInLexicalScope performs safety checks that a renaming does not
   149  // change the lexical reference structure of the specified package.
   150  //
   151  // For objects in lexical scope, there are three kinds of conflicts:
   152  // same-, sub-, and super-block conflicts.  We will illustrate all three
   153  // using this example:
   154  //
   155  //	var x int
   156  //	var z int
   157  //
   158  //	func f(y int) {
   159  //		print(x)
   160  //		print(y)
   161  //	}
   162  //
   163  // Renaming x to z encounters a SAME-BLOCK CONFLICT, because an object
   164  // with the new name already exists, defined in the same lexical block
   165  // as the old object.
   166  //
   167  // Renaming x to y encounters a SUB-BLOCK CONFLICT, because there exists
   168  // a reference to x from within (what would become) a hole in its scope.
   169  // The definition of y in an (inner) sub-block would cast a shadow in
   170  // the scope of the renamed variable.
   171  //
   172  // Renaming y to x encounters a SUPER-BLOCK CONFLICT.  This is the
   173  // converse situation: there is an existing definition of the new name
   174  // (x) in an (enclosing) super-block, and the renaming would create a
   175  // hole in its scope, within which there exist references to it.  The
   176  // new name casts a shadow in scope of the existing definition of x in
   177  // the super-block.
   178  //
   179  // Removing the old name (and all references to it) is always safe, and
   180  // requires no checks.
   181  //
   182  func (r *renamer) checkInLexicalScope(from types.Object, pkg Package) {
   183  	b := from.Parent() // the block defining the 'from' object
   184  	if b != nil {
   185  		toBlock, to := b.LookupParent(r.to, from.Parent().End())
   186  		if toBlock == b {
   187  			// same-block conflict
   188  			r.errorf(from.Pos(), "renaming this %s %q to %q",
   189  				objectKind(from), from.Name(), r.to)
   190  			r.errorf(to.Pos(), "\tconflicts with %s in same block",
   191  				objectKind(to))
   192  			return
   193  		} else if toBlock != nil {
   194  			// Check for super-block conflict.
   195  			// The name r.to is defined in a superblock.
   196  			// Is that name referenced from within this block?
   197  			forEachLexicalRef(pkg, to, func(id *ast.Ident, block *types.Scope) bool {
   198  				_, obj := block.LookupParent(from.Name(), id.Pos())
   199  				if obj == from {
   200  					// super-block conflict
   201  					r.errorf(from.Pos(), "renaming this %s %q to %q",
   202  						objectKind(from), from.Name(), r.to)
   203  					r.errorf(id.Pos(), "\twould shadow this reference")
   204  					r.errorf(to.Pos(), "\tto the %s declared here",
   205  						objectKind(to))
   206  					return false // stop
   207  				}
   208  				return true
   209  			})
   210  		}
   211  	}
   212  	// Check for sub-block conflict.
   213  	// Is there an intervening definition of r.to between
   214  	// the block defining 'from' and some reference to it?
   215  	forEachLexicalRef(pkg, from, func(id *ast.Ident, block *types.Scope) bool {
   216  		// Find the block that defines the found reference.
   217  		// It may be an ancestor.
   218  		fromBlock, _ := block.LookupParent(from.Name(), id.Pos())
   219  		// See what r.to would resolve to in the same scope.
   220  		toBlock, to := block.LookupParent(r.to, id.Pos())
   221  		if to != nil {
   222  			// sub-block conflict
   223  			if deeper(toBlock, fromBlock) {
   224  				r.errorf(from.Pos(), "renaming this %s %q to %q",
   225  					objectKind(from), from.Name(), r.to)
   226  				r.errorf(id.Pos(), "\twould cause this reference to become shadowed")
   227  				r.errorf(to.Pos(), "\tby this intervening %s definition",
   228  					objectKind(to))
   229  				return false // stop
   230  			}
   231  		}
   232  		return true
   233  	})
   234  
   235  	// Renaming a type that is used as an embedded field
   236  	// requires renaming the field too. e.g.
   237  	// 	type T int // if we rename this to U..
   238  	// 	var s struct {T}
   239  	// 	print(s.T) // ...this must change too
   240  	if _, ok := from.(*types.TypeName); ok {
   241  		for id, obj := range pkg.GetTypesInfo().Uses {
   242  			if obj == from {
   243  				if field := pkg.GetTypesInfo().Defs[id]; field != nil {
   244  					r.check(field)
   245  				}
   246  			}
   247  		}
   248  	}
   249  }
   250  
   251  // deeper reports whether block x is lexically deeper than y.
   252  func deeper(x, y *types.Scope) bool {
   253  	if x == y || x == nil {
   254  		return false
   255  	} else if y == nil {
   256  		return true
   257  	} else {
   258  		return deeper(x.Parent(), y.Parent())
   259  	}
   260  }
   261  
   262  // forEachLexicalRef calls fn(id, block) for each identifier id in package
   263  // pkg that is a reference to obj in lexical scope.  block is the
   264  // lexical block enclosing the reference.  If fn returns false the
   265  // iteration is terminated and findLexicalRefs returns false.
   266  func forEachLexicalRef(pkg Package, obj types.Object, fn func(id *ast.Ident, block *types.Scope) bool) bool {
   267  	ok := true
   268  	var stack []ast.Node
   269  
   270  	var visit func(n ast.Node) bool
   271  	visit = func(n ast.Node) bool {
   272  		if n == nil {
   273  			stack = stack[:len(stack)-1] // pop
   274  			return false
   275  		}
   276  		if !ok {
   277  			return false // bail out
   278  		}
   279  
   280  		stack = append(stack, n) // push
   281  		switch n := n.(type) {
   282  		case *ast.Ident:
   283  			if pkg.GetTypesInfo().Uses[n] == obj {
   284  				block := enclosingBlock(pkg.GetTypesInfo(), stack)
   285  				if !fn(n, block) {
   286  					ok = false
   287  				}
   288  			}
   289  			return visit(nil) // pop stack
   290  
   291  		case *ast.SelectorExpr:
   292  			// don't visit n.Sel
   293  			ast.Inspect(n.X, visit)
   294  			return visit(nil) // pop stack, don't descend
   295  
   296  		case *ast.CompositeLit:
   297  			// Handle recursion ourselves for struct literals
   298  			// so we don't visit field identifiers.
   299  			tv, ok := pkg.GetTypesInfo().Types[n]
   300  			if !ok {
   301  				return visit(nil) // pop stack, don't descend
   302  			}
   303  			if _, ok := Deref(tv.Type).Underlying().(*types.Struct); ok {
   304  				if n.Type != nil {
   305  					ast.Inspect(n.Type, visit)
   306  				}
   307  				for _, elt := range n.Elts {
   308  					if kv, ok := elt.(*ast.KeyValueExpr); ok {
   309  						ast.Inspect(kv.Value, visit)
   310  					} else {
   311  						ast.Inspect(elt, visit)
   312  					}
   313  				}
   314  				return visit(nil) // pop stack, don't descend
   315  			}
   316  		}
   317  		return true
   318  	}
   319  
   320  	for _, f := range pkg.GetSyntax() {
   321  		ast.Inspect(f, visit)
   322  		if len(stack) != 0 {
   323  			panic(stack)
   324  		}
   325  		if !ok {
   326  			break
   327  		}
   328  	}
   329  	return ok
   330  }
   331  
   332  // enclosingBlock returns the innermost block enclosing the specified
   333  // AST node, specified in the form of a path from the root of the file,
   334  // [file...n].
   335  func enclosingBlock(info *types.Info, stack []ast.Node) *types.Scope {
   336  	for i := range stack {
   337  		n := stack[len(stack)-1-i]
   338  		// For some reason, go/types always associates a
   339  		// function's scope with its FuncType.
   340  		// TODO(adonovan): feature or a bug?
   341  		switch f := n.(type) {
   342  		case *ast.FuncDecl:
   343  			n = f.Type
   344  		case *ast.FuncLit:
   345  			n = f.Type
   346  		}
   347  		if b := info.Scopes[n]; b != nil {
   348  			return b
   349  		}
   350  	}
   351  	panic("no Scope for *ast.File")
   352  }
   353  
   354  func (r *renamer) checkLabel(label *types.Label) {
   355  	// Check there are no identical labels in the function's label block.
   356  	// (Label blocks don't nest, so this is easy.)
   357  	if prev := label.Parent().Lookup(r.to); prev != nil {
   358  		r.errorf(label.Pos(), "renaming this label %q to %q", label.Name(), prev.Name())
   359  		r.errorf(prev.Pos(), "\twould conflict with this one")
   360  	}
   361  }
   362  
   363  // checkStructField checks that the field renaming will not cause
   364  // conflicts at its declaration, or ambiguity or changes to any selection.
   365  func (r *renamer) checkStructField(from *types.Var) {
   366  	// Check that the struct declaration is free of field conflicts,
   367  	// and field/method conflicts.
   368  
   369  	// go/types offers no easy way to get from a field (or interface
   370  	// method) to its declaring struct (or interface), so we must
   371  	// ascend the AST.
   372  	fromPkg, ok := r.packages[from.Pkg()]
   373  	if !ok {
   374  		return
   375  	}
   376  	pkg, path, _ := pathEnclosingInterval(r.fset, fromPkg, from.Pos(), from.Pos())
   377  	if pkg == nil || path == nil {
   378  		return
   379  	}
   380  	// path matches this pattern:
   381  	// [Ident SelectorExpr? StarExpr? Field FieldList StructType ParenExpr* ... File]
   382  
   383  	// Ascend to FieldList.
   384  	var i int
   385  	for {
   386  		if _, ok := path[i].(*ast.FieldList); ok {
   387  			break
   388  		}
   389  		i++
   390  	}
   391  	i++
   392  	tStruct := path[i].(*ast.StructType)
   393  	i++
   394  	// Ascend past parens (unlikely).
   395  	for {
   396  		_, ok := path[i].(*ast.ParenExpr)
   397  		if !ok {
   398  			break
   399  		}
   400  		i++
   401  	}
   402  	if spec, ok := path[i].(*ast.TypeSpec); ok {
   403  		// This struct is also a named type.
   404  		// We must check for direct (non-promoted) field/field
   405  		// and method/field conflicts.
   406  		named := pkg.GetTypesInfo().Defs[spec.Name].Type()
   407  		prev, indices, _ := types.LookupFieldOrMethod(named, true, pkg.GetTypes(), r.to)
   408  		if len(indices) == 1 {
   409  			r.errorf(from.Pos(), "renaming this field %q to %q",
   410  				from.Name(), r.to)
   411  			r.errorf(prev.Pos(), "\twould conflict with this %s",
   412  				objectKind(prev))
   413  			return // skip checkSelections to avoid redundant errors
   414  		}
   415  	} else {
   416  		// This struct is not a named type.
   417  		// We need only check for direct (non-promoted) field/field conflicts.
   418  		T := pkg.GetTypesInfo().Types[tStruct].Type.Underlying().(*types.Struct)
   419  		for i := 0; i < T.NumFields(); i++ {
   420  			if prev := T.Field(i); prev.Name() == r.to {
   421  				r.errorf(from.Pos(), "renaming this field %q to %q",
   422  					from.Name(), r.to)
   423  				r.errorf(prev.Pos(), "\twould conflict with this field")
   424  				return // skip checkSelections to avoid redundant errors
   425  			}
   426  		}
   427  	}
   428  
   429  	// Renaming an anonymous field requires renaming the type too. e.g.
   430  	// 	print(s.T)       // if we rename T to U,
   431  	// 	type T int       // this and
   432  	// 	var s struct {T} // this must change too.
   433  	if from.Anonymous() {
   434  		if named, ok := from.Type().(*types.Named); ok {
   435  			r.check(named.Obj())
   436  		} else if named, ok := Deref(from.Type()).(*types.Named); ok {
   437  			r.check(named.Obj())
   438  		}
   439  	}
   440  
   441  	// Check integrity of existing (field and method) selections.
   442  	r.checkSelections(from)
   443  }
   444  
   445  // checkSelection checks that all uses and selections that resolve to
   446  // the specified object would continue to do so after the renaming.
   447  func (r *renamer) checkSelections(from types.Object) {
   448  	for typ, pkg := range r.packages {
   449  		if id := someUse(pkg.GetTypesInfo(), from); id != nil {
   450  			if !r.checkExport(id, typ, from) {
   451  				return
   452  			}
   453  		}
   454  
   455  		for syntax, sel := range pkg.GetTypesInfo().Selections {
   456  			// There may be extant selections of only the old
   457  			// name or only the new name, so we must check both.
   458  			// (If neither, the renaming is sound.)
   459  			//
   460  			// In both cases, we wish to compare the lengths
   461  			// of the implicit field path (Selection.Index)
   462  			// to see if the renaming would change it.
   463  			//
   464  			// If a selection that resolves to 'from', when renamed,
   465  			// would yield a path of the same or shorter length,
   466  			// this indicates ambiguity or a changed referent,
   467  			// analogous to same- or sub-block lexical conflict.
   468  			//
   469  			// If a selection using the name 'to' would
   470  			// yield a path of the same or shorter length,
   471  			// this indicates ambiguity or shadowing,
   472  			// analogous to same- or super-block lexical conflict.
   473  
   474  			// TODO(adonovan): fix: derive from Types[syntax.X].Mode
   475  			// TODO(adonovan): test with pointer, value, addressable value.
   476  			isAddressable := true
   477  
   478  			if sel.Obj() == from {
   479  				if obj, indices, _ := types.LookupFieldOrMethod(sel.Recv(), isAddressable, from.Pkg(), r.to); obj != nil {
   480  					// Renaming this existing selection of
   481  					// 'from' may block access to an existing
   482  					// type member named 'to'.
   483  					delta := len(indices) - len(sel.Index())
   484  					if delta > 0 {
   485  						continue // no ambiguity
   486  					}
   487  					r.selectionConflict(from, delta, syntax, obj)
   488  					return
   489  				}
   490  			} else if sel.Obj().Name() == r.to {
   491  				if obj, indices, _ := types.LookupFieldOrMethod(sel.Recv(), isAddressable, from.Pkg(), from.Name()); obj == from {
   492  					// Renaming 'from' may cause this existing
   493  					// selection of the name 'to' to change
   494  					// its meaning.
   495  					delta := len(indices) - len(sel.Index())
   496  					if delta > 0 {
   497  						continue //  no ambiguity
   498  					}
   499  					r.selectionConflict(from, -delta, syntax, sel.Obj())
   500  					return
   501  				}
   502  			}
   503  		}
   504  	}
   505  }
   506  
   507  func (r *renamer) selectionConflict(from types.Object, delta int, syntax *ast.SelectorExpr, obj types.Object) {
   508  	r.errorf(from.Pos(), "renaming this %s %q to %q",
   509  		objectKind(from), from.Name(), r.to)
   510  
   511  	switch {
   512  	case delta < 0:
   513  		// analogous to sub-block conflict
   514  		r.errorf(syntax.Sel.Pos(),
   515  			"\twould change the referent of this selection")
   516  		r.errorf(obj.Pos(), "\tof this %s", objectKind(obj))
   517  	case delta == 0:
   518  		// analogous to same-block conflict
   519  		r.errorf(syntax.Sel.Pos(),
   520  			"\twould make this reference ambiguous")
   521  		r.errorf(obj.Pos(), "\twith this %s", objectKind(obj))
   522  	case delta > 0:
   523  		// analogous to super-block conflict
   524  		r.errorf(syntax.Sel.Pos(),
   525  			"\twould shadow this selection")
   526  		r.errorf(obj.Pos(), "\tof the %s declared here",
   527  			objectKind(obj))
   528  	}
   529  }
   530  
   531  // checkMethod performs safety checks for renaming a method.
   532  // There are three hazards:
   533  // - declaration conflicts
   534  // - selection ambiguity/changes
   535  // - entailed renamings of assignable concrete/interface types.
   536  //   We reject renamings initiated at concrete methods if it would
   537  //   change the assignability relation.  For renamings of abstract
   538  //   methods, we rename all methods transitively coupled to it via
   539  //   assignability.
   540  func (r *renamer) checkMethod(from *types.Func) {
   541  	// e.g. error.Error
   542  	if from.Pkg() == nil {
   543  		r.errorf(from.Pos(), "you cannot rename built-in method %s", from)
   544  		return
   545  	}
   546  
   547  	// ASSIGNABILITY: We reject renamings of concrete methods that
   548  	// would break a 'satisfy' constraint; but renamings of abstract
   549  	// methods are allowed to proceed, and we rename affected
   550  	// concrete and abstract methods as necessary.  It is the
   551  	// initial method that determines the policy.
   552  
   553  	// Check for conflict at point of declaration.
   554  	// Check to ensure preservation of assignability requirements.
   555  	R := recv(from).Type()
   556  	if IsInterface(R) {
   557  		// Abstract method
   558  
   559  		// declaration
   560  		prev, _, _ := types.LookupFieldOrMethod(R, false, from.Pkg(), r.to)
   561  		if prev != nil {
   562  			r.errorf(from.Pos(), "renaming this interface method %q to %q",
   563  				from.Name(), r.to)
   564  			r.errorf(prev.Pos(), "\twould conflict with this method")
   565  			return
   566  		}
   567  
   568  		// Check all interfaces that embed this one for
   569  		// declaration conflicts too.
   570  		for _, pkg := range r.packages {
   571  			// Start with named interface types (better errors)
   572  			for _, obj := range pkg.GetTypesInfo().Defs {
   573  				if obj, ok := obj.(*types.TypeName); ok && IsInterface(obj.Type()) {
   574  					f, _, _ := types.LookupFieldOrMethod(
   575  						obj.Type(), false, from.Pkg(), from.Name())
   576  					if f == nil {
   577  						continue
   578  					}
   579  					t, _, _ := types.LookupFieldOrMethod(
   580  						obj.Type(), false, from.Pkg(), r.to)
   581  					if t == nil {
   582  						continue
   583  					}
   584  					r.errorf(from.Pos(), "renaming this interface method %q to %q",
   585  						from.Name(), r.to)
   586  					r.errorf(t.Pos(), "\twould conflict with this method")
   587  					r.errorf(obj.Pos(), "\tin named interface type %q", obj.Name())
   588  				}
   589  			}
   590  
   591  			// Now look at all literal interface types (includes named ones again).
   592  			for e, tv := range pkg.GetTypesInfo().Types {
   593  				if e, ok := e.(*ast.InterfaceType); ok {
   594  					_ = e
   595  					_ = tv.Type.(*types.Interface)
   596  					// TODO(adonovan): implement same check as above.
   597  				}
   598  			}
   599  		}
   600  
   601  		// assignability
   602  		//
   603  		// Find the set of concrete or abstract methods directly
   604  		// coupled to abstract method 'from' by some
   605  		// satisfy.Constraint, and rename them too.
   606  		for key := range r.satisfy() {
   607  			// key = (lhs, rhs) where lhs is always an interface.
   608  
   609  			lsel := r.msets.MethodSet(key.LHS).Lookup(from.Pkg(), from.Name())
   610  			if lsel == nil {
   611  				continue
   612  			}
   613  			rmethods := r.msets.MethodSet(key.RHS)
   614  			rsel := rmethods.Lookup(from.Pkg(), from.Name())
   615  			if rsel == nil {
   616  				continue
   617  			}
   618  
   619  			// If both sides have a method of this name,
   620  			// and one of them is m, the other must be coupled.
   621  			var coupled *types.Func
   622  			switch from {
   623  			case lsel.Obj():
   624  				coupled = rsel.Obj().(*types.Func)
   625  			case rsel.Obj():
   626  				coupled = lsel.Obj().(*types.Func)
   627  			default:
   628  				continue
   629  			}
   630  
   631  			// We must treat concrete-to-interface
   632  			// constraints like an implicit selection C.f of
   633  			// each interface method I.f, and check that the
   634  			// renaming leaves the selection unchanged and
   635  			// unambiguous.
   636  			//
   637  			// Fun fact: the implicit selection of C.f
   638  			// 	type I interface{f()}
   639  			// 	type C struct{I}
   640  			// 	func (C) g()
   641  			//      var _ I = C{} // here
   642  			// yields abstract method I.f.  This can make error
   643  			// messages less than obvious.
   644  			//
   645  			if !IsInterface(key.RHS) {
   646  				// The logic below was derived from checkSelections.
   647  
   648  				rtosel := rmethods.Lookup(from.Pkg(), r.to)
   649  				if rtosel != nil {
   650  					rto := rtosel.Obj().(*types.Func)
   651  					delta := len(rsel.Index()) - len(rtosel.Index())
   652  					if delta < 0 {
   653  						continue // no ambiguity
   654  					}
   655  
   656  					// TODO(adonovan): record the constraint's position.
   657  					keyPos := token.NoPos
   658  
   659  					r.errorf(from.Pos(), "renaming this method %q to %q",
   660  						from.Name(), r.to)
   661  					if delta == 0 {
   662  						// analogous to same-block conflict
   663  						r.errorf(keyPos, "\twould make the %s method of %s invoked via interface %s ambiguous",
   664  							r.to, key.RHS, key.LHS)
   665  						r.errorf(rto.Pos(), "\twith (%s).%s",
   666  							recv(rto).Type(), r.to)
   667  					} else {
   668  						// analogous to super-block conflict
   669  						r.errorf(keyPos, "\twould change the %s method of %s invoked via interface %s",
   670  							r.to, key.RHS, key.LHS)
   671  						r.errorf(coupled.Pos(), "\tfrom (%s).%s",
   672  							recv(coupled).Type(), r.to)
   673  						r.errorf(rto.Pos(), "\tto (%s).%s",
   674  							recv(rto).Type(), r.to)
   675  					}
   676  					return // one error is enough
   677  				}
   678  			}
   679  
   680  			if !r.changeMethods {
   681  				// This should be unreachable.
   682  				r.errorf(from.Pos(), "internal error: during renaming of abstract method %s", from)
   683  				r.errorf(coupled.Pos(), "\tchangedMethods=false, coupled method=%s", coupled)
   684  				r.errorf(from.Pos(), "\tPlease file a bug report")
   685  				return
   686  			}
   687  
   688  			// Rename the coupled method to preserve assignability.
   689  			r.check(coupled)
   690  		}
   691  	} else {
   692  		// Concrete method
   693  
   694  		// declaration
   695  		prev, indices, _ := types.LookupFieldOrMethod(R, true, from.Pkg(), r.to)
   696  		if prev != nil && len(indices) == 1 {
   697  			r.errorf(from.Pos(), "renaming this method %q to %q",
   698  				from.Name(), r.to)
   699  			r.errorf(prev.Pos(), "\twould conflict with this %s",
   700  				objectKind(prev))
   701  			return
   702  		}
   703  
   704  		// assignability
   705  		//
   706  		// Find the set of abstract methods coupled to concrete
   707  		// method 'from' by some satisfy.Constraint, and rename
   708  		// them too.
   709  		//
   710  		// Coupling may be indirect, e.g. I.f <-> C.f via type D.
   711  		//
   712  		// 	type I interface {f()}
   713  		//	type C int
   714  		//	type (C) f()
   715  		//	type D struct{C}
   716  		//	var _ I = D{}
   717  		//
   718  		for key := range r.satisfy() {
   719  			// key = (lhs, rhs) where lhs is always an interface.
   720  			if IsInterface(key.RHS) {
   721  				continue
   722  			}
   723  			rsel := r.msets.MethodSet(key.RHS).Lookup(from.Pkg(), from.Name())
   724  			if rsel == nil || rsel.Obj() != from {
   725  				continue // rhs does not have the method
   726  			}
   727  			lsel := r.msets.MethodSet(key.LHS).Lookup(from.Pkg(), from.Name())
   728  			if lsel == nil {
   729  				continue
   730  			}
   731  			imeth := lsel.Obj().(*types.Func)
   732  
   733  			// imeth is the abstract method (e.g. I.f)
   734  			// and key.RHS is the concrete coupling type (e.g. D).
   735  			if !r.changeMethods {
   736  				r.errorf(from.Pos(), "renaming this method %q to %q",
   737  					from.Name(), r.to)
   738  				var pos token.Pos
   739  				var iface string
   740  
   741  				I := recv(imeth).Type()
   742  				if named, ok := I.(*types.Named); ok {
   743  					pos = named.Obj().Pos()
   744  					iface = "interface " + named.Obj().Name()
   745  				} else {
   746  					pos = from.Pos()
   747  					iface = I.String()
   748  				}
   749  				r.errorf(pos, "\twould make %s no longer assignable to %s",
   750  					key.RHS, iface)
   751  				r.errorf(imeth.Pos(), "\t(rename %s.%s if you intend to change both types)",
   752  					I, from.Name())
   753  				return // one error is enough
   754  			}
   755  
   756  			// Rename the coupled interface method to preserve assignability.
   757  			r.check(imeth)
   758  		}
   759  	}
   760  
   761  	// Check integrity of existing (field and method) selections.
   762  	// We skip this if there were errors above, to avoid redundant errors.
   763  	r.checkSelections(from)
   764  }
   765  
   766  func (r *renamer) checkExport(id *ast.Ident, pkg *types.Package, from types.Object) bool {
   767  	// Reject cross-package references if r.to is unexported.
   768  	// (Such references may be qualified identifiers or field/method
   769  	// selections.)
   770  	if !ast.IsExported(r.to) && pkg != from.Pkg() {
   771  		r.errorf(from.Pos(),
   772  			"renaming %q to %q would make it unexported",
   773  			from.Name(), r.to)
   774  		r.errorf(id.Pos(), "\tbreaking references from packages such as %q",
   775  			pkg.Path())
   776  		return false
   777  	}
   778  	return true
   779  }
   780  
   781  // satisfy returns the set of interface satisfaction constraints.
   782  func (r *renamer) satisfy() map[satisfy.Constraint]bool {
   783  	if r.satisfyConstraints == nil {
   784  		// Compute on demand: it's expensive.
   785  		var f satisfy.Finder
   786  		for _, pkg := range r.packages {
   787  			// From satisfy.Finder documentation:
   788  			//
   789  			// The package must be free of type errors, and
   790  			// info.{Defs,Uses,Selections,Types} must have been populated by the
   791  			// type-checker.
   792  			//
   793  			// Only proceed if all packages have no errors.
   794  			if pkg.HasListOrParseErrors() || pkg.HasTypeErrors() {
   795  				r.errorf(token.NoPos, // we don't have a position for this error.
   796  					"renaming %q to %q not possible because %q has errors",
   797  					r.from, r.to, pkg.PkgPath())
   798  				return nil
   799  			}
   800  			f.Find(pkg.GetTypesInfo(), pkg.GetSyntax())
   801  		}
   802  		r.satisfyConstraints = f.Result
   803  	}
   804  	return r.satisfyConstraints
   805  }
   806  
   807  // -- helpers ----------------------------------------------------------
   808  
   809  // recv returns the method's receiver.
   810  func recv(meth *types.Func) *types.Var {
   811  	return meth.Type().(*types.Signature).Recv()
   812  }
   813  
   814  // someUse returns an arbitrary use of obj within info.
   815  func someUse(info *types.Info, obj types.Object) *ast.Ident {
   816  	for id, o := range info.Uses {
   817  		if o == obj {
   818  			return id
   819  		}
   820  	}
   821  	return nil
   822  }
   823  
   824  // pathEnclosingInterval returns the Package and ast.Node that
   825  // contain source interval [start, end), and all the node's ancestors
   826  // up to the AST root.  It searches all ast.Files of all packages.
   827  // exact is defined as for astutil.PathEnclosingInterval.
   828  //
   829  // The zero value is returned if not found.
   830  //
   831  func pathEnclosingInterval(fset *token.FileSet, pkg Package, start, end token.Pos) (resPkg Package, path []ast.Node, exact bool) {
   832  	pkgs := []Package{pkg}
   833  	for _, f := range pkg.GetSyntax() {
   834  		for _, imp := range f.Imports {
   835  			if imp == nil {
   836  				continue
   837  			}
   838  			importPath, err := strconv.Unquote(imp.Path.Value)
   839  			if err != nil {
   840  				continue
   841  			}
   842  			importPkg, err := pkg.GetImport(importPath)
   843  			if err != nil {
   844  				return nil, nil, false
   845  			}
   846  			pkgs = append(pkgs, importPkg)
   847  		}
   848  	}
   849  	for _, p := range pkgs {
   850  		for _, f := range p.GetSyntax() {
   851  			if f.Pos() == token.NoPos {
   852  				// This can happen if the parser saw
   853  				// too many errors and bailed out.
   854  				// (Use parser.AllErrors to prevent that.)
   855  				continue
   856  			}
   857  			if !tokenFileContainsPos(fset.File(f.Pos()), start) {
   858  				continue
   859  			}
   860  			if path, exact := astutil.PathEnclosingInterval(f, start, end); path != nil {
   861  				return pkg, path, exact
   862  			}
   863  		}
   864  	}
   865  	return nil, nil, false
   866  }
   867  
   868  // TODO(adonovan): make this a method: func (*token.File) Contains(token.Pos)
   869  func tokenFileContainsPos(f *token.File, pos token.Pos) bool {
   870  	p := int(pos)
   871  	base := f.Base()
   872  	return base <= p && p < base+f.Size()
   873  }
   874  
   875  func objectKind(obj types.Object) string {
   876  	if obj == nil {
   877  		return "nil object"
   878  	}
   879  	switch obj := obj.(type) {
   880  	case *types.PkgName:
   881  		return "imported package name"
   882  	case *types.TypeName:
   883  		return "type"
   884  	case *types.Var:
   885  		if obj.IsField() {
   886  			return "field"
   887  		}
   888  	case *types.Func:
   889  		if obj.Type().(*types.Signature).Recv() != nil {
   890  			return "method"
   891  		}
   892  	}
   893  	// label, func, var, const
   894  	return strings.ToLower(strings.TrimPrefix(reflect.TypeOf(obj).String(), "*types."))
   895  }
   896  
   897  // NB: for renamings, blank is not considered valid.
   898  func isValidIdentifier(id string) bool {
   899  	if id == "" || id == "_" {
   900  		return false
   901  	}
   902  	for i, r := range id {
   903  		if !isLetter(r) && (i == 0 || !isDigit(r)) {
   904  			return false
   905  		}
   906  	}
   907  	return token.Lookup(id) == token.IDENT
   908  }
   909  
   910  // isLocal reports whether obj is local to some function.
   911  // Precondition: not a struct field or interface method.
   912  func isLocal(obj types.Object) bool {
   913  	// [... 5=stmt 4=func 3=file 2=pkg 1=universe]
   914  	var depth int
   915  	for scope := obj.Parent(); scope != nil; scope = scope.Parent() {
   916  		depth++
   917  	}
   918  	return depth >= 4
   919  }
   920  
   921  func isPackageLevel(obj types.Object) bool {
   922  	if obj == nil {
   923  		return false
   924  	}
   925  	return obj.Pkg().Scope().Lookup(obj.Name()) == obj
   926  }
   927  
   928  // -- Plundered from go/scanner: ---------------------------------------
   929  
   930  func isLetter(ch rune) bool {
   931  	return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= 0x80 && unicode.IsLetter(ch)
   932  }
   933  
   934  func isDigit(ch rune) bool {
   935  	return '0' <= ch && ch <= '9' || ch >= 0x80 && unicode.IsDigit(ch)
   936  }