github.com/klaytn/klaytn@v1.10.2/storage/statedb/trie.go (about) 1 // Modifications Copyright 2018 The klaytn Authors 2 // Copyright 2015 The go-ethereum Authors 3 // This file is part of the go-ethereum library. 4 // 5 // The go-ethereum library is free software: you can redistribute it and/or modify 6 // it under the terms of the GNU Lesser General Public License as published by 7 // the Free Software Foundation, either version 3 of the License, or 8 // (at your option) any later version. 9 // 10 // The go-ethereum library is distributed in the hope that it will be useful, 11 // but WITHOUT ANY WARRANTY; without even the implied warranty of 12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 // GNU Lesser General Public License for more details. 14 // 15 // You should have received a copy of the GNU Lesser General Public License 16 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 17 // 18 // This file is derived from trie/trie.go (2018/06/04). 19 // Modified and improved for the klaytn development. 20 21 package statedb 22 23 import ( 24 "bytes" 25 "errors" 26 "fmt" 27 28 "github.com/klaytn/klaytn/common" 29 "github.com/klaytn/klaytn/crypto" 30 ) 31 32 var ( 33 // emptyRoot is the known root hash of an empty trie. 34 emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") 35 36 // emptyState is the known hash of an empty state trie entry. 37 emptyState = crypto.Keccak256Hash(nil) 38 ) 39 40 // LeafCallback is a callback type invoked when a trie operation reaches a leaf 41 // node. 42 // 43 // The paths is a path tuple identifying a particular trie node either in a single 44 // trie (account) or a layered trie (account -> storage). Each path in the tuple 45 // is in the raw format(32 bytes). 46 // 47 // The hexpath is a composite hexary path identifying the trie node. All the key 48 // bytes are converted to the hexary nibbles and composited with the parent path 49 // if the trie node is in a layered trie. 50 // 51 // It's used by state sync and commit to allow handling external references 52 // between account and storage tries. And also it's used in the state healing 53 // for extracting the raw states(leaf nodes) with corresponding paths. 54 type LeafCallback func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash, parentDepth int) error 55 56 // Trie is a Merkle Patricia Trie. 57 // The zero value is an empty trie with no database. 58 // Use NewTrie to create a trie that sits on top of a database. 59 // 60 // Trie is not safe for concurrent use. 61 type Trie struct { 62 db *Database 63 root node 64 originalRoot common.Hash 65 prefetching bool 66 } 67 68 // newFlag returns the cache flag value for a newly created node. 69 func (t *Trie) newFlag() nodeFlag { 70 return nodeFlag{dirty: true} 71 } 72 73 // NewTrie creates a trie with an existing root node from db. 74 // 75 // If root is the zero hash or the sha3 hash of an empty string, the 76 // trie is initially empty and does not require a database. Otherwise, 77 // NewTrie will panic if db is nil and returns a MissingNodeError if root does 78 // not exist in the database. Accessing the trie loads nodes from db on demand. 79 func NewTrie(root common.Hash, db *Database) (*Trie, error) { 80 if db == nil { 81 panic("statedb.NewTrie called without a database") 82 } 83 trie := &Trie{ 84 db: db, 85 originalRoot: root, 86 } 87 if (root != common.Hash{}) && root != emptyRoot { 88 rootnode, err := trie.resolveHash(root[:], nil) 89 if err != nil { 90 return nil, err 91 } 92 trie.root = rootnode 93 } 94 return trie, nil 95 } 96 97 func NewTrieForPrefetching(root common.Hash, db *Database) (*Trie, error) { 98 trie, err := NewTrie(root, db) 99 if err != nil { 100 return nil, err 101 } 102 trie.prefetching = true 103 return trie, err 104 } 105 106 // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at 107 // the key after the given start key. 108 func (t *Trie) NodeIterator(start []byte) NodeIterator { 109 return newNodeIterator(t, start) 110 } 111 112 // Get returns the value for key stored in the trie. 113 // The value bytes must not be modified by the caller. 114 func (t *Trie) Get(key []byte) []byte { 115 res, err := t.TryGet(key) 116 if err != nil { 117 logger.Error("Unhandled trie error in Trie.Get", "err", err) 118 } 119 return res 120 } 121 122 // TryGet returns the value for key stored in the trie. 123 // The value bytes must not be modified by the caller. 124 // If a node was not found in the database, a MissingNodeError is returned. 125 func (t *Trie) TryGet(key []byte) ([]byte, error) { 126 key = keybytesToHex(key) 127 value, newroot, didResolve, err := t.tryGet(t.root, key, 0) 128 if err == nil && didResolve { 129 t.root = newroot 130 } 131 return value, err 132 } 133 134 func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) { 135 switch n := (origNode).(type) { 136 case nil: 137 return nil, nil, false, nil 138 case valueNode: 139 return n, n, false, nil 140 case *shortNode: 141 if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) { 142 // key not found in trie 143 return nil, n, false, nil 144 } 145 value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key)) 146 if err == nil && didResolve { 147 n = n.copy() 148 n.Val = newnode 149 } 150 return value, n, didResolve, err 151 case *fullNode: 152 value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1) 153 if err == nil && didResolve { 154 n = n.copy() 155 n.Children[key[pos]] = newnode 156 } 157 return value, n, didResolve, err 158 case hashNode: 159 child, err := t.resolveHash(n, key[:pos]) 160 if err != nil { 161 return nil, n, true, err 162 } 163 value, newnode, _, err := t.tryGet(child, key, pos) 164 return value, newnode, true, err 165 default: 166 panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode)) 167 } 168 } 169 170 // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not 171 // possible to use keybyte-encoding as the path might contain odd nibbles. 172 func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) { 173 item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0) 174 if err != nil { 175 return nil, resolved, err 176 } 177 if resolved > 0 { 178 t.root = newroot 179 } 180 if item == nil { 181 return nil, resolved, nil 182 } 183 return item, resolved, err 184 } 185 186 func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) { 187 // If non-existent path requested, abort 188 if origNode == nil { 189 return nil, nil, 0, nil 190 } 191 // If we reached the requested path, return the current node 192 if pos >= len(path) { 193 // Although we most probably have the original node expanded, encoding 194 // that into consensus form can be nasty (needs to cascade down) and 195 // time consuming. Instead, just pull the hash up from disk directly. 196 var hash hashNode 197 if node, ok := origNode.(hashNode); ok { 198 hash = node 199 } else { 200 hash, _ = origNode.cache() 201 } 202 if hash == nil { 203 return nil, origNode, 0, errors.New("non-consensus node") 204 } 205 blob, err := t.db.Node(common.BytesToHash(hash)) 206 return blob, origNode, 1, err 207 } 208 // Path still needs to be traversed, descend into children 209 switch n := (origNode).(type) { 210 case valueNode: 211 // Path prematurely ended, abort 212 return nil, nil, 0, nil 213 214 case *shortNode: 215 if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) { 216 // Path branches off from short node 217 return nil, n, 0, nil 218 } 219 item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key)) 220 if err == nil && resolved > 0 { 221 n = n.copy() 222 n.Val = newnode 223 } 224 return item, n, resolved, err 225 226 case *fullNode: 227 item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1) 228 if err == nil && resolved > 0 { 229 n = n.copy() 230 n.Children[path[pos]] = newnode 231 } 232 return item, n, resolved, err 233 234 case hashNode: 235 child, err := t.resolveHash(n, path[:pos]) 236 if err != nil { 237 return nil, n, 1, err 238 } 239 item, newnode, resolved, err := t.tryGetNode(child, path, pos) 240 return item, newnode, resolved + 1, err 241 242 default: 243 panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode)) 244 } 245 } 246 247 // Update associates key with value in the trie. Subsequent calls to 248 // Get will return value. If value has length zero, any existing value 249 // is deleted from the trie and calls to Get will return nil. 250 // 251 // The value bytes must not be modified by the caller while they are 252 // stored in the trie. 253 func (t *Trie) Update(key, value []byte) { 254 if err := t.TryUpdate(key, value); err != nil { 255 logger.Error("Unhandled trie error in Trie.Update", "err", err) 256 } 257 } 258 259 // TryUpdate associates key with value in the trie. Subsequent calls to 260 // Get will return value. If value has length zero, any existing value 261 // is deleted from the trie and calls to Get will return nil. 262 // 263 // The value bytes must not be modified by the caller while they are 264 // stored in the trie. 265 // 266 // If a node was not found in the database, a MissingNodeError is returned. 267 func (t *Trie) TryUpdate(key, value []byte) error { 268 hexKey := keybytesToHex(key) 269 return t.TryUpdateWithHexKey(hexKey, value) 270 } 271 272 // TryUpdateWithHexKey uses pre-generated hexKey. 273 // It is both called from TryUpdate and SecureTrie.TryUpdateWithKeys. 274 func (t *Trie) TryUpdateWithHexKey(hexKey, value []byte) error { 275 if len(value) != 0 { 276 _, n, err := t.insert(t.root, nil, hexKey, valueNode(value)) 277 if err != nil { 278 return err 279 } 280 t.root = n 281 } else { 282 _, n, err := t.delete(t.root, nil, hexKey) 283 if err != nil { 284 return err 285 } 286 t.root = n 287 } 288 return nil 289 } 290 291 func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) { 292 if len(key) == 0 { 293 if v, ok := n.(valueNode); ok { 294 return !bytes.Equal(v, value.(valueNode)), value, nil 295 } 296 return true, value, nil 297 } 298 switch n := n.(type) { 299 case *shortNode: 300 matchlen := prefixLen(key, n.Key) 301 // If the whole key matches, keep this short node as is 302 // and only update the value. 303 if matchlen == len(n.Key) { 304 dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value) 305 if !dirty || err != nil { 306 return false, n, err 307 } 308 return true, &shortNode{n.Key, nn, t.newFlag()}, nil 309 } 310 // Otherwise branch out at the index where they differ. 311 branch := &fullNode{flags: t.newFlag()} 312 var err error 313 _, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val) 314 if err != nil { 315 return false, nil, err 316 } 317 _, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value) 318 if err != nil { 319 return false, nil, err 320 } 321 // Replace this shortNode with the branch if it occurs at index 0. 322 if matchlen == 0 { 323 return true, branch, nil 324 } 325 // Otherwise, replace it with a short node leading up to the branch. 326 return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil 327 328 case *fullNode: 329 dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value) 330 if !dirty || err != nil { 331 return false, n, err 332 } 333 n = n.copy() 334 n.flags = t.newFlag() 335 n.Children[key[0]] = nn 336 return true, n, nil 337 338 case nil: 339 return true, &shortNode{key, value, t.newFlag()}, nil 340 341 case hashNode: 342 // We've hit a part of the trie that isn't loaded yet. Load 343 // the node and insert into it. This leaves all child nodes on 344 // the path to the value in the trie. 345 rn, err := t.resolveHash(n, prefix) 346 if err != nil { 347 return false, nil, err 348 } 349 dirty, nn, err := t.insert(rn, prefix, key, value) 350 if !dirty || err != nil { 351 return false, rn, err 352 } 353 return true, nn, nil 354 355 default: 356 panic(fmt.Sprintf("%T: invalid node: %v", n, n)) 357 } 358 } 359 360 // Delete removes any existing value for key from the trie. 361 func (t *Trie) Delete(key []byte) { 362 if err := t.TryDelete(key); err != nil { 363 logger.Error("Unhandled trie error in Trie.Delete", "err", err) 364 } 365 } 366 367 // TryDelete removes any existing value for key from the trie. 368 // If a node was not found in the database, a MissingNodeError is returned. 369 func (t *Trie) TryDelete(key []byte) error { 370 k := keybytesToHex(key) 371 _, n, err := t.delete(t.root, nil, k) 372 if err != nil { 373 return err 374 } 375 t.root = n 376 return nil 377 } 378 379 // delete returns the new root of the trie with key deleted. 380 // It reduces the trie to minimal form by simplifying 381 // nodes on the way up after deleting recursively. 382 func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) { 383 switch n := n.(type) { 384 case *shortNode: 385 matchlen := prefixLen(key, n.Key) 386 if matchlen < len(n.Key) { 387 return false, n, nil // don't replace n on mismatch 388 } 389 if matchlen == len(key) { 390 return true, nil, nil // remove n entirely for whole matches 391 } 392 // The key is longer than n.Key. Remove the remaining suffix 393 // from the subtrie. Child can never be nil here since the 394 // subtrie must contain at least two other values with keys 395 // longer than n.Key. 396 dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):]) 397 if !dirty || err != nil { 398 return false, n, err 399 } 400 switch child := child.(type) { 401 case *shortNode: 402 // Deleting from the subtrie reduced it to another 403 // short node. Merge the nodes to avoid creating a 404 // shortNode{..., shortNode{...}}. Use concat (which 405 // always creates a new slice) instead of append to 406 // avoid modifying n.Key since it might be shared with 407 // other nodes. 408 return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil 409 default: 410 return true, &shortNode{n.Key, child, t.newFlag()}, nil 411 } 412 413 case *fullNode: 414 dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:]) 415 if !dirty || err != nil { 416 return false, n, err 417 } 418 n = n.copy() 419 n.flags = t.newFlag() 420 n.Children[key[0]] = nn 421 422 // Check how many non-nil entries are left after deleting and 423 // reduce the full node to a short node if only one entry is 424 // left. Since n must've contained at least two children 425 // before deletion (otherwise it would not be a full node) n 426 // can never be reduced to nil. 427 // 428 // When the loop is done, pos contains the index of the single 429 // value that is left in n or -2 if n contains at least two 430 // values. 431 pos := -1 432 for i, cld := range &n.Children { 433 if cld != nil { 434 if pos == -1 { 435 pos = i 436 } else { 437 pos = -2 438 break 439 } 440 } 441 } 442 if pos >= 0 { 443 if pos != 16 { 444 // If the remaining entry is a short node, it replaces 445 // n and its key gets the missing nibble tacked to the 446 // front. This avoids creating an invalid 447 // shortNode{..., shortNode{...}}. Since the entry 448 // might not be loaded yet, resolve it just for this 449 // check. 450 cnode, err := t.resolve(n.Children[pos], prefix) 451 if err != nil { 452 return false, nil, err 453 } 454 if cnode, ok := cnode.(*shortNode); ok { 455 k := append([]byte{byte(pos)}, cnode.Key...) 456 return true, &shortNode{k, cnode.Val, t.newFlag()}, nil 457 } 458 } 459 // Otherwise, n is replaced by a one-nibble short node 460 // containing the child. 461 return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil 462 } 463 // n still contains at least two values and cannot be reduced. 464 return true, n, nil 465 466 case valueNode: 467 return true, nil, nil 468 469 case nil: 470 return false, nil, nil 471 472 case hashNode: 473 // We've hit a part of the trie that isn't loaded yet. Load 474 // the node and delete from it. This leaves all child nodes on 475 // the path to the value in the trie. 476 rn, err := t.resolveHash(n, prefix) 477 if err != nil { 478 return false, nil, err 479 } 480 dirty, nn, err := t.delete(rn, prefix, key) 481 if !dirty || err != nil { 482 return false, rn, err 483 } 484 return true, nn, nil 485 486 default: 487 panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key)) 488 } 489 } 490 491 func concat(s1 []byte, s2 ...byte) []byte { 492 r := make([]byte, len(s1)+len(s2)) 493 copy(r, s1) 494 copy(r[len(s1):], s2) 495 return r 496 } 497 498 func (t *Trie) resolve(n node, prefix []byte) (node, error) { 499 if n, ok := n.(hashNode); ok { 500 return t.resolveHash(n, prefix) 501 } 502 return n, nil 503 } 504 505 func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) { 506 hash := common.BytesToHash(n) 507 node, fromDB := t.db.node(hash) 508 if t.prefetching && fromDB { 509 memcacheCleanPrefetchMissMeter.Mark(1) 510 } 511 if node != nil { 512 return node, nil 513 } 514 return nil, &MissingNodeError{NodeHash: hash, Path: prefix} 515 } 516 517 // Hash returns the root hash of the trie. It does not write to the 518 // database and can be used even if the trie doesn't have one. 519 func (t *Trie) Hash() common.Hash { 520 hash, cached := t.hashRoot(nil, nil) 521 t.root = cached 522 return common.BytesToHash(hash.(hashNode)) 523 } 524 525 // Commit writes all nodes to the trie's memory database, tracking the internal 526 // and external (for account tries) references. 527 func (t *Trie) Commit(onleaf LeafCallback) (root common.Hash, err error) { 528 if t.db == nil { 529 panic("commit called on trie with nil database") 530 } 531 hash, cached := t.hashRoot(t.db, onleaf) 532 t.root = cached 533 return common.BytesToHash(hash.(hashNode)), nil 534 } 535 536 func (t *Trie) hashRoot(db *Database, onleaf LeafCallback) (node, node) { 537 if t.root == nil { 538 return hashNode(emptyRoot.Bytes()), nil 539 } 540 h := newHasher(onleaf) 541 defer returnHasherToPool(h) 542 return h.hashRoot(t.root, db, true) 543 } 544 545 func GetHashAndHexKey(key []byte) ([]byte, []byte) { 546 var hashKeyBuf [common.HashLength]byte 547 h := newHasher(nil) 548 h.sha.Reset() 549 h.sha.Write(key) 550 hashKey := h.sha.Sum(hashKeyBuf[:0]) 551 returnHasherToPool(h) 552 hexKey := keybytesToHex(hashKey) 553 return hashKey, hexKey 554 }