Verifiable Data Structures

Adam Eijdenberg (eijldenberg@google.com)
Ben Laurie (benl@google.com)
Al Cutter (al@google.com)

November 2015

Introduction

Much of life relies on trust in various authorities. In the internet realm, site-owners trust
Certificate Authorities to issue certificates, mail clients may trust a key server to return the right
public key for a recipient they wish to mail to, server administrators trust their package
distributors to send them binaries for their software. In the real world, citizens trust land
registries to accurately record who owns which land.

This paper describes a number of data structures and their applications that allow adding
transparency to the trust model, allowing an ecosystem to evolve from pure trust, to trust but
verify. By adding transparency to services, trust can be verified by the ecosystems that depend
upon them.

Verifiable Logs

The first structure we describe is an append-only log. It begins empty and is mutated only by
entries being appended to it. Once an entry has been accepted by the log, it can never be
removed or changed. Periodically the log will publish a signed tree head which includes a root
hash of all entries for a given log size.

Clients of the log can:

Efficiently verify that a specific entry is included in the log.
Efficiently detect split-view attacks.

Efficiently verify the append-only property of the log.
Enumerate all entries held in the log.

o~

The verifiable log as described is equivalent to that described in REC6962.


mailto:eijdenberg@google.com
mailto:benl@google.com
mailto:al@google.com
https://tools.ietf.org/html/rfc6962

{"tree_size": 5,
"root_hash": "anvkjdsfhueiwbv=",
"signature": "hvsdk32fsssd="}

leaf hash

Geaf has@ Geaf has@ Qeaf hash] Qeaf has@

entry O entry 1 entry 2 entry 3 entry 4

Verifiable Maps

The next structure we describe is a verifiable map. A verifiable map is a map from a set of keys'
to a corresponding set of values. Periodically the map will publish a signed tree head which
includes a root hash of all 22256 entries®.

Clients of the map can:

1. Efficiently retrieve the value (or indication of non-presence) for a key, and verify that this
is included (or not present) in the map at a point in time.

2. Efficiently detect split-view attacks.

3. Enumerate all key/value pairs held in the map.

This verifiable map as described is equivalent to the Sparse Merkle Tree described in
Revocation Transparency.

! Strictly, the map is from the hash of the key to the value.

2 Assuming the hash function employed produces a 256 bit hash.

3 Clearly 27256 nodes is beyond the capacity of current systems. The observation (as laid out in the
Revocation Transparency paper) is that most nodes are empty, and thus a root hash can still be efficiently
calculated.


http://sump2.links.org/files/RevocationTransparency.pdf

{"root_hash": "kj34jdsfgjkhd=",

/ \ "signature": "uafdJGKI4ASJ1="}

Bazillions
of nodes

leaf hash leaf hash leaf hash leaf hash

entry O entry 1 e entrys2<oi=]  (entryi2 ot =Nl

The entry index for a key is calculated by taking the SHA256 hash of the key, and treating that
as a 256-bit big endian integer. The value for that key is stored in the leaf node indexed by this
number. The tree size is therefore always 22°°.

Verifiable Log-Backed Map

A Verifiable Log-Backed map is a Verifiable Map backed by a Verifiable Log that describes an
ordered set of operations that result in predictable mutations to the map. Periodically the
Verifiable Log-Backed Map will publish a signed tree head which includes a root hash for the
map for a given Verifiable Log size and signed tree hash. The map, for a given log size, is
populated (in a verifiable manner) by applying the operations contained in the log in order. In
addition all signed tree heads for the map (henceforth, Signed Map Heads or SMH) are
published to a separate Verifiable Log such that all root hashes published by the map are
available for audit over time. This log ensures that clients can verify that the map they have
been shown has also been seen by anyone auditing the log for correct operation, which in turn
allows the client to trust the key/value pairs returned by the map.

In this manner a client gets the convenience of verifiable answers, and the consistency
guarantees provided by the underlying log. An auditor (or client willing to download and replay
the entire log) can additionally verify the correct behavior of the database over time.

This data structure does not describe the format of a log entry, nor specifically how it affects the
map. Importantly, the Verifiable Map may in fact be operated by an entirely different party than
the backing log and in turn the log that it writes its Signed Map Heads to may in fact be operated
by another party again.

For example, a 3rd party Certificate Transparency monitor might choose to expose a Verifiable
Map that maps domain names (as keys) to a set of X.509 certificates (as values). Such a
monitor may expose a Verifiable Map based upon a Certificate Transparency log operated by



another party. The signed tree head for the map incorporates the signed tree head supplied by
the log, attesting that the map has included entries captured by the log up to that tree size.

{"tree_size": 5,

1. Entries in log represent mutationsinmap. ~ [hash}----------- "root_hash": "24trfdsq24fadfg=",

"signature": "98uisdfa239jap9="}

qeaf hashj

@eaf hashw Qeaf hash} Qeaf hashj [leaf hashj

| | |

day=Tuesday ’colour:red, Vday:Fr\'day' "Fco:bazy .foo:bat:

2. Mutation Log periodically publishes Signed Tree Head.

3. Map replays mutation entries in order and periodically

{"root_hash": "8yroihdjkvscg=",
"log_sth": {"tree_size": 5,

publishes new Signed Map Head, incorporating a specific =~ _|hash;-------------+ "root_hash": "24trfdsq24fadfg=",
STH. "signature": "98uisdfa239jap9="},
"signature": "sdkljmkfac743="}

Bazillions

leaf hash| of nodes

Ibar'

4. Published Signed Map Heads are written to a Verifiable
Log.

{"tree_size": 3,
"root_hash": "umw45g9jewdt=",

"signature": "82ul04twpgisd="} //////

5. Log of Signed Map Heads periodically publishes Signed
Tree Heads.

leaf hashj leaf hash :._
red :

Friday

leaf hash)

SMH 25+




Summary

The following table summarizes properties of the data structures laid out above. “Efficiently”
means that a client can and should perform this validation themselves. “Full audit” means that
to validate correctly, a client would need to download the entire dataset, and is something that in
practices we expect a small number of dedicated auditors to perform, rather than being done by

each client.

Verifiable Log

Verifiable Map

Verifiable Log-Backed
Map

Prove inclusion of value

Yes, efficiently

Yes, efficiently

Yes, efficiently

Prove non-inclusion of value | Impractical Yes, efficiently | Yes, efficiently

Retrieve provable value for Impractical Yes, efficiently | Yes, efficiently

key

Retrieve provable current Impractical No Yes, efficiently

value for key

Prove append-only Yes, efficiently No Yes, efficiently,
although full audit is
required to verify
complete correct
operation.

Enumerate all entries Yes, by full audit | Yes, by full Yes, by full audit

audit
Prove correct operation Yes, efficiently No Yes, by full audit

Enable detection of split-view

Yes, efficiently

Yes, efficiently

Yes, efficiently




Example: Verifiable Database

Here is an example Verifiable Database that is composed using a Verifiable Log and Verifiable
Map. The function “_apply_operation” shows how operations sequenced by the log are applied
to a map:

# Example general purpose verifiable database
# Mutation operations append to its log
# Its verifiable map then calls the callback (_apply operation) to change the view.
class VerifiableDatabase(VerifiableBase):
def __init_ (self):
VerifiableBase.__init__ (self, Verifiablelog())

# Example database operation, just serializes and appends to log

def set(self, key, value):

self._log.append(json.dumps({ 'operation’': 'set', 'key': key, 'value': value}))
# Example database operation, just serializes and appends to log
def delete(self, key):

self._log.append(json.dumps({ 'operation': 'delete', 'key': key}))

# Private callback for the underlying map when new entries are sequenced by the log
def _apply_operation(self, idx, operation, map):
op = json.loads(operation)
if op['operation'] == 'set':
map.put(str(op[ ‘key']), str(op['value']))
elif op['operation'] == 'delete':

map.put(str(op[ 'key']), '")

# Return a value and proof for a key and given tree_size (as returned by get_tree_head)
def get(self, key, tree_size):

val, proof = VerifiableBase.get(self, str(key), tree_size)

val = str(val) if len(val) else None

return val, proof







