github.com/mattn/go@v0.0.0-20171011075504-07f7db3ea99f/src/cmd/link/internal/ppc64/asm.go (about)

     1  // Inferno utils/5l/asm.c
     2  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/asm.c
     3  //
     4  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     5  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     6  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     7  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     8  //	Portions Copyright © 2004,2006 Bruce Ellis
     9  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    10  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    11  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    12  //
    13  // Permission is hereby granted, free of charge, to any person obtaining a copy
    14  // of this software and associated documentation files (the "Software"), to deal
    15  // in the Software without restriction, including without limitation the rights
    16  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    17  // copies of the Software, and to permit persons to whom the Software is
    18  // furnished to do so, subject to the following conditions:
    19  //
    20  // The above copyright notice and this permission notice shall be included in
    21  // all copies or substantial portions of the Software.
    22  //
    23  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    24  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    25  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    26  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    27  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    28  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    29  // THE SOFTWARE.
    30  
    31  package ppc64
    32  
    33  import (
    34  	"cmd/internal/objabi"
    35  	"cmd/internal/sys"
    36  	"cmd/link/internal/ld"
    37  	"cmd/link/internal/sym"
    38  	"encoding/binary"
    39  	"fmt"
    40  	"log"
    41  )
    42  
    43  func genplt(ctxt *ld.Link) {
    44  	// The ppc64 ABI PLT has similar concepts to other
    45  	// architectures, but is laid out quite differently. When we
    46  	// see an R_PPC64_REL24 relocation to a dynamic symbol
    47  	// (indicating that the call needs to go through the PLT), we
    48  	// generate up to three stubs and reserve a PLT slot.
    49  	//
    50  	// 1) The call site will be bl x; nop (where the relocation
    51  	//    applies to the bl).  We rewrite this to bl x_stub; ld
    52  	//    r2,24(r1).  The ld is necessary because x_stub will save
    53  	//    r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
    54  	//
    55  	// 2) We reserve space for a pointer in the .plt section (once
    56  	//    per referenced dynamic function).  .plt is a data
    57  	//    section filled solely by the dynamic linker (more like
    58  	//    .plt.got on other architectures).  Initially, the
    59  	//    dynamic linker will fill each slot with a pointer to the
    60  	//    corresponding x@plt entry point.
    61  	//
    62  	// 3) We generate the "call stub" x_stub (once per dynamic
    63  	//    function/object file pair).  This saves the TOC in the
    64  	//    TOC save slot, reads the function pointer from x's .plt
    65  	//    slot and calls it like any other global entry point
    66  	//    (including setting r12 to the function address).
    67  	//
    68  	// 4) We generate the "symbol resolver stub" x@plt (once per
    69  	//    dynamic function).  This is solely a branch to the glink
    70  	//    resolver stub.
    71  	//
    72  	// 5) We generate the glink resolver stub (only once).  This
    73  	//    computes which symbol resolver stub we came through and
    74  	//    invokes the dynamic resolver via a pointer provided by
    75  	//    the dynamic linker. This will patch up the .plt slot to
    76  	//    point directly at the function so future calls go
    77  	//    straight from the call stub to the real function, and
    78  	//    then call the function.
    79  
    80  	// NOTE: It's possible we could make ppc64 closer to other
    81  	// architectures: ppc64's .plt is like .plt.got on other
    82  	// platforms and ppc64's .glink is like .plt on other
    83  	// platforms.
    84  
    85  	// Find all R_PPC64_REL24 relocations that reference dynamic
    86  	// imports. Reserve PLT entries for these symbols and
    87  	// generate call stubs. The call stubs need to live in .text,
    88  	// which is why we need to do this pass this early.
    89  	//
    90  	// This assumes "case 1" from the ABI, where the caller needs
    91  	// us to save and restore the TOC pointer.
    92  	var stubs []*sym.Symbol
    93  	for _, s := range ctxt.Textp {
    94  		for i := range s.R {
    95  			r := &s.R[i]
    96  			if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != sym.SDYNIMPORT {
    97  				continue
    98  			}
    99  
   100  			// Reserve PLT entry and generate symbol
   101  			// resolver
   102  			addpltsym(ctxt, r.Sym)
   103  
   104  			// Generate call stub
   105  			n := fmt.Sprintf("%s.%s", s.Name, r.Sym.Name)
   106  
   107  			stub := ctxt.Syms.Lookup(n, 0)
   108  			if s.Attr.Reachable() {
   109  				stub.Attr |= sym.AttrReachable
   110  			}
   111  			if stub.Size == 0 {
   112  				// Need outer to resolve .TOC.
   113  				stub.Outer = s
   114  				stubs = append(stubs, stub)
   115  				gencallstub(ctxt, 1, stub, r.Sym)
   116  			}
   117  
   118  			// Update the relocation to use the call stub
   119  			r.Sym = stub
   120  
   121  			// Restore TOC after bl. The compiler put a
   122  			// nop here for us to overwrite.
   123  			const o1 = 0xe8410018 // ld r2,24(r1)
   124  			ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1)
   125  		}
   126  	}
   127  	// Put call stubs at the beginning (instead of the end).
   128  	// So when resolving the relocations to calls to the stubs,
   129  	// the addresses are known and trampolines can be inserted
   130  	// when necessary.
   131  	ctxt.Textp = append(stubs, ctxt.Textp...)
   132  }
   133  
   134  func genaddmoduledata(ctxt *ld.Link) {
   135  	addmoduledata := ctxt.Syms.ROLookup("runtime.addmoduledata", 0)
   136  	if addmoduledata.Type == sym.STEXT && ctxt.BuildMode != ld.BuildModePlugin {
   137  		return
   138  	}
   139  	addmoduledata.Attr |= sym.AttrReachable
   140  	initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0)
   141  	initfunc.Type = sym.STEXT
   142  	initfunc.Attr |= sym.AttrLocal
   143  	initfunc.Attr |= sym.AttrReachable
   144  	o := func(op uint32) {
   145  		initfunc.AddUint32(ctxt.Arch, op)
   146  	}
   147  	// addis r2, r12, .TOC.-func@ha
   148  	rel := initfunc.AddRel()
   149  	rel.Off = int32(initfunc.Size)
   150  	rel.Siz = 8
   151  	rel.Sym = ctxt.Syms.Lookup(".TOC.", 0)
   152  	rel.Sym.Attr |= sym.AttrReachable
   153  	rel.Type = objabi.R_ADDRPOWER_PCREL
   154  	o(0x3c4c0000)
   155  	// addi r2, r2, .TOC.-func@l
   156  	o(0x38420000)
   157  	// mflr r31
   158  	o(0x7c0802a6)
   159  	// stdu r31, -32(r1)
   160  	o(0xf801ffe1)
   161  	// addis r3, r2, local.moduledata@got@ha
   162  	rel = initfunc.AddRel()
   163  	rel.Off = int32(initfunc.Size)
   164  	rel.Siz = 8
   165  	if !ctxt.CanUsePlugins() {
   166  		rel.Sym = ctxt.Syms.Lookup("local.moduledata", 0)
   167  	} else {
   168  		rel.Sym = ctxt.Syms.Lookup("runtime.firstmoduledata", 0)
   169  	}
   170  	rel.Sym.Attr |= sym.AttrReachable
   171  	rel.Sym.Attr |= sym.AttrLocal
   172  	rel.Type = objabi.R_ADDRPOWER_GOT
   173  	o(0x3c620000)
   174  	// ld r3, local.moduledata@got@l(r3)
   175  	o(0xe8630000)
   176  	// bl runtime.addmoduledata
   177  	rel = initfunc.AddRel()
   178  	rel.Off = int32(initfunc.Size)
   179  	rel.Siz = 4
   180  	rel.Sym = addmoduledata
   181  	rel.Type = objabi.R_CALLPOWER
   182  	o(0x48000001)
   183  	// nop
   184  	o(0x60000000)
   185  	// ld r31, 0(r1)
   186  	o(0xe8010000)
   187  	// mtlr r31
   188  	o(0x7c0803a6)
   189  	// addi r1,r1,32
   190  	o(0x38210020)
   191  	// blr
   192  	o(0x4e800020)
   193  
   194  	if ctxt.BuildMode == ld.BuildModePlugin {
   195  		ctxt.Textp = append(ctxt.Textp, addmoduledata)
   196  	}
   197  	initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0)
   198  	ctxt.Textp = append(ctxt.Textp, initfunc)
   199  	initarray_entry.Attr |= sym.AttrReachable
   200  	initarray_entry.Attr |= sym.AttrLocal
   201  	initarray_entry.Type = sym.SINITARR
   202  	initarray_entry.AddAddr(ctxt.Arch, initfunc)
   203  }
   204  
   205  func gentext(ctxt *ld.Link) {
   206  	if ctxt.DynlinkingGo() {
   207  		genaddmoduledata(ctxt)
   208  	}
   209  
   210  	if ctxt.LinkMode == ld.LinkInternal {
   211  		genplt(ctxt)
   212  	}
   213  }
   214  
   215  // Construct a call stub in stub that calls symbol targ via its PLT
   216  // entry.
   217  func gencallstub(ctxt *ld.Link, abicase int, stub *sym.Symbol, targ *sym.Symbol) {
   218  	if abicase != 1 {
   219  		// If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC
   220  		// relocations, we'll need to implement cases 2 and 3.
   221  		log.Fatalf("gencallstub only implements case 1 calls")
   222  	}
   223  
   224  	plt := ctxt.Syms.Lookup(".plt", 0)
   225  
   226  	stub.Type = sym.STEXT
   227  
   228  	// Save TOC pointer in TOC save slot
   229  	stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1)
   230  
   231  	// Load the function pointer from the PLT.
   232  	r := stub.AddRel()
   233  
   234  	r.Off = int32(stub.Size)
   235  	r.Sym = plt
   236  	r.Add = int64(targ.Plt)
   237  	r.Siz = 2
   238  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   239  		r.Off += int32(r.Siz)
   240  	}
   241  	r.Type = objabi.R_POWER_TOC
   242  	r.Variant = sym.RV_POWER_HA
   243  	stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha
   244  	r = stub.AddRel()
   245  	r.Off = int32(stub.Size)
   246  	r.Sym = plt
   247  	r.Add = int64(targ.Plt)
   248  	r.Siz = 2
   249  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   250  		r.Off += int32(r.Siz)
   251  	}
   252  	r.Type = objabi.R_POWER_TOC
   253  	r.Variant = sym.RV_POWER_LO
   254  	stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12)
   255  
   256  	// Jump to the loaded pointer
   257  	stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
   258  	stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr
   259  }
   260  
   261  func adddynrel(ctxt *ld.Link, s *sym.Symbol, r *sym.Reloc) bool {
   262  	targ := r.Sym
   263  
   264  	switch r.Type {
   265  	default:
   266  		if r.Type >= 256 {
   267  			ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type))
   268  			return false
   269  		}
   270  
   271  		// Handle relocations found in ELF object files.
   272  	case 256 + ld.R_PPC64_REL24:
   273  		r.Type = objabi.R_CALLPOWER
   274  
   275  		// This is a local call, so the caller isn't setting
   276  		// up r12 and r2 is the same for the caller and
   277  		// callee. Hence, we need to go to the local entry
   278  		// point.  (If we don't do this, the callee will try
   279  		// to use r12 to compute r2.)
   280  		r.Add += int64(r.Sym.Localentry) * 4
   281  
   282  		if targ.Type == sym.SDYNIMPORT {
   283  			// Should have been handled in elfsetupplt
   284  			ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import")
   285  		}
   286  
   287  		return true
   288  
   289  	case 256 + ld.R_PPC_REL32:
   290  		r.Type = objabi.R_PCREL
   291  		r.Add += 4
   292  
   293  		if targ.Type == sym.SDYNIMPORT {
   294  			ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import")
   295  		}
   296  
   297  		return true
   298  
   299  	case 256 + ld.R_PPC64_ADDR64:
   300  		r.Type = objabi.R_ADDR
   301  		if targ.Type == sym.SDYNIMPORT {
   302  			// These happen in .toc sections
   303  			ld.Adddynsym(ctxt, targ)
   304  
   305  			rela := ctxt.Syms.Lookup(".rela", 0)
   306  			rela.AddAddrPlus(ctxt.Arch, s, int64(r.Off))
   307  			rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_PPC64_ADDR64))
   308  			rela.AddUint64(ctxt.Arch, uint64(r.Add))
   309  			r.Type = 256 // ignore during relocsym
   310  		}
   311  
   312  		return true
   313  
   314  	case 256 + ld.R_PPC64_TOC16:
   315  		r.Type = objabi.R_POWER_TOC
   316  		r.Variant = sym.RV_POWER_LO | sym.RV_CHECK_OVERFLOW
   317  		return true
   318  
   319  	case 256 + ld.R_PPC64_TOC16_LO:
   320  		r.Type = objabi.R_POWER_TOC
   321  		r.Variant = sym.RV_POWER_LO
   322  		return true
   323  
   324  	case 256 + ld.R_PPC64_TOC16_HA:
   325  		r.Type = objabi.R_POWER_TOC
   326  		r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW
   327  		return true
   328  
   329  	case 256 + ld.R_PPC64_TOC16_HI:
   330  		r.Type = objabi.R_POWER_TOC
   331  		r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW
   332  		return true
   333  
   334  	case 256 + ld.R_PPC64_TOC16_DS:
   335  		r.Type = objabi.R_POWER_TOC
   336  		r.Variant = sym.RV_POWER_DS | sym.RV_CHECK_OVERFLOW
   337  		return true
   338  
   339  	case 256 + ld.R_PPC64_TOC16_LO_DS:
   340  		r.Type = objabi.R_POWER_TOC
   341  		r.Variant = sym.RV_POWER_DS
   342  		return true
   343  
   344  	case 256 + ld.R_PPC64_REL16_LO:
   345  		r.Type = objabi.R_PCREL
   346  		r.Variant = sym.RV_POWER_LO
   347  		r.Add += 2 // Compensate for relocation size of 2
   348  		return true
   349  
   350  	case 256 + ld.R_PPC64_REL16_HI:
   351  		r.Type = objabi.R_PCREL
   352  		r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW
   353  		r.Add += 2
   354  		return true
   355  
   356  	case 256 + ld.R_PPC64_REL16_HA:
   357  		r.Type = objabi.R_PCREL
   358  		r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW
   359  		r.Add += 2
   360  		return true
   361  	}
   362  
   363  	// Handle references to ELF symbols from our own object files.
   364  	if targ.Type != sym.SDYNIMPORT {
   365  		return true
   366  	}
   367  
   368  	// TODO(austin): Translate our relocations to ELF
   369  
   370  	return false
   371  }
   372  
   373  func elfreloc1(ctxt *ld.Link, r *sym.Reloc, sectoff int64) bool {
   374  	ctxt.Out.Write64(uint64(sectoff))
   375  
   376  	elfsym := r.Xsym.ElfsymForReloc()
   377  	switch r.Type {
   378  	default:
   379  		return false
   380  	case objabi.R_ADDR:
   381  		switch r.Siz {
   382  		case 4:
   383  			ctxt.Out.Write64(ld.R_PPC64_ADDR32 | uint64(elfsym)<<32)
   384  		case 8:
   385  			ctxt.Out.Write64(ld.R_PPC64_ADDR64 | uint64(elfsym)<<32)
   386  		default:
   387  			return false
   388  		}
   389  	case objabi.R_POWER_TLS:
   390  		ctxt.Out.Write64(ld.R_PPC64_TLS | uint64(elfsym)<<32)
   391  	case objabi.R_POWER_TLS_LE:
   392  		ctxt.Out.Write64(ld.R_PPC64_TPREL16 | uint64(elfsym)<<32)
   393  	case objabi.R_POWER_TLS_IE:
   394  		ctxt.Out.Write64(ld.R_PPC64_GOT_TPREL16_HA | uint64(elfsym)<<32)
   395  		ctxt.Out.Write64(uint64(r.Xadd))
   396  		ctxt.Out.Write64(uint64(sectoff + 4))
   397  		ctxt.Out.Write64(ld.R_PPC64_GOT_TPREL16_LO_DS | uint64(elfsym)<<32)
   398  	case objabi.R_ADDRPOWER:
   399  		ctxt.Out.Write64(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32)
   400  		ctxt.Out.Write64(uint64(r.Xadd))
   401  		ctxt.Out.Write64(uint64(sectoff + 4))
   402  		ctxt.Out.Write64(ld.R_PPC64_ADDR16_LO | uint64(elfsym)<<32)
   403  	case objabi.R_ADDRPOWER_DS:
   404  		ctxt.Out.Write64(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32)
   405  		ctxt.Out.Write64(uint64(r.Xadd))
   406  		ctxt.Out.Write64(uint64(sectoff + 4))
   407  		ctxt.Out.Write64(ld.R_PPC64_ADDR16_LO_DS | uint64(elfsym)<<32)
   408  	case objabi.R_ADDRPOWER_GOT:
   409  		ctxt.Out.Write64(ld.R_PPC64_GOT16_HA | uint64(elfsym)<<32)
   410  		ctxt.Out.Write64(uint64(r.Xadd))
   411  		ctxt.Out.Write64(uint64(sectoff + 4))
   412  		ctxt.Out.Write64(ld.R_PPC64_GOT16_LO_DS | uint64(elfsym)<<32)
   413  	case objabi.R_ADDRPOWER_PCREL:
   414  		ctxt.Out.Write64(ld.R_PPC64_REL16_HA | uint64(elfsym)<<32)
   415  		ctxt.Out.Write64(uint64(r.Xadd))
   416  		ctxt.Out.Write64(uint64(sectoff + 4))
   417  		ctxt.Out.Write64(ld.R_PPC64_REL16_LO | uint64(elfsym)<<32)
   418  		r.Xadd += 4
   419  	case objabi.R_ADDRPOWER_TOCREL:
   420  		ctxt.Out.Write64(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32)
   421  		ctxt.Out.Write64(uint64(r.Xadd))
   422  		ctxt.Out.Write64(uint64(sectoff + 4))
   423  		ctxt.Out.Write64(ld.R_PPC64_TOC16_LO | uint64(elfsym)<<32)
   424  	case objabi.R_ADDRPOWER_TOCREL_DS:
   425  		ctxt.Out.Write64(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32)
   426  		ctxt.Out.Write64(uint64(r.Xadd))
   427  		ctxt.Out.Write64(uint64(sectoff + 4))
   428  		ctxt.Out.Write64(ld.R_PPC64_TOC16_LO_DS | uint64(elfsym)<<32)
   429  	case objabi.R_CALLPOWER:
   430  		if r.Siz != 4 {
   431  			return false
   432  		}
   433  		ctxt.Out.Write64(ld.R_PPC64_REL24 | uint64(elfsym)<<32)
   434  
   435  	}
   436  	ctxt.Out.Write64(uint64(r.Xadd))
   437  
   438  	return true
   439  }
   440  
   441  func elfsetupplt(ctxt *ld.Link) {
   442  	plt := ctxt.Syms.Lookup(".plt", 0)
   443  	if plt.Size == 0 {
   444  		// The dynamic linker stores the address of the
   445  		// dynamic resolver and the DSO identifier in the two
   446  		// doublewords at the beginning of the .plt section
   447  		// before the PLT array. Reserve space for these.
   448  		plt.Size = 16
   449  	}
   450  }
   451  
   452  func machoreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool {
   453  	return false
   454  }
   455  
   456  // Return the value of .TOC. for symbol s
   457  func symtoc(ctxt *ld.Link, s *sym.Symbol) int64 {
   458  	var toc *sym.Symbol
   459  
   460  	if s.Outer != nil {
   461  		toc = ctxt.Syms.ROLookup(".TOC.", int(s.Outer.Version))
   462  	} else {
   463  		toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version))
   464  	}
   465  
   466  	if toc == nil {
   467  		ld.Errorf(s, "TOC-relative relocation in object without .TOC.")
   468  		return 0
   469  	}
   470  
   471  	return toc.Value
   472  }
   473  
   474  func archrelocaddr(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val *int64) bool {
   475  	var o1, o2 uint32
   476  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   477  		o1 = uint32(*val >> 32)
   478  		o2 = uint32(*val)
   479  	} else {
   480  		o1 = uint32(*val)
   481  		o2 = uint32(*val >> 32)
   482  	}
   483  
   484  	// We are spreading a 31-bit address across two instructions, putting the
   485  	// high (adjusted) part in the low 16 bits of the first instruction and the
   486  	// low part in the low 16 bits of the second instruction, or, in the DS case,
   487  	// bits 15-2 (inclusive) of the address into bits 15-2 of the second
   488  	// instruction (it is an error in this case if the low 2 bits of the address
   489  	// are non-zero).
   490  
   491  	t := ld.Symaddr(r.Sym) + r.Add
   492  	if t < 0 || t >= 1<<31 {
   493  		ld.Errorf(s, "relocation for %s is too big (>=2G): %d", s.Name, ld.Symaddr(r.Sym))
   494  	}
   495  	if t&0x8000 != 0 {
   496  		t += 0x10000
   497  	}
   498  
   499  	switch r.Type {
   500  	case objabi.R_ADDRPOWER:
   501  		o1 |= (uint32(t) >> 16) & 0xffff
   502  		o2 |= uint32(t) & 0xffff
   503  	case objabi.R_ADDRPOWER_DS:
   504  		o1 |= (uint32(t) >> 16) & 0xffff
   505  		if t&3 != 0 {
   506  			ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym))
   507  		}
   508  		o2 |= uint32(t) & 0xfffc
   509  	default:
   510  		return false
   511  	}
   512  
   513  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   514  		*val = int64(o1)<<32 | int64(o2)
   515  	} else {
   516  		*val = int64(o2)<<32 | int64(o1)
   517  	}
   518  	return true
   519  }
   520  
   521  // resolve direct jump relocation r in s, and add trampoline if necessary
   522  func trampoline(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol) {
   523  
   524  	// Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it.
   525  	// For internal linking, trampolines are always created for long calls.
   526  	// For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in
   527  	// r2.  For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created.
   528  	if ctxt.LinkMode == ld.LinkExternal && (ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE) {
   529  		// No trampolines needed since r2 contains the TOC
   530  		return
   531  	}
   532  
   533  	t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off))
   534  	switch r.Type {
   535  	case objabi.R_CALLPOWER:
   536  
   537  		// If branch offset is too far then create a trampoline.
   538  
   539  		if (ctxt.LinkMode == ld.LinkExternal && s.Sect != r.Sym.Sect) || (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) != t) || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) {
   540  			var tramp *sym.Symbol
   541  			for i := 0; ; i++ {
   542  
   543  				// Using r.Add as part of the name is significant in functions like duffzero where the call
   544  				// target is at some offset within the function.  Calls to duff+8 and duff+256 must appear as
   545  				// distinct trampolines.
   546  
   547  				name := r.Sym.Name
   548  				if r.Add == 0 {
   549  					name = name + fmt.Sprintf("-tramp%d", i)
   550  				} else {
   551  					name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i)
   552  				}
   553  
   554  				// Look up the trampoline in case it already exists
   555  
   556  				tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version))
   557  				if tramp.Value == 0 {
   558  					break
   559  				}
   560  
   561  				t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off))
   562  
   563  				// With internal linking, the trampoline can be used if it is not too far.
   564  				// With external linking, the trampoline must be in this section for it to be reused.
   565  				if (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) == t) || (ctxt.LinkMode == ld.LinkExternal && s.Sect == tramp.Sect) {
   566  					break
   567  				}
   568  			}
   569  			if tramp.Type == 0 {
   570  				if ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE {
   571  					// Should have returned for above cases
   572  					ld.Errorf(s, "unexpected trampoline for shared or dynamic linking\n")
   573  				} else {
   574  					ctxt.AddTramp(tramp)
   575  					gentramp(ctxt.Arch, ctxt.LinkMode, tramp, r.Sym, int64(r.Add))
   576  				}
   577  			}
   578  			r.Sym = tramp
   579  			r.Add = 0 // This was folded into the trampoline target address
   580  			r.Done = false
   581  		}
   582  	default:
   583  		ld.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type))
   584  	}
   585  }
   586  
   587  func gentramp(arch *sys.Arch, linkmode ld.LinkMode, tramp, target *sym.Symbol, offset int64) {
   588  	// Used for default build mode for an executable
   589  	// Address of the call target is generated using
   590  	// relocation and doesn't depend on r2 (TOC).
   591  	tramp.Size = 16 // 4 instructions
   592  	tramp.P = make([]byte, tramp.Size)
   593  	t := ld.Symaddr(target) + offset
   594  	o1 := uint32(0x3fe00000) // lis r31,targetaddr hi
   595  	o2 := uint32(0x3bff0000) // addi r31,targetaddr lo
   596  	// With external linking, the target address must be
   597  	// relocated using LO and HA
   598  	if linkmode == ld.LinkExternal {
   599  		tr := tramp.AddRel()
   600  		tr.Off = 0
   601  		tr.Type = objabi.R_ADDRPOWER
   602  		tr.Siz = 8 // generates 2 relocations:  HA + LO
   603  		tr.Sym = target
   604  		tr.Add = offset
   605  	} else {
   606  		// adjustment needed if lo has sign bit set
   607  		// when using addi to compute address
   608  		val := uint32((t & 0xffff0000) >> 16)
   609  		if t&0x8000 != 0 {
   610  			val += 1
   611  		}
   612  		o1 |= val                // hi part of addr
   613  		o2 |= uint32(t & 0xffff) // lo part of addr
   614  	}
   615  	o3 := uint32(0x7fe903a6) // mtctr r31
   616  	o4 := uint32(0x4e800420) // bctr
   617  	arch.ByteOrder.PutUint32(tramp.P, o1)
   618  	arch.ByteOrder.PutUint32(tramp.P[4:], o2)
   619  	arch.ByteOrder.PutUint32(tramp.P[8:], o3)
   620  	arch.ByteOrder.PutUint32(tramp.P[12:], o4)
   621  }
   622  
   623  func archreloc(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val *int64) bool {
   624  	if ctxt.LinkMode == ld.LinkExternal {
   625  		switch r.Type {
   626  		default:
   627  			return false
   628  		case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE:
   629  			r.Done = false
   630  			// check Outer is nil, Type is TLSBSS?
   631  			r.Xadd = r.Add
   632  			r.Xsym = r.Sym
   633  			return true
   634  		case objabi.R_ADDRPOWER,
   635  			objabi.R_ADDRPOWER_DS,
   636  			objabi.R_ADDRPOWER_TOCREL,
   637  			objabi.R_ADDRPOWER_TOCREL_DS,
   638  			objabi.R_ADDRPOWER_GOT,
   639  			objabi.R_ADDRPOWER_PCREL:
   640  			r.Done = false
   641  
   642  			// set up addend for eventual relocation via outer symbol.
   643  			rs := r.Sym
   644  			r.Xadd = r.Add
   645  			for rs.Outer != nil {
   646  				r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer)
   647  				rs = rs.Outer
   648  			}
   649  
   650  			if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Sect == nil {
   651  				ld.Errorf(s, "missing section for %s", rs.Name)
   652  			}
   653  			r.Xsym = rs
   654  
   655  			return true
   656  		case objabi.R_CALLPOWER:
   657  			r.Done = false
   658  			r.Xsym = r.Sym
   659  			r.Xadd = r.Add
   660  			return true
   661  		}
   662  	}
   663  
   664  	switch r.Type {
   665  	case objabi.R_CONST:
   666  		*val = r.Add
   667  		return true
   668  	case objabi.R_GOTOFF:
   669  		*val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ctxt.Syms.Lookup(".got", 0))
   670  		return true
   671  	case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS:
   672  		return archrelocaddr(ctxt, r, s, val)
   673  	case objabi.R_CALLPOWER:
   674  		// Bits 6 through 29 = (S + A - P) >> 2
   675  
   676  		t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off))
   677  
   678  		if t&3 != 0 {
   679  			ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
   680  		}
   681  		// If branch offset is too far then create a trampoline.
   682  
   683  		if int64(int32(t<<6)>>6) != t {
   684  			ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t)
   685  		}
   686  		*val |= int64(uint32(t) &^ 0xfc000003)
   687  		return true
   688  	case objabi.R_POWER_TOC: // S + A - .TOC.
   689  		*val = ld.Symaddr(r.Sym) + r.Add - symtoc(ctxt, s)
   690  
   691  		return true
   692  	case objabi.R_POWER_TLS_LE:
   693  		// The thread pointer points 0x7000 bytes after the start of the the
   694  		// thread local storage area as documented in section "3.7.2 TLS
   695  		// Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI
   696  		// Specification".
   697  		v := r.Sym.Value - 0x7000
   698  		if int64(int16(v)) != v {
   699  			ld.Errorf(s, "TLS offset out of range %d", v)
   700  		}
   701  		*val = (*val &^ 0xffff) | (v & 0xffff)
   702  		return true
   703  	}
   704  
   705  	return false
   706  }
   707  
   708  func archrelocvariant(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, t int64) int64 {
   709  	switch r.Variant & sym.RV_TYPE_MASK {
   710  	default:
   711  		ld.Errorf(s, "unexpected relocation variant %d", r.Variant)
   712  		fallthrough
   713  
   714  	case sym.RV_NONE:
   715  		return t
   716  
   717  	case sym.RV_POWER_LO:
   718  		if r.Variant&sym.RV_CHECK_OVERFLOW != 0 {
   719  			// Whether to check for signed or unsigned
   720  			// overflow depends on the instruction
   721  			var o1 uint32
   722  			if ctxt.Arch.ByteOrder == binary.BigEndian {
   723  				o1 = ld.Be32(s.P[r.Off-2:])
   724  			} else {
   725  				o1 = ld.Le32(s.P[r.Off:])
   726  			}
   727  			switch o1 >> 26 {
   728  			case 24, // ori
   729  				26, // xori
   730  				28: // andi
   731  				if t>>16 != 0 {
   732  					goto overflow
   733  				}
   734  
   735  			default:
   736  				if int64(int16(t)) != t {
   737  					goto overflow
   738  				}
   739  			}
   740  		}
   741  
   742  		return int64(int16(t))
   743  
   744  	case sym.RV_POWER_HA:
   745  		t += 0x8000
   746  		fallthrough
   747  
   748  		// Fallthrough
   749  	case sym.RV_POWER_HI:
   750  		t >>= 16
   751  
   752  		if r.Variant&sym.RV_CHECK_OVERFLOW != 0 {
   753  			// Whether to check for signed or unsigned
   754  			// overflow depends on the instruction
   755  			var o1 uint32
   756  			if ctxt.Arch.ByteOrder == binary.BigEndian {
   757  				o1 = ld.Be32(s.P[r.Off-2:])
   758  			} else {
   759  				o1 = ld.Le32(s.P[r.Off:])
   760  			}
   761  			switch o1 >> 26 {
   762  			case 25, // oris
   763  				27, // xoris
   764  				29: // andis
   765  				if t>>16 != 0 {
   766  					goto overflow
   767  				}
   768  
   769  			default:
   770  				if int64(int16(t)) != t {
   771  					goto overflow
   772  				}
   773  			}
   774  		}
   775  
   776  		return int64(int16(t))
   777  
   778  	case sym.RV_POWER_DS:
   779  		var o1 uint32
   780  		if ctxt.Arch.ByteOrder == binary.BigEndian {
   781  			o1 = uint32(ld.Be16(s.P[r.Off:]))
   782  		} else {
   783  			o1 = uint32(ld.Le16(s.P[r.Off:]))
   784  		}
   785  		if t&3 != 0 {
   786  			ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
   787  		}
   788  		if (r.Variant&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t {
   789  			goto overflow
   790  		}
   791  		return int64(o1)&0x3 | int64(int16(t))
   792  	}
   793  
   794  overflow:
   795  	ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t)
   796  	return t
   797  }
   798  
   799  func addpltsym(ctxt *ld.Link, s *sym.Symbol) {
   800  	if s.Plt >= 0 {
   801  		return
   802  	}
   803  
   804  	ld.Adddynsym(ctxt, s)
   805  
   806  	if ld.Iself {
   807  		plt := ctxt.Syms.Lookup(".plt", 0)
   808  		rela := ctxt.Syms.Lookup(".rela.plt", 0)
   809  		if plt.Size == 0 {
   810  			elfsetupplt(ctxt)
   811  		}
   812  
   813  		// Create the glink resolver if necessary
   814  		glink := ensureglinkresolver(ctxt)
   815  
   816  		// Write symbol resolver stub (just a branch to the
   817  		// glink resolver stub)
   818  		r := glink.AddRel()
   819  
   820  		r.Sym = glink
   821  		r.Off = int32(glink.Size)
   822  		r.Siz = 4
   823  		r.Type = objabi.R_CALLPOWER
   824  		glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink
   825  
   826  		// In the ppc64 ABI, the dynamic linker is responsible
   827  		// for writing the entire PLT.  We just need to
   828  		// reserve 8 bytes for each PLT entry and generate a
   829  		// JMP_SLOT dynamic relocation for it.
   830  		//
   831  		// TODO(austin): ABI v1 is different
   832  		s.Plt = int32(plt.Size)
   833  
   834  		plt.Size += 8
   835  
   836  		rela.AddAddrPlus(ctxt.Arch, plt, int64(s.Plt))
   837  		rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_PPC64_JMP_SLOT))
   838  		rela.AddUint64(ctxt.Arch, 0)
   839  	} else {
   840  		ld.Errorf(s, "addpltsym: unsupported binary format")
   841  	}
   842  }
   843  
   844  // Generate the glink resolver stub if necessary and return the .glink section
   845  func ensureglinkresolver(ctxt *ld.Link) *sym.Symbol {
   846  	glink := ctxt.Syms.Lookup(".glink", 0)
   847  	if glink.Size != 0 {
   848  		return glink
   849  	}
   850  
   851  	// This is essentially the resolver from the ppc64 ELF ABI.
   852  	// At entry, r12 holds the address of the symbol resolver stub
   853  	// for the target routine and the argument registers hold the
   854  	// arguments for the target routine.
   855  	//
   856  	// This stub is PIC, so first get the PC of label 1 into r11.
   857  	// Other things will be relative to this.
   858  	glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0
   859  	glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f
   860  	glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11
   861  	glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlf r0
   862  
   863  	// Compute the .plt array index from the entry point address.
   864  	// Because this is PIC, everything is relative to label 1b (in
   865  	// r11):
   866  	//   r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4
   867  	glink.AddUint32(ctxt.Arch, 0x3800ffd0) // li r0,-(res_0-1b)=-48
   868  	glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12
   869  	glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11
   870  	glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2
   871  
   872  	// r11 = address of the first byte of the PLT
   873  	r := glink.AddRel()
   874  
   875  	r.Off = int32(glink.Size)
   876  	r.Sym = ctxt.Syms.Lookup(".plt", 0)
   877  	r.Siz = 8
   878  	r.Type = objabi.R_ADDRPOWER
   879  
   880  	glink.AddUint32(ctxt.Arch, 0x3d600000) // addis r11,0,.plt@ha
   881  	glink.AddUint32(ctxt.Arch, 0x396b0000) // addi r11,r11,.plt@l
   882  
   883  	// Load r12 = dynamic resolver address and r11 = DSO
   884  	// identifier from the first two doublewords of the PLT.
   885  	glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11)
   886  	glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11)
   887  
   888  	// Jump to the dynamic resolver
   889  	glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
   890  	glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr
   891  
   892  	// The symbol resolvers must immediately follow.
   893  	//   res_0:
   894  
   895  	// Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes
   896  	// before the first symbol resolver stub.
   897  	s := ctxt.Syms.Lookup(".dynamic", 0)
   898  
   899  	ld.Elfwritedynentsymplus(ctxt, s, ld.DT_PPC64_GLINK, glink, glink.Size-32)
   900  
   901  	return glink
   902  }
   903  
   904  func asmb(ctxt *ld.Link) {
   905  	if ctxt.Debugvlog != 0 {
   906  		ctxt.Logf("%5.2f asmb\n", ld.Cputime())
   907  	}
   908  
   909  	if ld.Iself {
   910  		ld.Asmbelfsetup()
   911  	}
   912  
   913  	for _, sect := range ld.Segtext.Sections {
   914  		ctxt.Out.SeekSet(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff))
   915  		// Handle additional text sections with Codeblk
   916  		if sect.Name == ".text" {
   917  			ld.Codeblk(ctxt, int64(sect.Vaddr), int64(sect.Length))
   918  		} else {
   919  			ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length))
   920  		}
   921  	}
   922  
   923  	if ld.Segrodata.Filelen > 0 {
   924  		if ctxt.Debugvlog != 0 {
   925  			ctxt.Logf("%5.2f rodatblk\n", ld.Cputime())
   926  		}
   927  		ctxt.Out.SeekSet(int64(ld.Segrodata.Fileoff))
   928  		ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen))
   929  	}
   930  	if ld.Segrelrodata.Filelen > 0 {
   931  		if ctxt.Debugvlog != 0 {
   932  			ctxt.Logf("%5.2f relrodatblk\n", ld.Cputime())
   933  		}
   934  		ctxt.Out.SeekSet(int64(ld.Segrelrodata.Fileoff))
   935  		ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen))
   936  	}
   937  
   938  	if ctxt.Debugvlog != 0 {
   939  		ctxt.Logf("%5.2f datblk\n", ld.Cputime())
   940  	}
   941  
   942  	ctxt.Out.SeekSet(int64(ld.Segdata.Fileoff))
   943  	ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen))
   944  
   945  	ctxt.Out.SeekSet(int64(ld.Segdwarf.Fileoff))
   946  	ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen))
   947  
   948  	/* output symbol table */
   949  	ld.Symsize = 0
   950  
   951  	ld.Lcsize = 0
   952  	symo := uint32(0)
   953  	if !*ld.FlagS {
   954  		// TODO: rationalize
   955  		if ctxt.Debugvlog != 0 {
   956  			ctxt.Logf("%5.2f sym\n", ld.Cputime())
   957  		}
   958  		switch ld.Headtype {
   959  		default:
   960  			if ld.Iself {
   961  				symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen)
   962  				symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound)))
   963  			}
   964  
   965  		case objabi.Hplan9:
   966  			symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen)
   967  		}
   968  
   969  		ctxt.Out.SeekSet(int64(symo))
   970  		switch ld.Headtype {
   971  		default:
   972  			if ld.Iself {
   973  				if ctxt.Debugvlog != 0 {
   974  					ctxt.Logf("%5.2f elfsym\n", ld.Cputime())
   975  				}
   976  				ld.Asmelfsym(ctxt)
   977  				ctxt.Out.Flush()
   978  				ctxt.Out.Write(ld.Elfstrdat)
   979  
   980  				if ctxt.LinkMode == ld.LinkExternal {
   981  					ld.Elfemitreloc(ctxt)
   982  				}
   983  			}
   984  
   985  		case objabi.Hplan9:
   986  			ld.Asmplan9sym(ctxt)
   987  			ctxt.Out.Flush()
   988  
   989  			sym := ctxt.Syms.Lookup("pclntab", 0)
   990  			if sym != nil {
   991  				ld.Lcsize = int32(len(sym.P))
   992  				ctxt.Out.Write(sym.P)
   993  				ctxt.Out.Flush()
   994  			}
   995  		}
   996  	}
   997  
   998  	if ctxt.Debugvlog != 0 {
   999  		ctxt.Logf("%5.2f header\n", ld.Cputime())
  1000  	}
  1001  	ctxt.Out.SeekSet(0)
  1002  	switch ld.Headtype {
  1003  	default:
  1004  	case objabi.Hplan9: /* plan 9 */
  1005  		ctxt.Out.Write32(0x647)                      /* magic */
  1006  		ctxt.Out.Write32(uint32(ld.Segtext.Filelen)) /* sizes */
  1007  		ctxt.Out.Write32(uint32(ld.Segdata.Filelen))
  1008  		ctxt.Out.Write32(uint32(ld.Segdata.Length - ld.Segdata.Filelen))
  1009  		ctxt.Out.Write32(uint32(ld.Symsize))          /* nsyms */
  1010  		ctxt.Out.Write32(uint32(ld.Entryvalue(ctxt))) /* va of entry */
  1011  		ctxt.Out.Write32(0)
  1012  		ctxt.Out.Write32(uint32(ld.Lcsize))
  1013  
  1014  	case objabi.Hlinux,
  1015  		objabi.Hfreebsd,
  1016  		objabi.Hnetbsd,
  1017  		objabi.Hopenbsd,
  1018  		objabi.Hnacl:
  1019  		ld.Asmbelf(ctxt, int64(symo))
  1020  	}
  1021  
  1022  	ctxt.Out.Flush()
  1023  	if *ld.FlagC {
  1024  		fmt.Printf("textsize=%d\n", ld.Segtext.Filelen)
  1025  		fmt.Printf("datsize=%d\n", ld.Segdata.Filelen)
  1026  		fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen)
  1027  		fmt.Printf("symsize=%d\n", ld.Symsize)
  1028  		fmt.Printf("lcsize=%d\n", ld.Lcsize)
  1029  		fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize))
  1030  	}
  1031  }