github.com/ncodes/nomad@v0.5.7-0.20170403112158-97adf4a74fb3/scheduler/generic_sched.go (about) 1 package scheduler 2 3 import ( 4 "fmt" 5 "log" 6 7 memdb "github.com/hashicorp/go-memdb" 8 "github.com/hashicorp/go-multierror" 9 "github.com/ncodes/nomad/nomad/structs" 10 ) 11 12 const ( 13 // maxServiceScheduleAttempts is used to limit the number of times 14 // we will attempt to schedule if we continue to hit conflicts for services. 15 maxServiceScheduleAttempts = 5 16 17 // maxBatchScheduleAttempts is used to limit the number of times 18 // we will attempt to schedule if we continue to hit conflicts for batch. 19 maxBatchScheduleAttempts = 2 20 21 // allocNotNeeded is the status used when a job no longer requires an allocation 22 allocNotNeeded = "alloc not needed due to job update" 23 24 // allocMigrating is the status used when we must migrate an allocation 25 allocMigrating = "alloc is being migrated" 26 27 // allocUpdating is the status used when a job requires an update 28 allocUpdating = "alloc is being updated due to job update" 29 30 // allocLost is the status used when an allocation is lost 31 allocLost = "alloc is lost since its node is down" 32 33 // allocInPlace is the status used when speculating on an in-place update 34 allocInPlace = "alloc updating in-place" 35 36 // blockedEvalMaxPlanDesc is the description used for blocked evals that are 37 // a result of hitting the max number of plan attempts 38 blockedEvalMaxPlanDesc = "created due to placement conflicts" 39 40 // blockedEvalFailedPlacements is the description used for blocked evals 41 // that are a result of failing to place all allocations. 42 blockedEvalFailedPlacements = "created to place remaining allocations" 43 ) 44 45 // SetStatusError is used to set the status of the evaluation to the given error 46 type SetStatusError struct { 47 Err error 48 EvalStatus string 49 } 50 51 func (s *SetStatusError) Error() string { 52 return s.Err.Error() 53 } 54 55 // GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is 56 // designed for long-lived services, and as such spends more time attemping 57 // to make a high quality placement. This is the primary scheduler for 58 // most workloads. It also supports a 'batch' mode to optimize for fast decision 59 // making at the cost of quality. 60 type GenericScheduler struct { 61 logger *log.Logger 62 state State 63 planner Planner 64 batch bool 65 66 eval *structs.Evaluation 67 job *structs.Job 68 plan *structs.Plan 69 planResult *structs.PlanResult 70 ctx *EvalContext 71 stack *GenericStack 72 73 limitReached bool 74 nextEval *structs.Evaluation 75 76 blocked *structs.Evaluation 77 failedTGAllocs map[string]*structs.AllocMetric 78 queuedAllocs map[string]int 79 } 80 81 // NewServiceScheduler is a factory function to instantiate a new service scheduler 82 func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler { 83 s := &GenericScheduler{ 84 logger: logger, 85 state: state, 86 planner: planner, 87 batch: false, 88 } 89 return s 90 } 91 92 // NewBatchScheduler is a factory function to instantiate a new batch scheduler 93 func NewBatchScheduler(logger *log.Logger, state State, planner Planner) Scheduler { 94 s := &GenericScheduler{ 95 logger: logger, 96 state: state, 97 planner: planner, 98 batch: true, 99 } 100 return s 101 } 102 103 // Process is used to handle a single evaluation 104 func (s *GenericScheduler) Process(eval *structs.Evaluation) error { 105 // Store the evaluation 106 s.eval = eval 107 108 // Verify the evaluation trigger reason is understood 109 switch eval.TriggeredBy { 110 case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate, 111 structs.EvalTriggerJobDeregister, structs.EvalTriggerRollingUpdate, 112 structs.EvalTriggerPeriodicJob, structs.EvalTriggerMaxPlans: 113 default: 114 desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason", 115 eval.TriggeredBy) 116 return setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked, 117 s.failedTGAllocs, structs.EvalStatusFailed, desc, s.queuedAllocs) 118 } 119 120 // Retry up to the maxScheduleAttempts and reset if progress is made. 121 progress := func() bool { return progressMade(s.planResult) } 122 limit := maxServiceScheduleAttempts 123 if s.batch { 124 limit = maxBatchScheduleAttempts 125 } 126 if err := retryMax(limit, s.process, progress); err != nil { 127 if statusErr, ok := err.(*SetStatusError); ok { 128 // Scheduling was tried but made no forward progress so create a 129 // blocked eval to retry once resources become available. 130 var mErr multierror.Error 131 if err := s.createBlockedEval(true); err != nil { 132 mErr.Errors = append(mErr.Errors, err) 133 } 134 if err := setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked, 135 s.failedTGAllocs, statusErr.EvalStatus, err.Error(), 136 s.queuedAllocs); err != nil { 137 mErr.Errors = append(mErr.Errors, err) 138 } 139 return mErr.ErrorOrNil() 140 } 141 return err 142 } 143 144 // If the current evaluation is a blocked evaluation and we didn't place 145 // everything, do not update the status to complete. 146 if s.eval.Status == structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 { 147 e := s.ctx.Eligibility() 148 newEval := s.eval.Copy() 149 newEval.EscapedComputedClass = e.HasEscaped() 150 newEval.ClassEligibility = e.GetClasses() 151 return s.planner.ReblockEval(newEval) 152 } 153 154 // Update the status to complete 155 return setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked, 156 s.failedTGAllocs, structs.EvalStatusComplete, "", s.queuedAllocs) 157 } 158 159 // createBlockedEval creates a blocked eval and submits it to the planner. If 160 // failure is set to true, the eval's trigger reason reflects that. 161 func (s *GenericScheduler) createBlockedEval(planFailure bool) error { 162 e := s.ctx.Eligibility() 163 escaped := e.HasEscaped() 164 165 // Only store the eligible classes if the eval hasn't escaped. 166 var classEligibility map[string]bool 167 if !escaped { 168 classEligibility = e.GetClasses() 169 } 170 171 s.blocked = s.eval.CreateBlockedEval(classEligibility, escaped) 172 if planFailure { 173 s.blocked.TriggeredBy = structs.EvalTriggerMaxPlans 174 s.blocked.StatusDescription = blockedEvalMaxPlanDesc 175 } else { 176 s.blocked.StatusDescription = blockedEvalFailedPlacements 177 } 178 179 return s.planner.CreateEval(s.blocked) 180 } 181 182 // process is wrapped in retryMax to iteratively run the handler until we have no 183 // further work or we've made the maximum number of attempts. 184 func (s *GenericScheduler) process() (bool, error) { 185 // Lookup the Job by ID 186 var err error 187 ws := memdb.NewWatchSet() 188 s.job, err = s.state.JobByID(ws, s.eval.JobID) 189 if err != nil { 190 return false, fmt.Errorf("failed to get job '%s': %v", 191 s.eval.JobID, err) 192 } 193 numTaskGroups := 0 194 if s.job != nil { 195 numTaskGroups = len(s.job.TaskGroups) 196 } 197 s.queuedAllocs = make(map[string]int, numTaskGroups) 198 199 // Create a plan 200 s.plan = s.eval.MakePlan(s.job) 201 202 // Reset the failed allocations 203 s.failedTGAllocs = nil 204 205 // Create an evaluation context 206 s.ctx = NewEvalContext(s.state, s.plan, s.logger) 207 208 // Construct the placement stack 209 s.stack = NewGenericStack(s.batch, s.ctx) 210 if s.job != nil { 211 s.stack.SetJob(s.job) 212 } 213 214 // Compute the target job allocations 215 if err := s.computeJobAllocs(); err != nil { 216 s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err) 217 return false, err 218 } 219 220 // If there are failed allocations, we need to create a blocked evaluation 221 // to place the failed allocations when resources become available. If the 222 // current evaluation is already a blocked eval, we reuse it. 223 if s.eval.Status != structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 && s.blocked == nil { 224 if err := s.createBlockedEval(false); err != nil { 225 s.logger.Printf("[ERR] sched: %#v failed to make blocked eval: %v", s.eval, err) 226 return false, err 227 } 228 s.logger.Printf("[DEBUG] sched: %#v: failed to place all allocations, blocked eval '%s' created", s.eval, s.blocked.ID) 229 } 230 231 // If the plan is a no-op, we can bail. If AnnotatePlan is set submit the plan 232 // anyways to get the annotations. 233 if s.plan.IsNoOp() && !s.eval.AnnotatePlan { 234 return true, nil 235 } 236 237 // If the limit of placements was reached we need to create an evaluation 238 // to pickup from here after the stagger period. 239 if s.limitReached && s.nextEval == nil { 240 s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger) 241 if err := s.planner.CreateEval(s.nextEval); err != nil { 242 s.logger.Printf("[ERR] sched: %#v failed to make next eval for rolling update: %v", s.eval, err) 243 return false, err 244 } 245 s.logger.Printf("[DEBUG] sched: %#v: rolling update limit reached, next eval '%s' created", s.eval, s.nextEval.ID) 246 } 247 248 // Submit the plan and store the results. 249 result, newState, err := s.planner.SubmitPlan(s.plan) 250 s.planResult = result 251 if err != nil { 252 return false, err 253 } 254 255 // Decrement the number of allocations pending per task group based on the 256 // number of allocations successfully placed 257 adjustQueuedAllocations(s.logger, result, s.queuedAllocs) 258 259 // If we got a state refresh, try again since we have stale data 260 if newState != nil { 261 s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval) 262 s.state = newState 263 return false, nil 264 } 265 266 // Try again if the plan was not fully committed, potential conflict 267 fullCommit, expected, actual := result.FullCommit(s.plan) 268 if !fullCommit { 269 s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed", 270 s.eval, expected, actual) 271 if newState == nil { 272 return false, fmt.Errorf("missing state refresh after partial commit") 273 } 274 return false, nil 275 } 276 277 // Success! 278 return true, nil 279 } 280 281 // filterCompleteAllocs filters allocations that are terminal and should be 282 // re-placed. 283 func (s *GenericScheduler) filterCompleteAllocs(allocs []*structs.Allocation) ([]*structs.Allocation, map[string]*structs.Allocation) { 284 filter := func(a *structs.Allocation) bool { 285 if s.batch { 286 // Allocs from batch jobs should be filtered when the desired status 287 // is terminal and the client did not finish or when the client 288 // status is failed so that they will be replaced. If they are 289 // complete but not failed, they shouldn't be replaced. 290 switch a.DesiredStatus { 291 case structs.AllocDesiredStatusStop, structs.AllocDesiredStatusEvict: 292 return !a.RanSuccessfully() 293 default: 294 } 295 296 switch a.ClientStatus { 297 case structs.AllocClientStatusFailed: 298 return true 299 default: 300 return false 301 } 302 } 303 304 // Filter terminal, non batch allocations 305 return a.TerminalStatus() 306 } 307 308 terminalAllocsByName := make(map[string]*structs.Allocation) 309 n := len(allocs) 310 for i := 0; i < n; i++ { 311 if filter(allocs[i]) { 312 313 // Add the allocation to the terminal allocs map if it's not already 314 // added or has a higher create index than the one which is 315 // currently present. 316 alloc, ok := terminalAllocsByName[allocs[i].Name] 317 if !ok || alloc.CreateIndex < allocs[i].CreateIndex { 318 terminalAllocsByName[allocs[i].Name] = allocs[i] 319 } 320 321 // Remove the allocation 322 allocs[i], allocs[n-1] = allocs[n-1], nil 323 i-- 324 n-- 325 } 326 } 327 328 // If the job is batch, we want to filter allocations that have been 329 // replaced by a newer version for the same task group. 330 filtered := allocs[:n] 331 if s.batch { 332 byTG := make(map[string]*structs.Allocation) 333 for _, alloc := range filtered { 334 existing := byTG[alloc.Name] 335 if existing == nil || existing.CreateIndex < alloc.CreateIndex { 336 byTG[alloc.Name] = alloc 337 } 338 } 339 340 filtered = make([]*structs.Allocation, 0, len(byTG)) 341 for _, alloc := range byTG { 342 filtered = append(filtered, alloc) 343 } 344 } 345 346 return filtered, terminalAllocsByName 347 } 348 349 // computeJobAllocs is used to reconcile differences between the job, 350 // existing allocations and node status to update the allocations. 351 func (s *GenericScheduler) computeJobAllocs() error { 352 // Materialize all the task groups, job could be missing if deregistered 353 var groups map[string]*structs.TaskGroup 354 if s.job != nil { 355 groups = materializeTaskGroups(s.job) 356 } 357 358 // Lookup the allocations by JobID 359 ws := memdb.NewWatchSet() 360 allocs, err := s.state.AllocsByJob(ws, s.eval.JobID, true) 361 if err != nil { 362 return fmt.Errorf("failed to get allocs for job '%s': %v", 363 s.eval.JobID, err) 364 } 365 366 // Determine the tainted nodes containing job allocs 367 tainted, err := taintedNodes(s.state, allocs) 368 if err != nil { 369 return fmt.Errorf("failed to get tainted nodes for job '%s': %v", 370 s.eval.JobID, err) 371 } 372 373 // Update the allocations which are in pending/running state on tainted 374 // nodes to lost 375 updateNonTerminalAllocsToLost(s.plan, tainted, allocs) 376 377 // Filter out the allocations in a terminal state 378 allocs, terminalAllocs := s.filterCompleteAllocs(allocs) 379 380 // Diff the required and existing allocations 381 diff := diffAllocs(s.job, tainted, groups, allocs, terminalAllocs) 382 s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, diff) 383 384 // Add all the allocs to stop 385 for _, e := range diff.stop { 386 s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNotNeeded, "") 387 } 388 389 // Attempt to do the upgrades in place 390 destructiveUpdates, inplaceUpdates := inplaceUpdate(s.ctx, s.eval, s.job, s.stack, diff.update) 391 diff.update = destructiveUpdates 392 393 if s.eval.AnnotatePlan { 394 s.plan.Annotations = &structs.PlanAnnotations{ 395 DesiredTGUpdates: desiredUpdates(diff, inplaceUpdates, destructiveUpdates), 396 } 397 } 398 399 // Check if a rolling upgrade strategy is being used 400 limit := len(diff.update) + len(diff.migrate) + len(diff.lost) 401 if s.job != nil && s.job.Update.Rolling() { 402 limit = s.job.Update.MaxParallel 403 } 404 405 // Treat migrations as an eviction and a new placement. 406 s.limitReached = evictAndPlace(s.ctx, diff, diff.migrate, allocMigrating, &limit) 407 408 // Treat non in-place updates as an eviction and new placement. 409 s.limitReached = s.limitReached || evictAndPlace(s.ctx, diff, diff.update, allocUpdating, &limit) 410 411 // Lost allocations should be transistioned to desired status stop and client 412 // status lost and a new placement should be made 413 s.limitReached = s.limitReached || markLostAndPlace(s.ctx, diff, diff.lost, allocLost, &limit) 414 415 // Nothing remaining to do if placement is not required 416 if len(diff.place) == 0 { 417 if s.job != nil { 418 for _, tg := range s.job.TaskGroups { 419 s.queuedAllocs[tg.Name] = 0 420 } 421 } 422 return nil 423 } 424 425 // Record the number of allocations that needs to be placed per Task Group 426 for _, allocTuple := range diff.place { 427 s.queuedAllocs[allocTuple.TaskGroup.Name] += 1 428 } 429 430 // Compute the placements 431 return s.computePlacements(diff.place) 432 } 433 434 // computePlacements computes placements for allocations 435 func (s *GenericScheduler) computePlacements(place []allocTuple) error { 436 // Get the base nodes 437 nodes, byDC, err := readyNodesInDCs(s.state, s.job.Datacenters) 438 if err != nil { 439 return err 440 } 441 442 // Update the set of placement ndoes 443 s.stack.SetNodes(nodes) 444 445 for _, missing := range place { 446 // Check if this task group has already failed 447 if metric, ok := s.failedTGAllocs[missing.TaskGroup.Name]; ok { 448 metric.CoalescedFailures += 1 449 continue 450 } 451 452 // Find the preferred node 453 preferredNode, err := s.findPreferredNode(&missing) 454 if err != nil { 455 return err 456 } 457 458 // Attempt to match the task group 459 var option *RankedNode 460 if preferredNode != nil { 461 option, _ = s.stack.SelectPreferringNodes(missing.TaskGroup, []*structs.Node{preferredNode}) 462 } else { 463 option, _ = s.stack.Select(missing.TaskGroup) 464 } 465 466 // Store the available nodes by datacenter 467 s.ctx.Metrics().NodesAvailable = byDC 468 469 // Set fields based on if we found an allocation option 470 if option != nil { 471 // Create an allocation for this 472 alloc := &structs.Allocation{ 473 ID: structs.GenerateUUID(), 474 EvalID: s.eval.ID, 475 Name: missing.Name, 476 JobID: s.job.ID, 477 TaskGroup: missing.TaskGroup.Name, 478 Metrics: s.ctx.Metrics(), 479 NodeID: option.Node.ID, 480 TaskResources: option.TaskResources, 481 DesiredStatus: structs.AllocDesiredStatusRun, 482 ClientStatus: structs.AllocClientStatusPending, 483 484 SharedResources: &structs.Resources{ 485 DiskMB: missing.TaskGroup.EphemeralDisk.SizeMB, 486 }, 487 } 488 489 // If the new allocation is replacing an older allocation then we 490 // set the record the older allocation id so that they are chained 491 if missing.Alloc != nil { 492 alloc.PreviousAllocation = missing.Alloc.ID 493 } 494 495 s.plan.AppendAlloc(alloc) 496 } else { 497 // Lazy initialize the failed map 498 if s.failedTGAllocs == nil { 499 s.failedTGAllocs = make(map[string]*structs.AllocMetric) 500 } 501 502 s.failedTGAllocs[missing.TaskGroup.Name] = s.ctx.Metrics() 503 } 504 } 505 506 return nil 507 } 508 509 // findPreferredNode finds the preferred node for an allocation 510 func (s *GenericScheduler) findPreferredNode(allocTuple *allocTuple) (node *structs.Node, err error) { 511 if allocTuple.Alloc != nil { 512 taskGroup := allocTuple.Alloc.Job.LookupTaskGroup(allocTuple.Alloc.TaskGroup) 513 if taskGroup == nil { 514 err = fmt.Errorf("can't find task group of existing allocation %q", allocTuple.Alloc.ID) 515 return 516 } 517 if taskGroup.EphemeralDisk.Sticky == true { 518 var preferredNode *structs.Node 519 ws := memdb.NewWatchSet() 520 preferredNode, err = s.state.NodeByID(ws, allocTuple.Alloc.NodeID) 521 if preferredNode.Ready() { 522 node = preferredNode 523 } 524 } 525 } 526 return 527 }