github.com/q45/go@v0.0.0-20151101211701-a4fb8c13db3f/src/encoding/json/encode.go (about)

     1  // Copyright 2010 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON objects as defined in
     6  // RFC 4627. The mapping between JSON objects and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // https://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"math"
    18  	"reflect"
    19  	"runtime"
    20  	"sort"
    21  	"strconv"
    22  	"strings"
    23  	"sync"
    24  	"unicode"
    25  	"unicode/utf8"
    26  )
    27  
    28  // Marshal returns the JSON encoding of v.
    29  //
    30  // Marshal traverses the value v recursively.
    31  // If an encountered value implements the Marshaler interface
    32  // and is not a nil pointer, Marshal calls its MarshalJSON method
    33  // to produce JSON. If no MarshalJSON method is present but the
    34  // value implements encoding.TextMarshaler instead, Marshal calls
    35  // its MarshalText method.
    36  // The nil pointer exception is not strictly necessary
    37  // but mimics a similar, necessary exception in the behavior of
    38  // UnmarshalJSON.
    39  //
    40  // Otherwise, Marshal uses the following type-dependent default encodings:
    41  //
    42  // Boolean values encode as JSON booleans.
    43  //
    44  // Floating point, integer, and Number values encode as JSON numbers.
    45  //
    46  // String values encode as JSON strings coerced to valid UTF-8,
    47  // replacing invalid bytes with the Unicode replacement rune.
    48  // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
    49  // to keep some browsers from misinterpreting JSON output as HTML.
    50  // Ampersand "&" is also escaped to "\u0026" for the same reason.
    51  //
    52  // Array and slice values encode as JSON arrays, except that
    53  // []byte encodes as a base64-encoded string, and a nil slice
    54  // encodes as the null JSON object.
    55  //
    56  // Struct values encode as JSON objects. Each exported struct field
    57  // becomes a member of the object unless
    58  //   - the field's tag is "-", or
    59  //   - the field is empty and its tag specifies the "omitempty" option.
    60  // The empty values are false, 0, any
    61  // nil pointer or interface value, and any array, slice, map, or string of
    62  // length zero. The object's default key string is the struct field name
    63  // but can be specified in the struct field's tag value. The "json" key in
    64  // the struct field's tag value is the key name, followed by an optional comma
    65  // and options. Examples:
    66  //
    67  //   // Field is ignored by this package.
    68  //   Field int `json:"-"`
    69  //
    70  //   // Field appears in JSON as key "myName".
    71  //   Field int `json:"myName"`
    72  //
    73  //   // Field appears in JSON as key "myName" and
    74  //   // the field is omitted from the object if its value is empty,
    75  //   // as defined above.
    76  //   Field int `json:"myName,omitempty"`
    77  //
    78  //   // Field appears in JSON as key "Field" (the default), but
    79  //   // the field is skipped if empty.
    80  //   // Note the leading comma.
    81  //   Field int `json:",omitempty"`
    82  //
    83  // The "string" option signals that a field is stored as JSON inside a
    84  // JSON-encoded string. It applies only to fields of string, floating point,
    85  // integer, or boolean types. This extra level of encoding is sometimes used
    86  // when communicating with JavaScript programs:
    87  //
    88  //    Int64String int64 `json:",string"`
    89  //
    90  // The key name will be used if it's a non-empty string consisting of
    91  // only Unicode letters, digits, dollar signs, percent signs, hyphens,
    92  // underscores and slashes.
    93  //
    94  // Anonymous struct fields are usually marshaled as if their inner exported fields
    95  // were fields in the outer struct, subject to the usual Go visibility rules amended
    96  // as described in the next paragraph.
    97  // An anonymous struct field with a name given in its JSON tag is treated as
    98  // having that name, rather than being anonymous.
    99  // An anonymous struct field of interface type is treated the same as having
   100  // that type as its name, rather than being anonymous.
   101  //
   102  // The Go visibility rules for struct fields are amended for JSON when
   103  // deciding which field to marshal or unmarshal. If there are
   104  // multiple fields at the same level, and that level is the least
   105  // nested (and would therefore be the nesting level selected by the
   106  // usual Go rules), the following extra rules apply:
   107  //
   108  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   109  // even if there are multiple untagged fields that would otherwise conflict.
   110  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   111  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   112  //
   113  // Handling of anonymous struct fields is new in Go 1.1.
   114  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   115  // an anonymous struct field in both current and earlier versions, give the field
   116  // a JSON tag of "-".
   117  //
   118  // Map values encode as JSON objects.
   119  // The map's key type must be string; the map keys are used as JSON object
   120  // keys, subject to the UTF-8 coercion described for string values above.
   121  //
   122  // Pointer values encode as the value pointed to.
   123  // A nil pointer encodes as the null JSON object.
   124  //
   125  // Interface values encode as the value contained in the interface.
   126  // A nil interface value encodes as the null JSON object.
   127  //
   128  // Channel, complex, and function values cannot be encoded in JSON.
   129  // Attempting to encode such a value causes Marshal to return
   130  // an UnsupportedTypeError.
   131  //
   132  // JSON cannot represent cyclic data structures and Marshal does not
   133  // handle them.  Passing cyclic structures to Marshal will result in
   134  // an infinite recursion.
   135  //
   136  func Marshal(v interface{}) ([]byte, error) {
   137  	e := &encodeState{}
   138  	err := e.marshal(v)
   139  	if err != nil {
   140  		return nil, err
   141  	}
   142  	return e.Bytes(), nil
   143  }
   144  
   145  // MarshalIndent is like Marshal but applies Indent to format the output.
   146  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   147  	b, err := Marshal(v)
   148  	if err != nil {
   149  		return nil, err
   150  	}
   151  	var buf bytes.Buffer
   152  	err = Indent(&buf, b, prefix, indent)
   153  	if err != nil {
   154  		return nil, err
   155  	}
   156  	return buf.Bytes(), nil
   157  }
   158  
   159  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   160  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   161  // so that the JSON will be safe to embed inside HTML <script> tags.
   162  // For historical reasons, web browsers don't honor standard HTML
   163  // escaping within <script> tags, so an alternative JSON encoding must
   164  // be used.
   165  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   166  	// The characters can only appear in string literals,
   167  	// so just scan the string one byte at a time.
   168  	start := 0
   169  	for i, c := range src {
   170  		if c == '<' || c == '>' || c == '&' {
   171  			if start < i {
   172  				dst.Write(src[start:i])
   173  			}
   174  			dst.WriteString(`\u00`)
   175  			dst.WriteByte(hex[c>>4])
   176  			dst.WriteByte(hex[c&0xF])
   177  			start = i + 1
   178  		}
   179  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   180  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   181  			if start < i {
   182  				dst.Write(src[start:i])
   183  			}
   184  			dst.WriteString(`\u202`)
   185  			dst.WriteByte(hex[src[i+2]&0xF])
   186  			start = i + 3
   187  		}
   188  	}
   189  	if start < len(src) {
   190  		dst.Write(src[start:])
   191  	}
   192  }
   193  
   194  // Marshaler is the interface implemented by objects that
   195  // can marshal themselves into valid JSON.
   196  type Marshaler interface {
   197  	MarshalJSON() ([]byte, error)
   198  }
   199  
   200  // An UnsupportedTypeError is returned by Marshal when attempting
   201  // to encode an unsupported value type.
   202  type UnsupportedTypeError struct {
   203  	Type reflect.Type
   204  }
   205  
   206  func (e *UnsupportedTypeError) Error() string {
   207  	return "json: unsupported type: " + e.Type.String()
   208  }
   209  
   210  type UnsupportedValueError struct {
   211  	Value reflect.Value
   212  	Str   string
   213  }
   214  
   215  func (e *UnsupportedValueError) Error() string {
   216  	return "json: unsupported value: " + e.Str
   217  }
   218  
   219  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   220  // attempting to encode a string value with invalid UTF-8 sequences.
   221  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   222  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   223  // This error is no longer generated but is kept for backwards compatibility
   224  // with programs that might mention it.
   225  type InvalidUTF8Error struct {
   226  	S string // the whole string value that caused the error
   227  }
   228  
   229  func (e *InvalidUTF8Error) Error() string {
   230  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   231  }
   232  
   233  type MarshalerError struct {
   234  	Type reflect.Type
   235  	Err  error
   236  }
   237  
   238  func (e *MarshalerError) Error() string {
   239  	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
   240  }
   241  
   242  var hex = "0123456789abcdef"
   243  
   244  // An encodeState encodes JSON into a bytes.Buffer.
   245  type encodeState struct {
   246  	bytes.Buffer // accumulated output
   247  	scratch      [64]byte
   248  }
   249  
   250  var encodeStatePool sync.Pool
   251  
   252  func newEncodeState() *encodeState {
   253  	if v := encodeStatePool.Get(); v != nil {
   254  		e := v.(*encodeState)
   255  		e.Reset()
   256  		return e
   257  	}
   258  	return new(encodeState)
   259  }
   260  
   261  func (e *encodeState) marshal(v interface{}) (err error) {
   262  	defer func() {
   263  		if r := recover(); r != nil {
   264  			if _, ok := r.(runtime.Error); ok {
   265  				panic(r)
   266  			}
   267  			if s, ok := r.(string); ok {
   268  				panic(s)
   269  			}
   270  			err = r.(error)
   271  		}
   272  	}()
   273  	e.reflectValue(reflect.ValueOf(v))
   274  	return nil
   275  }
   276  
   277  func (e *encodeState) error(err error) {
   278  	panic(err)
   279  }
   280  
   281  func isEmptyValue(v reflect.Value) bool {
   282  	switch v.Kind() {
   283  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   284  		return v.Len() == 0
   285  	case reflect.Bool:
   286  		return !v.Bool()
   287  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   288  		return v.Int() == 0
   289  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   290  		return v.Uint() == 0
   291  	case reflect.Float32, reflect.Float64:
   292  		return v.Float() == 0
   293  	case reflect.Interface, reflect.Ptr:
   294  		return v.IsNil()
   295  	}
   296  	return false
   297  }
   298  
   299  func (e *encodeState) reflectValue(v reflect.Value) {
   300  	valueEncoder(v)(e, v, false)
   301  }
   302  
   303  type encoderFunc func(e *encodeState, v reflect.Value, quoted bool)
   304  
   305  var encoderCache struct {
   306  	sync.RWMutex
   307  	m map[reflect.Type]encoderFunc
   308  }
   309  
   310  func valueEncoder(v reflect.Value) encoderFunc {
   311  	if !v.IsValid() {
   312  		return invalidValueEncoder
   313  	}
   314  	return typeEncoder(v.Type())
   315  }
   316  
   317  func typeEncoder(t reflect.Type) encoderFunc {
   318  	encoderCache.RLock()
   319  	f := encoderCache.m[t]
   320  	encoderCache.RUnlock()
   321  	if f != nil {
   322  		return f
   323  	}
   324  
   325  	// To deal with recursive types, populate the map with an
   326  	// indirect func before we build it. This type waits on the
   327  	// real func (f) to be ready and then calls it.  This indirect
   328  	// func is only used for recursive types.
   329  	encoderCache.Lock()
   330  	if encoderCache.m == nil {
   331  		encoderCache.m = make(map[reflect.Type]encoderFunc)
   332  	}
   333  	var wg sync.WaitGroup
   334  	wg.Add(1)
   335  	encoderCache.m[t] = func(e *encodeState, v reflect.Value, quoted bool) {
   336  		wg.Wait()
   337  		f(e, v, quoted)
   338  	}
   339  	encoderCache.Unlock()
   340  
   341  	// Compute fields without lock.
   342  	// Might duplicate effort but won't hold other computations back.
   343  	f = newTypeEncoder(t, true)
   344  	wg.Done()
   345  	encoderCache.Lock()
   346  	encoderCache.m[t] = f
   347  	encoderCache.Unlock()
   348  	return f
   349  }
   350  
   351  var (
   352  	marshalerType     = reflect.TypeOf(new(Marshaler)).Elem()
   353  	textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
   354  )
   355  
   356  // newTypeEncoder constructs an encoderFunc for a type.
   357  // The returned encoder only checks CanAddr when allowAddr is true.
   358  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   359  	if t.Implements(marshalerType) {
   360  		return marshalerEncoder
   361  	}
   362  	if t.Kind() != reflect.Ptr && allowAddr {
   363  		if reflect.PtrTo(t).Implements(marshalerType) {
   364  			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   365  		}
   366  	}
   367  
   368  	if t.Implements(textMarshalerType) {
   369  		return textMarshalerEncoder
   370  	}
   371  	if t.Kind() != reflect.Ptr && allowAddr {
   372  		if reflect.PtrTo(t).Implements(textMarshalerType) {
   373  			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   374  		}
   375  	}
   376  
   377  	switch t.Kind() {
   378  	case reflect.Bool:
   379  		return boolEncoder
   380  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   381  		return intEncoder
   382  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   383  		return uintEncoder
   384  	case reflect.Float32:
   385  		return float32Encoder
   386  	case reflect.Float64:
   387  		return float64Encoder
   388  	case reflect.String:
   389  		return stringEncoder
   390  	case reflect.Interface:
   391  		return interfaceEncoder
   392  	case reflect.Struct:
   393  		return newStructEncoder(t)
   394  	case reflect.Map:
   395  		return newMapEncoder(t)
   396  	case reflect.Slice:
   397  		return newSliceEncoder(t)
   398  	case reflect.Array:
   399  		return newArrayEncoder(t)
   400  	case reflect.Ptr:
   401  		return newPtrEncoder(t)
   402  	default:
   403  		return unsupportedTypeEncoder
   404  	}
   405  }
   406  
   407  func invalidValueEncoder(e *encodeState, v reflect.Value, quoted bool) {
   408  	e.WriteString("null")
   409  }
   410  
   411  func marshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   412  	if v.Kind() == reflect.Ptr && v.IsNil() {
   413  		e.WriteString("null")
   414  		return
   415  	}
   416  	m := v.Interface().(Marshaler)
   417  	b, err := m.MarshalJSON()
   418  	if err == nil {
   419  		// copy JSON into buffer, checking validity.
   420  		err = compact(&e.Buffer, b, true)
   421  	}
   422  	if err != nil {
   423  		e.error(&MarshalerError{v.Type(), err})
   424  	}
   425  }
   426  
   427  func addrMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   428  	va := v.Addr()
   429  	if va.IsNil() {
   430  		e.WriteString("null")
   431  		return
   432  	}
   433  	m := va.Interface().(Marshaler)
   434  	b, err := m.MarshalJSON()
   435  	if err == nil {
   436  		// copy JSON into buffer, checking validity.
   437  		err = compact(&e.Buffer, b, true)
   438  	}
   439  	if err != nil {
   440  		e.error(&MarshalerError{v.Type(), err})
   441  	}
   442  }
   443  
   444  func textMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   445  	if v.Kind() == reflect.Ptr && v.IsNil() {
   446  		e.WriteString("null")
   447  		return
   448  	}
   449  	m := v.Interface().(encoding.TextMarshaler)
   450  	b, err := m.MarshalText()
   451  	if err != nil {
   452  		e.error(&MarshalerError{v.Type(), err})
   453  	}
   454  	e.stringBytes(b)
   455  }
   456  
   457  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   458  	va := v.Addr()
   459  	if va.IsNil() {
   460  		e.WriteString("null")
   461  		return
   462  	}
   463  	m := va.Interface().(encoding.TextMarshaler)
   464  	b, err := m.MarshalText()
   465  	if err != nil {
   466  		e.error(&MarshalerError{v.Type(), err})
   467  	}
   468  	e.stringBytes(b)
   469  }
   470  
   471  func boolEncoder(e *encodeState, v reflect.Value, quoted bool) {
   472  	if quoted {
   473  		e.WriteByte('"')
   474  	}
   475  	if v.Bool() {
   476  		e.WriteString("true")
   477  	} else {
   478  		e.WriteString("false")
   479  	}
   480  	if quoted {
   481  		e.WriteByte('"')
   482  	}
   483  }
   484  
   485  func intEncoder(e *encodeState, v reflect.Value, quoted bool) {
   486  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   487  	if quoted {
   488  		e.WriteByte('"')
   489  	}
   490  	e.Write(b)
   491  	if quoted {
   492  		e.WriteByte('"')
   493  	}
   494  }
   495  
   496  func uintEncoder(e *encodeState, v reflect.Value, quoted bool) {
   497  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   498  	if quoted {
   499  		e.WriteByte('"')
   500  	}
   501  	e.Write(b)
   502  	if quoted {
   503  		e.WriteByte('"')
   504  	}
   505  }
   506  
   507  type floatEncoder int // number of bits
   508  
   509  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   510  	f := v.Float()
   511  	if math.IsInf(f, 0) || math.IsNaN(f) {
   512  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   513  	}
   514  	b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
   515  	if quoted {
   516  		e.WriteByte('"')
   517  	}
   518  	e.Write(b)
   519  	if quoted {
   520  		e.WriteByte('"')
   521  	}
   522  }
   523  
   524  var (
   525  	float32Encoder = (floatEncoder(32)).encode
   526  	float64Encoder = (floatEncoder(64)).encode
   527  )
   528  
   529  func stringEncoder(e *encodeState, v reflect.Value, quoted bool) {
   530  	if v.Type() == numberType {
   531  		numStr := v.String()
   532  		if numStr == "" {
   533  			numStr = "0" // Number's zero-val
   534  		}
   535  		e.WriteString(numStr)
   536  		return
   537  	}
   538  	if quoted {
   539  		sb, err := Marshal(v.String())
   540  		if err != nil {
   541  			e.error(err)
   542  		}
   543  		e.string(string(sb))
   544  	} else {
   545  		e.string(v.String())
   546  	}
   547  }
   548  
   549  func interfaceEncoder(e *encodeState, v reflect.Value, quoted bool) {
   550  	if v.IsNil() {
   551  		e.WriteString("null")
   552  		return
   553  	}
   554  	e.reflectValue(v.Elem())
   555  }
   556  
   557  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, quoted bool) {
   558  	e.error(&UnsupportedTypeError{v.Type()})
   559  }
   560  
   561  type structEncoder struct {
   562  	fields    []field
   563  	fieldEncs []encoderFunc
   564  }
   565  
   566  func (se *structEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   567  	e.WriteByte('{')
   568  	first := true
   569  	for i, f := range se.fields {
   570  		fv := fieldByIndex(v, f.index)
   571  		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
   572  			continue
   573  		}
   574  		if first {
   575  			first = false
   576  		} else {
   577  			e.WriteByte(',')
   578  		}
   579  		e.string(f.name)
   580  		e.WriteByte(':')
   581  		se.fieldEncs[i](e, fv, f.quoted)
   582  	}
   583  	e.WriteByte('}')
   584  }
   585  
   586  func newStructEncoder(t reflect.Type) encoderFunc {
   587  	fields := cachedTypeFields(t)
   588  	se := &structEncoder{
   589  		fields:    fields,
   590  		fieldEncs: make([]encoderFunc, len(fields)),
   591  	}
   592  	for i, f := range fields {
   593  		se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
   594  	}
   595  	return se.encode
   596  }
   597  
   598  type mapEncoder struct {
   599  	elemEnc encoderFunc
   600  }
   601  
   602  func (me *mapEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   603  	if v.IsNil() {
   604  		e.WriteString("null")
   605  		return
   606  	}
   607  	e.WriteByte('{')
   608  	var sv stringValues = v.MapKeys()
   609  	sort.Sort(sv)
   610  	for i, k := range sv {
   611  		if i > 0 {
   612  			e.WriteByte(',')
   613  		}
   614  		e.string(k.String())
   615  		e.WriteByte(':')
   616  		me.elemEnc(e, v.MapIndex(k), false)
   617  	}
   618  	e.WriteByte('}')
   619  }
   620  
   621  func newMapEncoder(t reflect.Type) encoderFunc {
   622  	if t.Key().Kind() != reflect.String {
   623  		return unsupportedTypeEncoder
   624  	}
   625  	me := &mapEncoder{typeEncoder(t.Elem())}
   626  	return me.encode
   627  }
   628  
   629  func encodeByteSlice(e *encodeState, v reflect.Value, _ bool) {
   630  	if v.IsNil() {
   631  		e.WriteString("null")
   632  		return
   633  	}
   634  	s := v.Bytes()
   635  	e.WriteByte('"')
   636  	if len(s) < 1024 {
   637  		// for small buffers, using Encode directly is much faster.
   638  		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
   639  		base64.StdEncoding.Encode(dst, s)
   640  		e.Write(dst)
   641  	} else {
   642  		// for large buffers, avoid unnecessary extra temporary
   643  		// buffer space.
   644  		enc := base64.NewEncoder(base64.StdEncoding, e)
   645  		enc.Write(s)
   646  		enc.Close()
   647  	}
   648  	e.WriteByte('"')
   649  }
   650  
   651  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   652  type sliceEncoder struct {
   653  	arrayEnc encoderFunc
   654  }
   655  
   656  func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   657  	if v.IsNil() {
   658  		e.WriteString("null")
   659  		return
   660  	}
   661  	se.arrayEnc(e, v, false)
   662  }
   663  
   664  func newSliceEncoder(t reflect.Type) encoderFunc {
   665  	// Byte slices get special treatment; arrays don't.
   666  	if t.Elem().Kind() == reflect.Uint8 {
   667  		return encodeByteSlice
   668  	}
   669  	enc := &sliceEncoder{newArrayEncoder(t)}
   670  	return enc.encode
   671  }
   672  
   673  type arrayEncoder struct {
   674  	elemEnc encoderFunc
   675  }
   676  
   677  func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   678  	e.WriteByte('[')
   679  	n := v.Len()
   680  	for i := 0; i < n; i++ {
   681  		if i > 0 {
   682  			e.WriteByte(',')
   683  		}
   684  		ae.elemEnc(e, v.Index(i), false)
   685  	}
   686  	e.WriteByte(']')
   687  }
   688  
   689  func newArrayEncoder(t reflect.Type) encoderFunc {
   690  	enc := &arrayEncoder{typeEncoder(t.Elem())}
   691  	return enc.encode
   692  }
   693  
   694  type ptrEncoder struct {
   695  	elemEnc encoderFunc
   696  }
   697  
   698  func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   699  	if v.IsNil() {
   700  		e.WriteString("null")
   701  		return
   702  	}
   703  	pe.elemEnc(e, v.Elem(), quoted)
   704  }
   705  
   706  func newPtrEncoder(t reflect.Type) encoderFunc {
   707  	enc := &ptrEncoder{typeEncoder(t.Elem())}
   708  	return enc.encode
   709  }
   710  
   711  type condAddrEncoder struct {
   712  	canAddrEnc, elseEnc encoderFunc
   713  }
   714  
   715  func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   716  	if v.CanAddr() {
   717  		ce.canAddrEnc(e, v, quoted)
   718  	} else {
   719  		ce.elseEnc(e, v, quoted)
   720  	}
   721  }
   722  
   723  // newCondAddrEncoder returns an encoder that checks whether its value
   724  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   725  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   726  	enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   727  	return enc.encode
   728  }
   729  
   730  func isValidTag(s string) bool {
   731  	if s == "" {
   732  		return false
   733  	}
   734  	for _, c := range s {
   735  		switch {
   736  		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
   737  			// Backslash and quote chars are reserved, but
   738  			// otherwise any punctuation chars are allowed
   739  			// in a tag name.
   740  		default:
   741  			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
   742  				return false
   743  			}
   744  		}
   745  	}
   746  	return true
   747  }
   748  
   749  func fieldByIndex(v reflect.Value, index []int) reflect.Value {
   750  	for _, i := range index {
   751  		if v.Kind() == reflect.Ptr {
   752  			if v.IsNil() {
   753  				return reflect.Value{}
   754  			}
   755  			v = v.Elem()
   756  		}
   757  		v = v.Field(i)
   758  	}
   759  	return v
   760  }
   761  
   762  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   763  	for _, i := range index {
   764  		if t.Kind() == reflect.Ptr {
   765  			t = t.Elem()
   766  		}
   767  		t = t.Field(i).Type
   768  	}
   769  	return t
   770  }
   771  
   772  // stringValues is a slice of reflect.Value holding *reflect.StringValue.
   773  // It implements the methods to sort by string.
   774  type stringValues []reflect.Value
   775  
   776  func (sv stringValues) Len() int           { return len(sv) }
   777  func (sv stringValues) Swap(i, j int)      { sv[i], sv[j] = sv[j], sv[i] }
   778  func (sv stringValues) Less(i, j int) bool { return sv.get(i) < sv.get(j) }
   779  func (sv stringValues) get(i int) string   { return sv[i].String() }
   780  
   781  // NOTE: keep in sync with stringBytes below.
   782  func (e *encodeState) string(s string) int {
   783  	len0 := e.Len()
   784  	e.WriteByte('"')
   785  	start := 0
   786  	for i := 0; i < len(s); {
   787  		if b := s[i]; b < utf8.RuneSelf {
   788  			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
   789  				i++
   790  				continue
   791  			}
   792  			if start < i {
   793  				e.WriteString(s[start:i])
   794  			}
   795  			switch b {
   796  			case '\\', '"':
   797  				e.WriteByte('\\')
   798  				e.WriteByte(b)
   799  			case '\n':
   800  				e.WriteByte('\\')
   801  				e.WriteByte('n')
   802  			case '\r':
   803  				e.WriteByte('\\')
   804  				e.WriteByte('r')
   805  			case '\t':
   806  				e.WriteByte('\\')
   807  				e.WriteByte('t')
   808  			default:
   809  				// This encodes bytes < 0x20 except for \n and \r,
   810  				// as well as <, > and &. The latter are escaped because they
   811  				// can lead to security holes when user-controlled strings
   812  				// are rendered into JSON and served to some browsers.
   813  				e.WriteString(`\u00`)
   814  				e.WriteByte(hex[b>>4])
   815  				e.WriteByte(hex[b&0xF])
   816  			}
   817  			i++
   818  			start = i
   819  			continue
   820  		}
   821  		c, size := utf8.DecodeRuneInString(s[i:])
   822  		if c == utf8.RuneError && size == 1 {
   823  			if start < i {
   824  				e.WriteString(s[start:i])
   825  			}
   826  			e.WriteString(`\ufffd`)
   827  			i += size
   828  			start = i
   829  			continue
   830  		}
   831  		// U+2028 is LINE SEPARATOR.
   832  		// U+2029 is PARAGRAPH SEPARATOR.
   833  		// They are both technically valid characters in JSON strings,
   834  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   835  		// and can lead to security holes there. It is valid JSON to
   836  		// escape them, so we do so unconditionally.
   837  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   838  		if c == '\u2028' || c == '\u2029' {
   839  			if start < i {
   840  				e.WriteString(s[start:i])
   841  			}
   842  			e.WriteString(`\u202`)
   843  			e.WriteByte(hex[c&0xF])
   844  			i += size
   845  			start = i
   846  			continue
   847  		}
   848  		i += size
   849  	}
   850  	if start < len(s) {
   851  		e.WriteString(s[start:])
   852  	}
   853  	e.WriteByte('"')
   854  	return e.Len() - len0
   855  }
   856  
   857  // NOTE: keep in sync with string above.
   858  func (e *encodeState) stringBytes(s []byte) int {
   859  	len0 := e.Len()
   860  	e.WriteByte('"')
   861  	start := 0
   862  	for i := 0; i < len(s); {
   863  		if b := s[i]; b < utf8.RuneSelf {
   864  			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
   865  				i++
   866  				continue
   867  			}
   868  			if start < i {
   869  				e.Write(s[start:i])
   870  			}
   871  			switch b {
   872  			case '\\', '"':
   873  				e.WriteByte('\\')
   874  				e.WriteByte(b)
   875  			case '\n':
   876  				e.WriteByte('\\')
   877  				e.WriteByte('n')
   878  			case '\r':
   879  				e.WriteByte('\\')
   880  				e.WriteByte('r')
   881  			case '\t':
   882  				e.WriteByte('\\')
   883  				e.WriteByte('t')
   884  			default:
   885  				// This encodes bytes < 0x20 except for \n and \r,
   886  				// as well as <, >, and &. The latter are escaped because they
   887  				// can lead to security holes when user-controlled strings
   888  				// are rendered into JSON and served to some browsers.
   889  				e.WriteString(`\u00`)
   890  				e.WriteByte(hex[b>>4])
   891  				e.WriteByte(hex[b&0xF])
   892  			}
   893  			i++
   894  			start = i
   895  			continue
   896  		}
   897  		c, size := utf8.DecodeRune(s[i:])
   898  		if c == utf8.RuneError && size == 1 {
   899  			if start < i {
   900  				e.Write(s[start:i])
   901  			}
   902  			e.WriteString(`\ufffd`)
   903  			i += size
   904  			start = i
   905  			continue
   906  		}
   907  		// U+2028 is LINE SEPARATOR.
   908  		// U+2029 is PARAGRAPH SEPARATOR.
   909  		// They are both technically valid characters in JSON strings,
   910  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   911  		// and can lead to security holes there. It is valid JSON to
   912  		// escape them, so we do so unconditionally.
   913  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   914  		if c == '\u2028' || c == '\u2029' {
   915  			if start < i {
   916  				e.Write(s[start:i])
   917  			}
   918  			e.WriteString(`\u202`)
   919  			e.WriteByte(hex[c&0xF])
   920  			i += size
   921  			start = i
   922  			continue
   923  		}
   924  		i += size
   925  	}
   926  	if start < len(s) {
   927  		e.Write(s[start:])
   928  	}
   929  	e.WriteByte('"')
   930  	return e.Len() - len0
   931  }
   932  
   933  // A field represents a single field found in a struct.
   934  type field struct {
   935  	name      string
   936  	nameBytes []byte                 // []byte(name)
   937  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
   938  
   939  	tag       bool
   940  	index     []int
   941  	typ       reflect.Type
   942  	omitEmpty bool
   943  	quoted    bool
   944  }
   945  
   946  func fillField(f field) field {
   947  	f.nameBytes = []byte(f.name)
   948  	f.equalFold = foldFunc(f.nameBytes)
   949  	return f
   950  }
   951  
   952  // byName sorts field by name, breaking ties with depth,
   953  // then breaking ties with "name came from json tag", then
   954  // breaking ties with index sequence.
   955  type byName []field
   956  
   957  func (x byName) Len() int { return len(x) }
   958  
   959  func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   960  
   961  func (x byName) Less(i, j int) bool {
   962  	if x[i].name != x[j].name {
   963  		return x[i].name < x[j].name
   964  	}
   965  	if len(x[i].index) != len(x[j].index) {
   966  		return len(x[i].index) < len(x[j].index)
   967  	}
   968  	if x[i].tag != x[j].tag {
   969  		return x[i].tag
   970  	}
   971  	return byIndex(x).Less(i, j)
   972  }
   973  
   974  // byIndex sorts field by index sequence.
   975  type byIndex []field
   976  
   977  func (x byIndex) Len() int { return len(x) }
   978  
   979  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   980  
   981  func (x byIndex) Less(i, j int) bool {
   982  	for k, xik := range x[i].index {
   983  		if k >= len(x[j].index) {
   984  			return false
   985  		}
   986  		if xik != x[j].index[k] {
   987  			return xik < x[j].index[k]
   988  		}
   989  	}
   990  	return len(x[i].index) < len(x[j].index)
   991  }
   992  
   993  // typeFields returns a list of fields that JSON should recognize for the given type.
   994  // The algorithm is breadth-first search over the set of structs to include - the top struct
   995  // and then any reachable anonymous structs.
   996  func typeFields(t reflect.Type) []field {
   997  	// Anonymous fields to explore at the current level and the next.
   998  	current := []field{}
   999  	next := []field{{typ: t}}
  1000  
  1001  	// Count of queued names for current level and the next.
  1002  	count := map[reflect.Type]int{}
  1003  	nextCount := map[reflect.Type]int{}
  1004  
  1005  	// Types already visited at an earlier level.
  1006  	visited := map[reflect.Type]bool{}
  1007  
  1008  	// Fields found.
  1009  	var fields []field
  1010  
  1011  	for len(next) > 0 {
  1012  		current, next = next, current[:0]
  1013  		count, nextCount = nextCount, map[reflect.Type]int{}
  1014  
  1015  		for _, f := range current {
  1016  			if visited[f.typ] {
  1017  				continue
  1018  			}
  1019  			visited[f.typ] = true
  1020  
  1021  			// Scan f.typ for fields to include.
  1022  			for i := 0; i < f.typ.NumField(); i++ {
  1023  				sf := f.typ.Field(i)
  1024  				if sf.PkgPath != "" && !sf.Anonymous { // unexported
  1025  					continue
  1026  				}
  1027  				tag := sf.Tag.Get("json")
  1028  				if tag == "-" {
  1029  					continue
  1030  				}
  1031  				name, opts := parseTag(tag)
  1032  				if !isValidTag(name) {
  1033  					name = ""
  1034  				}
  1035  				index := make([]int, len(f.index)+1)
  1036  				copy(index, f.index)
  1037  				index[len(f.index)] = i
  1038  
  1039  				ft := sf.Type
  1040  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1041  					// Follow pointer.
  1042  					ft = ft.Elem()
  1043  				}
  1044  
  1045  				// Only strings, floats, integers, and booleans can be quoted.
  1046  				quoted := false
  1047  				if opts.Contains("string") {
  1048  					switch ft.Kind() {
  1049  					case reflect.Bool,
  1050  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1051  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
  1052  						reflect.Float32, reflect.Float64,
  1053  						reflect.String:
  1054  						quoted = true
  1055  					}
  1056  				}
  1057  
  1058  				// Record found field and index sequence.
  1059  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1060  					tagged := name != ""
  1061  					if name == "" {
  1062  						name = sf.Name
  1063  					}
  1064  					fields = append(fields, fillField(field{
  1065  						name:      name,
  1066  						tag:       tagged,
  1067  						index:     index,
  1068  						typ:       ft,
  1069  						omitEmpty: opts.Contains("omitempty"),
  1070  						quoted:    quoted,
  1071  					}))
  1072  					if count[f.typ] > 1 {
  1073  						// If there were multiple instances, add a second,
  1074  						// so that the annihilation code will see a duplicate.
  1075  						// It only cares about the distinction between 1 or 2,
  1076  						// so don't bother generating any more copies.
  1077  						fields = append(fields, fields[len(fields)-1])
  1078  					}
  1079  					continue
  1080  				}
  1081  
  1082  				// Record new anonymous struct to explore in next round.
  1083  				nextCount[ft]++
  1084  				if nextCount[ft] == 1 {
  1085  					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
  1086  				}
  1087  			}
  1088  		}
  1089  	}
  1090  
  1091  	sort.Sort(byName(fields))
  1092  
  1093  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1094  	// except that fields with JSON tags are promoted.
  1095  
  1096  	// The fields are sorted in primary order of name, secondary order
  1097  	// of field index length. Loop over names; for each name, delete
  1098  	// hidden fields by choosing the one dominant field that survives.
  1099  	out := fields[:0]
  1100  	for advance, i := 0, 0; i < len(fields); i += advance {
  1101  		// One iteration per name.
  1102  		// Find the sequence of fields with the name of this first field.
  1103  		fi := fields[i]
  1104  		name := fi.name
  1105  		for advance = 1; i+advance < len(fields); advance++ {
  1106  			fj := fields[i+advance]
  1107  			if fj.name != name {
  1108  				break
  1109  			}
  1110  		}
  1111  		if advance == 1 { // Only one field with this name
  1112  			out = append(out, fi)
  1113  			continue
  1114  		}
  1115  		dominant, ok := dominantField(fields[i : i+advance])
  1116  		if ok {
  1117  			out = append(out, dominant)
  1118  		}
  1119  	}
  1120  
  1121  	fields = out
  1122  	sort.Sort(byIndex(fields))
  1123  
  1124  	return fields
  1125  }
  1126  
  1127  // dominantField looks through the fields, all of which are known to
  1128  // have the same name, to find the single field that dominates the
  1129  // others using Go's embedding rules, modified by the presence of
  1130  // JSON tags. If there are multiple top-level fields, the boolean
  1131  // will be false: This condition is an error in Go and we skip all
  1132  // the fields.
  1133  func dominantField(fields []field) (field, bool) {
  1134  	// The fields are sorted in increasing index-length order. The winner
  1135  	// must therefore be one with the shortest index length. Drop all
  1136  	// longer entries, which is easy: just truncate the slice.
  1137  	length := len(fields[0].index)
  1138  	tagged := -1 // Index of first tagged field.
  1139  	for i, f := range fields {
  1140  		if len(f.index) > length {
  1141  			fields = fields[:i]
  1142  			break
  1143  		}
  1144  		if f.tag {
  1145  			if tagged >= 0 {
  1146  				// Multiple tagged fields at the same level: conflict.
  1147  				// Return no field.
  1148  				return field{}, false
  1149  			}
  1150  			tagged = i
  1151  		}
  1152  	}
  1153  	if tagged >= 0 {
  1154  		return fields[tagged], true
  1155  	}
  1156  	// All remaining fields have the same length. If there's more than one,
  1157  	// we have a conflict (two fields named "X" at the same level) and we
  1158  	// return no field.
  1159  	if len(fields) > 1 {
  1160  		return field{}, false
  1161  	}
  1162  	return fields[0], true
  1163  }
  1164  
  1165  var fieldCache struct {
  1166  	sync.RWMutex
  1167  	m map[reflect.Type][]field
  1168  }
  1169  
  1170  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1171  func cachedTypeFields(t reflect.Type) []field {
  1172  	fieldCache.RLock()
  1173  	f := fieldCache.m[t]
  1174  	fieldCache.RUnlock()
  1175  	if f != nil {
  1176  		return f
  1177  	}
  1178  
  1179  	// Compute fields without lock.
  1180  	// Might duplicate effort but won't hold other computations back.
  1181  	f = typeFields(t)
  1182  	if f == nil {
  1183  		f = []field{}
  1184  	}
  1185  
  1186  	fieldCache.Lock()
  1187  	if fieldCache.m == nil {
  1188  		fieldCache.m = map[reflect.Type][]field{}
  1189  	}
  1190  	fieldCache.m[t] = f
  1191  	fieldCache.Unlock()
  1192  	return f
  1193  }