github.com/rafaeltorres324/go/src@v0.0.0-20210519164414-9fdf653a9838/runtime/cgocall.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Cgo call and callback support. 6 // 7 // To call into the C function f from Go, the cgo-generated code calls 8 // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a 9 // gcc-compiled function written by cgo. 10 // 11 // runtime.cgocall (below) calls entersyscall so as not to block 12 // other goroutines or the garbage collector, and then calls 13 // runtime.asmcgocall(_cgo_Cfunc_f, frame). 14 // 15 // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack 16 // (assumed to be an operating system-allocated stack, so safe to run 17 // gcc-compiled code on) and calls _cgo_Cfunc_f(frame). 18 // 19 // _cgo_Cfunc_f invokes the actual C function f with arguments 20 // taken from the frame structure, records the results in the frame, 21 // and returns to runtime.asmcgocall. 22 // 23 // After it regains control, runtime.asmcgocall switches back to the 24 // original g (m->curg)'s stack and returns to runtime.cgocall. 25 // 26 // After it regains control, runtime.cgocall calls exitsyscall, which blocks 27 // until this m can run Go code without violating the $GOMAXPROCS limit, 28 // and then unlocks g from m. 29 // 30 // The above description skipped over the possibility of the gcc-compiled 31 // function f calling back into Go. If that happens, we continue down 32 // the rabbit hole during the execution of f. 33 // 34 // To make it possible for gcc-compiled C code to call a Go function p.GoF, 35 // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't 36 // know about packages). The gcc-compiled C function f calls GoF. 37 // 38 // GoF initializes "frame", a structure containing all of its 39 // arguments and slots for p.GoF's results. It calls 40 // crosscall2(_cgoexp_GoF, frame, framesize, ctxt) using the gcc ABI. 41 // 42 // crosscall2 (in cgo/asm_$GOARCH.s) is a four-argument adapter from 43 // the gcc function call ABI to the gc function call ABI. At this 44 // point we're in the Go runtime, but we're still running on m.g0's 45 // stack and outside the $GOMAXPROCS limit. crosscall2 calls 46 // runtime.cgocallback(_cgoexp_GoF, frame, ctxt) using the gc ABI. 47 // (crosscall2's framesize argument is no longer used, but there's one 48 // case where SWIG calls crosscall2 directly and expects to pass this 49 // argument. See _cgo_panic.) 50 // 51 // runtime.cgocallback (in asm_$GOARCH.s) switches from m.g0's stack 52 // to the original g (m.curg)'s stack, on which it calls 53 // runtime.cgocallbackg(_cgoexp_GoF, frame, ctxt). As part of the 54 // stack switch, runtime.cgocallback saves the current SP as 55 // m.g0.sched.sp, so that any use of m.g0's stack during the execution 56 // of the callback will be done below the existing stack frames. 57 // Before overwriting m.g0.sched.sp, it pushes the old value on the 58 // m.g0 stack, so that it can be restored later. 59 // 60 // runtime.cgocallbackg (below) is now running on a real goroutine 61 // stack (not an m.g0 stack). First it calls runtime.exitsyscall, which will 62 // block until the $GOMAXPROCS limit allows running this goroutine. 63 // Once exitsyscall has returned, it is safe to do things like call the memory 64 // allocator or invoke the Go callback function. runtime.cgocallbackg 65 // first defers a function to unwind m.g0.sched.sp, so that if p.GoF 66 // panics, m.g0.sched.sp will be restored to its old value: the m.g0 stack 67 // and the m.curg stack will be unwound in lock step. 68 // Then it calls _cgoexp_GoF(frame). 69 // 70 // _cgoexp_GoF, which was generated by cmd/cgo, unpacks the arguments 71 // from frame, calls p.GoF, writes the results back to frame, and 72 // returns. Now we start unwinding this whole process. 73 // 74 // runtime.cgocallbackg pops but does not execute the deferred 75 // function to unwind m.g0.sched.sp, calls runtime.entersyscall, and 76 // returns to runtime.cgocallback. 77 // 78 // After it regains control, runtime.cgocallback switches back to 79 // m.g0's stack (the pointer is still in m.g0.sched.sp), restores the old 80 // m.g0.sched.sp value from the stack, and returns to crosscall2. 81 // 82 // crosscall2 restores the callee-save registers for gcc and returns 83 // to GoF, which unpacks any result values and returns to f. 84 85 package runtime 86 87 import ( 88 "runtime/internal/atomic" 89 "runtime/internal/sys" 90 "unsafe" 91 ) 92 93 // Addresses collected in a cgo backtrace when crashing. 94 // Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c. 95 type cgoCallers [32]uintptr 96 97 // argset matches runtime/cgo/linux_syscall.c:argset_t 98 type argset struct { 99 args unsafe.Pointer 100 retval uintptr 101 } 102 103 // wrapper for syscall package to call cgocall for libc (cgo) calls. 104 //go:linkname syscall_cgocaller syscall.cgocaller 105 //go:nosplit 106 //go:uintptrescapes 107 func syscall_cgocaller(fn unsafe.Pointer, args ...uintptr) uintptr { 108 as := argset{args: unsafe.Pointer(&args[0])} 109 cgocall(fn, unsafe.Pointer(&as)) 110 return as.retval 111 } 112 113 // Call from Go to C. 114 // 115 // This must be nosplit because it's used for syscalls on some 116 // platforms. Syscalls may have untyped arguments on the stack, so 117 // it's not safe to grow or scan the stack. 118 // 119 //go:nosplit 120 func cgocall(fn, arg unsafe.Pointer) int32 { 121 if !iscgo && GOOS != "solaris" && GOOS != "illumos" && GOOS != "windows" { 122 throw("cgocall unavailable") 123 } 124 125 if fn == nil { 126 throw("cgocall nil") 127 } 128 129 if raceenabled { 130 racereleasemerge(unsafe.Pointer(&racecgosync)) 131 } 132 133 mp := getg().m 134 mp.ncgocall++ 135 mp.ncgo++ 136 137 // Reset traceback. 138 mp.cgoCallers[0] = 0 139 140 // Announce we are entering a system call 141 // so that the scheduler knows to create another 142 // M to run goroutines while we are in the 143 // foreign code. 144 // 145 // The call to asmcgocall is guaranteed not to 146 // grow the stack and does not allocate memory, 147 // so it is safe to call while "in a system call", outside 148 // the $GOMAXPROCS accounting. 149 // 150 // fn may call back into Go code, in which case we'll exit the 151 // "system call", run the Go code (which may grow the stack), 152 // and then re-enter the "system call" reusing the PC and SP 153 // saved by entersyscall here. 154 entersyscall() 155 156 // Tell asynchronous preemption that we're entering external 157 // code. We do this after entersyscall because this may block 158 // and cause an async preemption to fail, but at this point a 159 // sync preemption will succeed (though this is not a matter 160 // of correctness). 161 osPreemptExtEnter(mp) 162 163 mp.incgo = true 164 errno := asmcgocall(fn, arg) 165 166 // Update accounting before exitsyscall because exitsyscall may 167 // reschedule us on to a different M. 168 mp.incgo = false 169 mp.ncgo-- 170 171 osPreemptExtExit(mp) 172 173 exitsyscall() 174 175 // Note that raceacquire must be called only after exitsyscall has 176 // wired this M to a P. 177 if raceenabled { 178 raceacquire(unsafe.Pointer(&racecgosync)) 179 } 180 181 // From the garbage collector's perspective, time can move 182 // backwards in the sequence above. If there's a callback into 183 // Go code, GC will see this function at the call to 184 // asmcgocall. When the Go call later returns to C, the 185 // syscall PC/SP is rolled back and the GC sees this function 186 // back at the call to entersyscall. Normally, fn and arg 187 // would be live at entersyscall and dead at asmcgocall, so if 188 // time moved backwards, GC would see these arguments as dead 189 // and then live. Prevent these undead arguments from crashing 190 // GC by forcing them to stay live across this time warp. 191 KeepAlive(fn) 192 KeepAlive(arg) 193 KeepAlive(mp) 194 195 return errno 196 } 197 198 // Call from C back to Go. 199 //go:nosplit 200 func cgocallbackg(fn, frame unsafe.Pointer, ctxt uintptr) { 201 gp := getg() 202 if gp != gp.m.curg { 203 println("runtime: bad g in cgocallback") 204 exit(2) 205 } 206 207 // The call from C is on gp.m's g0 stack, so we must ensure 208 // that we stay on that M. We have to do this before calling 209 // exitsyscall, since it would otherwise be free to move us to 210 // a different M. The call to unlockOSThread is in unwindm. 211 lockOSThread() 212 213 // Save current syscall parameters, so m.syscall can be 214 // used again if callback decide to make syscall. 215 syscall := gp.m.syscall 216 217 // entersyscall saves the caller's SP to allow the GC to trace the Go 218 // stack. However, since we're returning to an earlier stack frame and 219 // need to pair with the entersyscall() call made by cgocall, we must 220 // save syscall* and let reentersyscall restore them. 221 savedsp := unsafe.Pointer(gp.syscallsp) 222 savedpc := gp.syscallpc 223 exitsyscall() // coming out of cgo call 224 gp.m.incgo = false 225 226 osPreemptExtExit(gp.m) 227 228 cgocallbackg1(fn, frame, ctxt) 229 230 // At this point unlockOSThread has been called. 231 // The following code must not change to a different m. 232 // This is enforced by checking incgo in the schedule function. 233 234 osPreemptExtEnter(gp.m) 235 236 gp.m.incgo = true 237 // going back to cgo call 238 reentersyscall(savedpc, uintptr(savedsp)) 239 240 gp.m.syscall = syscall 241 } 242 243 func cgocallbackg1(fn, frame unsafe.Pointer, ctxt uintptr) { 244 gp := getg() 245 if gp.m.needextram || atomic.Load(&extraMWaiters) > 0 { 246 gp.m.needextram = false 247 systemstack(newextram) 248 } 249 250 if ctxt != 0 { 251 s := append(gp.cgoCtxt, ctxt) 252 253 // Now we need to set gp.cgoCtxt = s, but we could get 254 // a SIGPROF signal while manipulating the slice, and 255 // the SIGPROF handler could pick up gp.cgoCtxt while 256 // tracing up the stack. We need to ensure that the 257 // handler always sees a valid slice, so set the 258 // values in an order such that it always does. 259 p := (*slice)(unsafe.Pointer(&gp.cgoCtxt)) 260 atomicstorep(unsafe.Pointer(&p.array), unsafe.Pointer(&s[0])) 261 p.cap = cap(s) 262 p.len = len(s) 263 264 defer func(gp *g) { 265 // Decrease the length of the slice by one, safely. 266 p := (*slice)(unsafe.Pointer(&gp.cgoCtxt)) 267 p.len-- 268 }(gp) 269 } 270 271 if gp.m.ncgo == 0 { 272 // The C call to Go came from a thread not currently running 273 // any Go. In the case of -buildmode=c-archive or c-shared, 274 // this call may be coming in before package initialization 275 // is complete. Wait until it is. 276 <-main_init_done 277 } 278 279 // Add entry to defer stack in case of panic. 280 restore := true 281 defer unwindm(&restore) 282 283 if raceenabled { 284 raceacquire(unsafe.Pointer(&racecgosync)) 285 } 286 287 // Invoke callback. This function is generated by cmd/cgo and 288 // will unpack the argument frame and call the Go function. 289 var cb func(frame unsafe.Pointer) 290 cbFV := funcval{uintptr(fn)} 291 *(*unsafe.Pointer)(unsafe.Pointer(&cb)) = noescape(unsafe.Pointer(&cbFV)) 292 cb(frame) 293 294 if raceenabled { 295 racereleasemerge(unsafe.Pointer(&racecgosync)) 296 } 297 298 // Do not unwind m->g0->sched.sp. 299 // Our caller, cgocallback, will do that. 300 restore = false 301 } 302 303 func unwindm(restore *bool) { 304 if *restore { 305 // Restore sp saved by cgocallback during 306 // unwind of g's stack (see comment at top of file). 307 mp := acquirem() 308 sched := &mp.g0.sched 309 switch GOARCH { 310 default: 311 throw("unwindm not implemented") 312 case "386", "amd64", "arm", "ppc64", "ppc64le", "mips64", "mips64le", "s390x", "mips", "mipsle", "riscv64": 313 sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + sys.MinFrameSize)) 314 case "arm64": 315 sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 16)) 316 } 317 318 // Do the accounting that cgocall will not have a chance to do 319 // during an unwind. 320 // 321 // In the case where a Go call originates from C, ncgo is 0 322 // and there is no matching cgocall to end. 323 if mp.ncgo > 0 { 324 mp.incgo = false 325 mp.ncgo-- 326 osPreemptExtExit(mp) 327 } 328 329 releasem(mp) 330 } 331 332 // Undo the call to lockOSThread in cgocallbackg. 333 // We must still stay on the same m. 334 unlockOSThread() 335 } 336 337 // called from assembly 338 func badcgocallback() { 339 throw("misaligned stack in cgocallback") 340 } 341 342 // called from (incomplete) assembly 343 func cgounimpl() { 344 throw("cgo not implemented") 345 } 346 347 var racecgosync uint64 // represents possible synchronization in C code 348 349 // Pointer checking for cgo code. 350 351 // We want to detect all cases where a program that does not use 352 // unsafe makes a cgo call passing a Go pointer to memory that 353 // contains a Go pointer. Here a Go pointer is defined as a pointer 354 // to memory allocated by the Go runtime. Programs that use unsafe 355 // can evade this restriction easily, so we don't try to catch them. 356 // The cgo program will rewrite all possibly bad pointer arguments to 357 // call cgoCheckPointer, where we can catch cases of a Go pointer 358 // pointing to a Go pointer. 359 360 // Complicating matters, taking the address of a slice or array 361 // element permits the C program to access all elements of the slice 362 // or array. In that case we will see a pointer to a single element, 363 // but we need to check the entire data structure. 364 365 // The cgoCheckPointer call takes additional arguments indicating that 366 // it was called on an address expression. An additional argument of 367 // true means that it only needs to check a single element. An 368 // additional argument of a slice or array means that it needs to 369 // check the entire slice/array, but nothing else. Otherwise, the 370 // pointer could be anything, and we check the entire heap object, 371 // which is conservative but safe. 372 373 // When and if we implement a moving garbage collector, 374 // cgoCheckPointer will pin the pointer for the duration of the cgo 375 // call. (This is necessary but not sufficient; the cgo program will 376 // also have to change to pin Go pointers that cannot point to Go 377 // pointers.) 378 379 // cgoCheckPointer checks if the argument contains a Go pointer that 380 // points to a Go pointer, and panics if it does. 381 func cgoCheckPointer(ptr interface{}, arg interface{}) { 382 if debug.cgocheck == 0 { 383 return 384 } 385 386 ep := efaceOf(&ptr) 387 t := ep._type 388 389 top := true 390 if arg != nil && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) { 391 p := ep.data 392 if t.kind&kindDirectIface == 0 { 393 p = *(*unsafe.Pointer)(p) 394 } 395 if p == nil || !cgoIsGoPointer(p) { 396 return 397 } 398 aep := efaceOf(&arg) 399 switch aep._type.kind & kindMask { 400 case kindBool: 401 if t.kind&kindMask == kindUnsafePointer { 402 // We don't know the type of the element. 403 break 404 } 405 pt := (*ptrtype)(unsafe.Pointer(t)) 406 cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail) 407 return 408 case kindSlice: 409 // Check the slice rather than the pointer. 410 ep = aep 411 t = ep._type 412 case kindArray: 413 // Check the array rather than the pointer. 414 // Pass top as false since we have a pointer 415 // to the array. 416 ep = aep 417 t = ep._type 418 top = false 419 default: 420 throw("can't happen") 421 } 422 } 423 424 cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail) 425 } 426 427 const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer" 428 const cgoResultFail = "cgo result has Go pointer" 429 430 // cgoCheckArg is the real work of cgoCheckPointer. The argument p 431 // is either a pointer to the value (of type t), or the value itself, 432 // depending on indir. The top parameter is whether we are at the top 433 // level, where Go pointers are allowed. 434 func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) { 435 if t.ptrdata == 0 || p == nil { 436 // If the type has no pointers there is nothing to do. 437 return 438 } 439 440 switch t.kind & kindMask { 441 default: 442 throw("can't happen") 443 case kindArray: 444 at := (*arraytype)(unsafe.Pointer(t)) 445 if !indir { 446 if at.len != 1 { 447 throw("can't happen") 448 } 449 cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg) 450 return 451 } 452 for i := uintptr(0); i < at.len; i++ { 453 cgoCheckArg(at.elem, p, true, top, msg) 454 p = add(p, at.elem.size) 455 } 456 case kindChan, kindMap: 457 // These types contain internal pointers that will 458 // always be allocated in the Go heap. It's never OK 459 // to pass them to C. 460 panic(errorString(msg)) 461 case kindFunc: 462 if indir { 463 p = *(*unsafe.Pointer)(p) 464 } 465 if !cgoIsGoPointer(p) { 466 return 467 } 468 panic(errorString(msg)) 469 case kindInterface: 470 it := *(**_type)(p) 471 if it == nil { 472 return 473 } 474 // A type known at compile time is OK since it's 475 // constant. A type not known at compile time will be 476 // in the heap and will not be OK. 477 if inheap(uintptr(unsafe.Pointer(it))) { 478 panic(errorString(msg)) 479 } 480 p = *(*unsafe.Pointer)(add(p, sys.PtrSize)) 481 if !cgoIsGoPointer(p) { 482 return 483 } 484 if !top { 485 panic(errorString(msg)) 486 } 487 cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg) 488 case kindSlice: 489 st := (*slicetype)(unsafe.Pointer(t)) 490 s := (*slice)(p) 491 p = s.array 492 if p == nil || !cgoIsGoPointer(p) { 493 return 494 } 495 if !top { 496 panic(errorString(msg)) 497 } 498 if st.elem.ptrdata == 0 { 499 return 500 } 501 for i := 0; i < s.cap; i++ { 502 cgoCheckArg(st.elem, p, true, false, msg) 503 p = add(p, st.elem.size) 504 } 505 case kindString: 506 ss := (*stringStruct)(p) 507 if !cgoIsGoPointer(ss.str) { 508 return 509 } 510 if !top { 511 panic(errorString(msg)) 512 } 513 case kindStruct: 514 st := (*structtype)(unsafe.Pointer(t)) 515 if !indir { 516 if len(st.fields) != 1 { 517 throw("can't happen") 518 } 519 cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg) 520 return 521 } 522 for _, f := range st.fields { 523 if f.typ.ptrdata == 0 { 524 continue 525 } 526 cgoCheckArg(f.typ, add(p, f.offset()), true, top, msg) 527 } 528 case kindPtr, kindUnsafePointer: 529 if indir { 530 p = *(*unsafe.Pointer)(p) 531 if p == nil { 532 return 533 } 534 } 535 536 if !cgoIsGoPointer(p) { 537 return 538 } 539 if !top { 540 panic(errorString(msg)) 541 } 542 543 cgoCheckUnknownPointer(p, msg) 544 } 545 } 546 547 // cgoCheckUnknownPointer is called for an arbitrary pointer into Go 548 // memory. It checks whether that Go memory contains any other 549 // pointer into Go memory. If it does, we panic. 550 // The return values are unused but useful to see in panic tracebacks. 551 func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) { 552 if inheap(uintptr(p)) { 553 b, span, _ := findObject(uintptr(p), 0, 0) 554 base = b 555 if base == 0 { 556 return 557 } 558 hbits := heapBitsForAddr(base) 559 n := span.elemsize 560 for i = uintptr(0); i < n; i += sys.PtrSize { 561 if !hbits.morePointers() { 562 // No more possible pointers. 563 break 564 } 565 if hbits.isPointer() && cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) { 566 panic(errorString(msg)) 567 } 568 hbits = hbits.next() 569 } 570 571 return 572 } 573 574 for _, datap := range activeModules() { 575 if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) { 576 // We have no way to know the size of the object. 577 // We have to assume that it might contain a pointer. 578 panic(errorString(msg)) 579 } 580 // In the text or noptr sections, we know that the 581 // pointer does not point to a Go pointer. 582 } 583 584 return 585 } 586 587 // cgoIsGoPointer reports whether the pointer is a Go pointer--a 588 // pointer to Go memory. We only care about Go memory that might 589 // contain pointers. 590 //go:nosplit 591 //go:nowritebarrierrec 592 func cgoIsGoPointer(p unsafe.Pointer) bool { 593 if p == nil { 594 return false 595 } 596 597 if inHeapOrStack(uintptr(p)) { 598 return true 599 } 600 601 for _, datap := range activeModules() { 602 if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) { 603 return true 604 } 605 } 606 607 return false 608 } 609 610 // cgoInRange reports whether p is between start and end. 611 //go:nosplit 612 //go:nowritebarrierrec 613 func cgoInRange(p unsafe.Pointer, start, end uintptr) bool { 614 return start <= uintptr(p) && uintptr(p) < end 615 } 616 617 // cgoCheckResult is called to check the result parameter of an 618 // exported Go function. It panics if the result is or contains a Go 619 // pointer. 620 func cgoCheckResult(val interface{}) { 621 if debug.cgocheck == 0 { 622 return 623 } 624 625 ep := efaceOf(&val) 626 t := ep._type 627 cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail) 628 }