github.com/rafaeltorres324/go/src@v0.0.0-20210519164414-9fdf653a9838/runtime/proc.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "internal/bytealg" 9 "internal/cpu" 10 "runtime/internal/atomic" 11 "runtime/internal/sys" 12 "unsafe" 13 ) 14 15 var buildVersion = sys.TheVersion 16 17 // set using cmd/go/internal/modload.ModInfoProg 18 var modinfo string 19 20 // Goroutine scheduler 21 // The scheduler's job is to distribute ready-to-run goroutines over worker threads. 22 // 23 // The main concepts are: 24 // G - goroutine. 25 // M - worker thread, or machine. 26 // P - processor, a resource that is required to execute Go code. 27 // M must have an associated P to execute Go code, however it can be 28 // blocked or in a syscall w/o an associated P. 29 // 30 // Design doc at https://golang.org/s/go11sched. 31 32 // Worker thread parking/unparking. 33 // We need to balance between keeping enough running worker threads to utilize 34 // available hardware parallelism and parking excessive running worker threads 35 // to conserve CPU resources and power. This is not simple for two reasons: 36 // (1) scheduler state is intentionally distributed (in particular, per-P work 37 // queues), so it is not possible to compute global predicates on fast paths; 38 // (2) for optimal thread management we would need to know the future (don't park 39 // a worker thread when a new goroutine will be readied in near future). 40 // 41 // Three rejected approaches that would work badly: 42 // 1. Centralize all scheduler state (would inhibit scalability). 43 // 2. Direct goroutine handoff. That is, when we ready a new goroutine and there 44 // is a spare P, unpark a thread and handoff it the thread and the goroutine. 45 // This would lead to thread state thrashing, as the thread that readied the 46 // goroutine can be out of work the very next moment, we will need to park it. 47 // Also, it would destroy locality of computation as we want to preserve 48 // dependent goroutines on the same thread; and introduce additional latency. 49 // 3. Unpark an additional thread whenever we ready a goroutine and there is an 50 // idle P, but don't do handoff. This would lead to excessive thread parking/ 51 // unparking as the additional threads will instantly park without discovering 52 // any work to do. 53 // 54 // The current approach: 55 // We unpark an additional thread when we ready a goroutine if (1) there is an 56 // idle P and there are no "spinning" worker threads. A worker thread is considered 57 // spinning if it is out of local work and did not find work in global run queue/ 58 // netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning. 59 // Threads unparked this way are also considered spinning; we don't do goroutine 60 // handoff so such threads are out of work initially. Spinning threads do some 61 // spinning looking for work in per-P run queues before parking. If a spinning 62 // thread finds work it takes itself out of the spinning state and proceeds to 63 // execution. If it does not find work it takes itself out of the spinning state 64 // and then parks. 65 // If there is at least one spinning thread (sched.nmspinning>1), we don't unpark 66 // new threads when readying goroutines. To compensate for that, if the last spinning 67 // thread finds work and stops spinning, it must unpark a new spinning thread. 68 // This approach smooths out unjustified spikes of thread unparking, 69 // but at the same time guarantees eventual maximal CPU parallelism utilization. 70 // 71 // The main implementation complication is that we need to be very careful during 72 // spinning->non-spinning thread transition. This transition can race with submission 73 // of a new goroutine, and either one part or another needs to unpark another worker 74 // thread. If they both fail to do that, we can end up with semi-persistent CPU 75 // underutilization. The general pattern for goroutine readying is: submit a goroutine 76 // to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning. 77 // The general pattern for spinning->non-spinning transition is: decrement nmspinning, 78 // #StoreLoad-style memory barrier, check all per-P work queues for new work. 79 // Note that all this complexity does not apply to global run queue as we are not 80 // sloppy about thread unparking when submitting to global queue. Also see comments 81 // for nmspinning manipulation. 82 83 var ( 84 m0 m 85 g0 g 86 mcache0 *mcache 87 raceprocctx0 uintptr 88 ) 89 90 //go:linkname runtime_inittask runtime..inittask 91 var runtime_inittask initTask 92 93 //go:linkname main_inittask main..inittask 94 var main_inittask initTask 95 96 // main_init_done is a signal used by cgocallbackg that initialization 97 // has been completed. It is made before _cgo_notify_runtime_init_done, 98 // so all cgo calls can rely on it existing. When main_init is complete, 99 // it is closed, meaning cgocallbackg can reliably receive from it. 100 var main_init_done chan bool 101 102 //go:linkname main_main main.main 103 func main_main() 104 105 // mainStarted indicates that the main M has started. 106 var mainStarted bool 107 108 // runtimeInitTime is the nanotime() at which the runtime started. 109 var runtimeInitTime int64 110 111 // Value to use for signal mask for newly created M's. 112 var initSigmask sigset 113 114 // The main goroutine. 115 func main() { 116 g := getg() 117 118 // Racectx of m0->g0 is used only as the parent of the main goroutine. 119 // It must not be used for anything else. 120 g.m.g0.racectx = 0 121 122 // Max stack size is 1 GB on 64-bit, 250 MB on 32-bit. 123 // Using decimal instead of binary GB and MB because 124 // they look nicer in the stack overflow failure message. 125 if sys.PtrSize == 8 { 126 maxstacksize = 1000000000 127 } else { 128 maxstacksize = 250000000 129 } 130 131 // An upper limit for max stack size. Used to avoid random crashes 132 // after calling SetMaxStack and trying to allocate a stack that is too big, 133 // since stackalloc works with 32-bit sizes. 134 maxstackceiling = 2 * maxstacksize 135 136 // Allow newproc to start new Ms. 137 mainStarted = true 138 139 if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon 140 // For runtime_syscall_doAllThreadsSyscall, we 141 // register sysmon is not ready for the world to be 142 // stopped. 143 atomic.Store(&sched.sysmonStarting, 1) 144 systemstack(func() { 145 newm(sysmon, nil, -1) 146 }) 147 } 148 149 // Lock the main goroutine onto this, the main OS thread, 150 // during initialization. Most programs won't care, but a few 151 // do require certain calls to be made by the main thread. 152 // Those can arrange for main.main to run in the main thread 153 // by calling runtime.LockOSThread during initialization 154 // to preserve the lock. 155 lockOSThread() 156 157 if g.m != &m0 { 158 throw("runtime.main not on m0") 159 } 160 m0.doesPark = true 161 162 // Record when the world started. 163 // Must be before doInit for tracing init. 164 runtimeInitTime = nanotime() 165 if runtimeInitTime == 0 { 166 throw("nanotime returning zero") 167 } 168 169 if debug.inittrace != 0 { 170 inittrace.id = getg().goid 171 inittrace.active = true 172 } 173 174 doInit(&runtime_inittask) // Must be before defer. 175 176 // Defer unlock so that runtime.Goexit during init does the unlock too. 177 needUnlock := true 178 defer func() { 179 if needUnlock { 180 unlockOSThread() 181 } 182 }() 183 184 gcenable() 185 186 main_init_done = make(chan bool) 187 if iscgo { 188 if _cgo_thread_start == nil { 189 throw("_cgo_thread_start missing") 190 } 191 if GOOS != "windows" { 192 if _cgo_setenv == nil { 193 throw("_cgo_setenv missing") 194 } 195 if _cgo_unsetenv == nil { 196 throw("_cgo_unsetenv missing") 197 } 198 } 199 if _cgo_notify_runtime_init_done == nil { 200 throw("_cgo_notify_runtime_init_done missing") 201 } 202 // Start the template thread in case we enter Go from 203 // a C-created thread and need to create a new thread. 204 startTemplateThread() 205 cgocall(_cgo_notify_runtime_init_done, nil) 206 } 207 208 doInit(&main_inittask) 209 210 // Disable init tracing after main init done to avoid overhead 211 // of collecting statistics in malloc and newproc 212 inittrace.active = false 213 214 close(main_init_done) 215 216 needUnlock = false 217 unlockOSThread() 218 219 if isarchive || islibrary { 220 // A program compiled with -buildmode=c-archive or c-shared 221 // has a main, but it is not executed. 222 return 223 } 224 fn := main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime 225 fn() 226 if raceenabled { 227 racefini() 228 } 229 230 // Make racy client program work: if panicking on 231 // another goroutine at the same time as main returns, 232 // let the other goroutine finish printing the panic trace. 233 // Once it does, it will exit. See issues 3934 and 20018. 234 if atomic.Load(&runningPanicDefers) != 0 { 235 // Running deferred functions should not take long. 236 for c := 0; c < 1000; c++ { 237 if atomic.Load(&runningPanicDefers) == 0 { 238 break 239 } 240 Gosched() 241 } 242 } 243 if atomic.Load(&panicking) != 0 { 244 gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1) 245 } 246 247 exit(0) 248 for { 249 var x *int32 250 *x = 0 251 } 252 } 253 254 // os_beforeExit is called from os.Exit(0). 255 //go:linkname os_beforeExit os.runtime_beforeExit 256 func os_beforeExit() { 257 if raceenabled { 258 racefini() 259 } 260 } 261 262 // start forcegc helper goroutine 263 func init() { 264 go forcegchelper() 265 } 266 267 func forcegchelper() { 268 forcegc.g = getg() 269 lockInit(&forcegc.lock, lockRankForcegc) 270 for { 271 lock(&forcegc.lock) 272 if forcegc.idle != 0 { 273 throw("forcegc: phase error") 274 } 275 atomic.Store(&forcegc.idle, 1) 276 goparkunlock(&forcegc.lock, waitReasonForceGCIdle, traceEvGoBlock, 1) 277 // this goroutine is explicitly resumed by sysmon 278 if debug.gctrace > 0 { 279 println("GC forced") 280 } 281 // Time-triggered, fully concurrent. 282 gcStart(gcTrigger{kind: gcTriggerTime, now: nanotime()}) 283 } 284 } 285 286 //go:nosplit 287 288 // Gosched yields the processor, allowing other goroutines to run. It does not 289 // suspend the current goroutine, so execution resumes automatically. 290 func Gosched() { 291 checkTimeouts() 292 mcall(gosched_m) 293 } 294 295 // goschedguarded yields the processor like gosched, but also checks 296 // for forbidden states and opts out of the yield in those cases. 297 //go:nosplit 298 func goschedguarded() { 299 mcall(goschedguarded_m) 300 } 301 302 // Puts the current goroutine into a waiting state and calls unlockf on the 303 // system stack. 304 // 305 // If unlockf returns false, the goroutine is resumed. 306 // 307 // unlockf must not access this G's stack, as it may be moved between 308 // the call to gopark and the call to unlockf. 309 // 310 // Note that because unlockf is called after putting the G into a waiting 311 // state, the G may have already been readied by the time unlockf is called 312 // unless there is external synchronization preventing the G from being 313 // readied. If unlockf returns false, it must guarantee that the G cannot be 314 // externally readied. 315 // 316 // Reason explains why the goroutine has been parked. It is displayed in stack 317 // traces and heap dumps. Reasons should be unique and descriptive. Do not 318 // re-use reasons, add new ones. 319 func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) { 320 if reason != waitReasonSleep { 321 checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy 322 } 323 mp := acquirem() 324 gp := mp.curg 325 status := readgstatus(gp) 326 if status != _Grunning && status != _Gscanrunning { 327 throw("gopark: bad g status") 328 } 329 mp.waitlock = lock 330 mp.waitunlockf = unlockf 331 gp.waitreason = reason 332 mp.waittraceev = traceEv 333 mp.waittraceskip = traceskip 334 releasem(mp) 335 // can't do anything that might move the G between Ms here. 336 mcall(park_m) 337 } 338 339 // Puts the current goroutine into a waiting state and unlocks the lock. 340 // The goroutine can be made runnable again by calling goready(gp). 341 func goparkunlock(lock *mutex, reason waitReason, traceEv byte, traceskip int) { 342 gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip) 343 } 344 345 func goready(gp *g, traceskip int) { 346 systemstack(func() { 347 ready(gp, traceskip, true) 348 }) 349 } 350 351 //go:nosplit 352 func acquireSudog() *sudog { 353 // Delicate dance: the semaphore implementation calls 354 // acquireSudog, acquireSudog calls new(sudog), 355 // new calls malloc, malloc can call the garbage collector, 356 // and the garbage collector calls the semaphore implementation 357 // in stopTheWorld. 358 // Break the cycle by doing acquirem/releasem around new(sudog). 359 // The acquirem/releasem increments m.locks during new(sudog), 360 // which keeps the garbage collector from being invoked. 361 mp := acquirem() 362 pp := mp.p.ptr() 363 if len(pp.sudogcache) == 0 { 364 lock(&sched.sudoglock) 365 // First, try to grab a batch from central cache. 366 for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil { 367 s := sched.sudogcache 368 sched.sudogcache = s.next 369 s.next = nil 370 pp.sudogcache = append(pp.sudogcache, s) 371 } 372 unlock(&sched.sudoglock) 373 // If the central cache is empty, allocate a new one. 374 if len(pp.sudogcache) == 0 { 375 pp.sudogcache = append(pp.sudogcache, new(sudog)) 376 } 377 } 378 n := len(pp.sudogcache) 379 s := pp.sudogcache[n-1] 380 pp.sudogcache[n-1] = nil 381 pp.sudogcache = pp.sudogcache[:n-1] 382 if s.elem != nil { 383 throw("acquireSudog: found s.elem != nil in cache") 384 } 385 releasem(mp) 386 return s 387 } 388 389 //go:nosplit 390 func releaseSudog(s *sudog) { 391 if s.elem != nil { 392 throw("runtime: sudog with non-nil elem") 393 } 394 if s.isSelect { 395 throw("runtime: sudog with non-false isSelect") 396 } 397 if s.next != nil { 398 throw("runtime: sudog with non-nil next") 399 } 400 if s.prev != nil { 401 throw("runtime: sudog with non-nil prev") 402 } 403 if s.waitlink != nil { 404 throw("runtime: sudog with non-nil waitlink") 405 } 406 if s.c != nil { 407 throw("runtime: sudog with non-nil c") 408 } 409 gp := getg() 410 if gp.param != nil { 411 throw("runtime: releaseSudog with non-nil gp.param") 412 } 413 mp := acquirem() // avoid rescheduling to another P 414 pp := mp.p.ptr() 415 if len(pp.sudogcache) == cap(pp.sudogcache) { 416 // Transfer half of local cache to the central cache. 417 var first, last *sudog 418 for len(pp.sudogcache) > cap(pp.sudogcache)/2 { 419 n := len(pp.sudogcache) 420 p := pp.sudogcache[n-1] 421 pp.sudogcache[n-1] = nil 422 pp.sudogcache = pp.sudogcache[:n-1] 423 if first == nil { 424 first = p 425 } else { 426 last.next = p 427 } 428 last = p 429 } 430 lock(&sched.sudoglock) 431 last.next = sched.sudogcache 432 sched.sudogcache = first 433 unlock(&sched.sudoglock) 434 } 435 pp.sudogcache = append(pp.sudogcache, s) 436 releasem(mp) 437 } 438 439 // funcPC returns the entry PC of the function f. 440 // It assumes that f is a func value. Otherwise the behavior is undefined. 441 // CAREFUL: In programs with plugins, funcPC can return different values 442 // for the same function (because there are actually multiple copies of 443 // the same function in the address space). To be safe, don't use the 444 // results of this function in any == expression. It is only safe to 445 // use the result as an address at which to start executing code. 446 //go:nosplit 447 func funcPC(f interface{}) uintptr { 448 return *(*uintptr)(efaceOf(&f).data) 449 } 450 451 // called from assembly 452 func badmcall(fn func(*g)) { 453 throw("runtime: mcall called on m->g0 stack") 454 } 455 456 func badmcall2(fn func(*g)) { 457 throw("runtime: mcall function returned") 458 } 459 460 func badreflectcall() { 461 panic(plainError("arg size to reflect.call more than 1GB")) 462 } 463 464 var badmorestackg0Msg = "fatal: morestack on g0\n" 465 466 //go:nosplit 467 //go:nowritebarrierrec 468 func badmorestackg0() { 469 sp := stringStructOf(&badmorestackg0Msg) 470 write(2, sp.str, int32(sp.len)) 471 } 472 473 var badmorestackgsignalMsg = "fatal: morestack on gsignal\n" 474 475 //go:nosplit 476 //go:nowritebarrierrec 477 func badmorestackgsignal() { 478 sp := stringStructOf(&badmorestackgsignalMsg) 479 write(2, sp.str, int32(sp.len)) 480 } 481 482 //go:nosplit 483 func badctxt() { 484 throw("ctxt != 0") 485 } 486 487 func lockedOSThread() bool { 488 gp := getg() 489 return gp.lockedm != 0 && gp.m.lockedg != 0 490 } 491 492 var ( 493 // allgs contains all Gs ever created (including dead Gs), and thus 494 // never shrinks. 495 // 496 // Access via the slice is protected by allglock or stop-the-world. 497 // Readers that cannot take the lock may (carefully!) use the atomic 498 // variables below. 499 allglock mutex 500 allgs []*g 501 502 // allglen and allgptr are atomic variables that contain len(allg) and 503 // &allg[0] respectively. Proper ordering depends on totally-ordered 504 // loads and stores. Writes are protected by allglock. 505 // 506 // allgptr is updated before allglen. Readers should read allglen 507 // before allgptr to ensure that allglen is always <= len(allgptr). New 508 // Gs appended during the race can be missed. For a consistent view of 509 // all Gs, allglock must be held. 510 // 511 // allgptr copies should always be stored as a concrete type or 512 // unsafe.Pointer, not uintptr, to ensure that GC can still reach it 513 // even if it points to a stale array. 514 allglen uintptr 515 allgptr **g 516 ) 517 518 func allgadd(gp *g) { 519 if readgstatus(gp) == _Gidle { 520 throw("allgadd: bad status Gidle") 521 } 522 523 lock(&allglock) 524 allgs = append(allgs, gp) 525 if &allgs[0] != allgptr { 526 atomicstorep(unsafe.Pointer(&allgptr), unsafe.Pointer(&allgs[0])) 527 } 528 atomic.Storeuintptr(&allglen, uintptr(len(allgs))) 529 unlock(&allglock) 530 } 531 532 // atomicAllG returns &allgs[0] and len(allgs) for use with atomicAllGIndex. 533 func atomicAllG() (**g, uintptr) { 534 length := atomic.Loaduintptr(&allglen) 535 ptr := (**g)(atomic.Loadp(unsafe.Pointer(&allgptr))) 536 return ptr, length 537 } 538 539 // atomicAllGIndex returns ptr[i] with the allgptr returned from atomicAllG. 540 func atomicAllGIndex(ptr **g, i uintptr) *g { 541 return *(**g)(add(unsafe.Pointer(ptr), i*sys.PtrSize)) 542 } 543 544 const ( 545 // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once. 546 // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number. 547 _GoidCacheBatch = 16 548 ) 549 550 // cpuinit extracts the environment variable GODEBUG from the environment on 551 // Unix-like operating systems and calls internal/cpu.Initialize. 552 func cpuinit() { 553 const prefix = "GODEBUG=" 554 var env string 555 556 switch GOOS { 557 case "aix", "darwin", "ios", "dragonfly", "freebsd", "netbsd", "openbsd", "illumos", "solaris", "linux": 558 cpu.DebugOptions = true 559 560 // Similar to goenv_unix but extracts the environment value for 561 // GODEBUG directly. 562 // TODO(moehrmann): remove when general goenvs() can be called before cpuinit() 563 n := int32(0) 564 for argv_index(argv, argc+1+n) != nil { 565 n++ 566 } 567 568 for i := int32(0); i < n; i++ { 569 p := argv_index(argv, argc+1+i) 570 s := *(*string)(unsafe.Pointer(&stringStruct{unsafe.Pointer(p), findnull(p)})) 571 572 if hasPrefix(s, prefix) { 573 env = gostring(p)[len(prefix):] 574 break 575 } 576 } 577 } 578 579 cpu.Initialize(env) 580 581 // Support cpu feature variables are used in code generated by the compiler 582 // to guard execution of instructions that can not be assumed to be always supported. 583 x86HasPOPCNT = cpu.X86.HasPOPCNT 584 x86HasSSE41 = cpu.X86.HasSSE41 585 x86HasFMA = cpu.X86.HasFMA 586 587 armHasVFPv4 = cpu.ARM.HasVFPv4 588 589 arm64HasATOMICS = cpu.ARM64.HasATOMICS 590 } 591 592 // The bootstrap sequence is: 593 // 594 // call osinit 595 // call schedinit 596 // make & queue new G 597 // call runtime·mstart 598 // 599 // The new G calls runtime·main. 600 func schedinit() { 601 lockInit(&sched.lock, lockRankSched) 602 lockInit(&sched.sysmonlock, lockRankSysmon) 603 lockInit(&sched.deferlock, lockRankDefer) 604 lockInit(&sched.sudoglock, lockRankSudog) 605 lockInit(&deadlock, lockRankDeadlock) 606 lockInit(&paniclk, lockRankPanic) 607 lockInit(&allglock, lockRankAllg) 608 lockInit(&allpLock, lockRankAllp) 609 lockInit(&reflectOffs.lock, lockRankReflectOffs) 610 lockInit(&finlock, lockRankFin) 611 lockInit(&trace.bufLock, lockRankTraceBuf) 612 lockInit(&trace.stringsLock, lockRankTraceStrings) 613 lockInit(&trace.lock, lockRankTrace) 614 lockInit(&cpuprof.lock, lockRankCpuprof) 615 lockInit(&trace.stackTab.lock, lockRankTraceStackTab) 616 // Enforce that this lock is always a leaf lock. 617 // All of this lock's critical sections should be 618 // extremely short. 619 lockInit(&memstats.heapStats.noPLock, lockRankLeafRank) 620 621 // raceinit must be the first call to race detector. 622 // In particular, it must be done before mallocinit below calls racemapshadow. 623 _g_ := getg() 624 if raceenabled { 625 _g_.racectx, raceprocctx0 = raceinit() 626 } 627 628 sched.maxmcount = 10000 629 630 // The world starts stopped. 631 worldStopped() 632 633 moduledataverify() 634 stackinit() 635 mallocinit() 636 fastrandinit() // must run before mcommoninit 637 mcommoninit(_g_.m, -1) 638 cpuinit() // must run before alginit 639 alginit() // maps must not be used before this call 640 modulesinit() // provides activeModules 641 typelinksinit() // uses maps, activeModules 642 itabsinit() // uses activeModules 643 644 sigsave(&_g_.m.sigmask) 645 initSigmask = _g_.m.sigmask 646 647 goargs() 648 goenvs() 649 parsedebugvars() 650 gcinit() 651 652 lock(&sched.lock) 653 sched.lastpoll = uint64(nanotime()) 654 procs := ncpu 655 if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 { 656 procs = n 657 } 658 if procresize(procs) != nil { 659 throw("unknown runnable goroutine during bootstrap") 660 } 661 unlock(&sched.lock) 662 663 // World is effectively started now, as P's can run. 664 worldStarted() 665 666 // For cgocheck > 1, we turn on the write barrier at all times 667 // and check all pointer writes. We can't do this until after 668 // procresize because the write barrier needs a P. 669 if debug.cgocheck > 1 { 670 writeBarrier.cgo = true 671 writeBarrier.enabled = true 672 for _, p := range allp { 673 p.wbBuf.reset() 674 } 675 } 676 677 if buildVersion == "" { 678 // Condition should never trigger. This code just serves 679 // to ensure runtime·buildVersion is kept in the resulting binary. 680 buildVersion = "unknown" 681 } 682 if len(modinfo) == 1 { 683 // Condition should never trigger. This code just serves 684 // to ensure runtime·modinfo is kept in the resulting binary. 685 modinfo = "" 686 } 687 } 688 689 func dumpgstatus(gp *g) { 690 _g_ := getg() 691 print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 692 print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n") 693 } 694 695 // sched.lock must be held. 696 func checkmcount() { 697 assertLockHeld(&sched.lock) 698 699 if mcount() > sched.maxmcount { 700 print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n") 701 throw("thread exhaustion") 702 } 703 } 704 705 // mReserveID returns the next ID to use for a new m. This new m is immediately 706 // considered 'running' by checkdead. 707 // 708 // sched.lock must be held. 709 func mReserveID() int64 { 710 assertLockHeld(&sched.lock) 711 712 if sched.mnext+1 < sched.mnext { 713 throw("runtime: thread ID overflow") 714 } 715 id := sched.mnext 716 sched.mnext++ 717 checkmcount() 718 return id 719 } 720 721 // Pre-allocated ID may be passed as 'id', or omitted by passing -1. 722 func mcommoninit(mp *m, id int64) { 723 _g_ := getg() 724 725 // g0 stack won't make sense for user (and is not necessary unwindable). 726 if _g_ != _g_.m.g0 { 727 callers(1, mp.createstack[:]) 728 } 729 730 lock(&sched.lock) 731 732 if id >= 0 { 733 mp.id = id 734 } else { 735 mp.id = mReserveID() 736 } 737 738 mp.fastrand[0] = uint32(int64Hash(uint64(mp.id), fastrandseed)) 739 mp.fastrand[1] = uint32(int64Hash(uint64(cputicks()), ^fastrandseed)) 740 if mp.fastrand[0]|mp.fastrand[1] == 0 { 741 mp.fastrand[1] = 1 742 } 743 744 mpreinit(mp) 745 if mp.gsignal != nil { 746 mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard 747 } 748 749 // Add to allm so garbage collector doesn't free g->m 750 // when it is just in a register or thread-local storage. 751 mp.alllink = allm 752 753 // NumCgoCall() iterates over allm w/o schedlock, 754 // so we need to publish it safely. 755 atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp)) 756 unlock(&sched.lock) 757 758 // Allocate memory to hold a cgo traceback if the cgo call crashes. 759 if iscgo || GOOS == "solaris" || GOOS == "illumos" || GOOS == "windows" { 760 mp.cgoCallers = new(cgoCallers) 761 } 762 } 763 764 var fastrandseed uintptr 765 766 func fastrandinit() { 767 s := (*[unsafe.Sizeof(fastrandseed)]byte)(unsafe.Pointer(&fastrandseed))[:] 768 getRandomData(s) 769 } 770 771 // Mark gp ready to run. 772 func ready(gp *g, traceskip int, next bool) { 773 if trace.enabled { 774 traceGoUnpark(gp, traceskip) 775 } 776 777 status := readgstatus(gp) 778 779 // Mark runnable. 780 _g_ := getg() 781 mp := acquirem() // disable preemption because it can be holding p in a local var 782 if status&^_Gscan != _Gwaiting { 783 dumpgstatus(gp) 784 throw("bad g->status in ready") 785 } 786 787 // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq 788 casgstatus(gp, _Gwaiting, _Grunnable) 789 runqput(_g_.m.p.ptr(), gp, next) 790 wakep() 791 releasem(mp) 792 } 793 794 // freezeStopWait is a large value that freezetheworld sets 795 // sched.stopwait to in order to request that all Gs permanently stop. 796 const freezeStopWait = 0x7fffffff 797 798 // freezing is set to non-zero if the runtime is trying to freeze the 799 // world. 800 var freezing uint32 801 802 // Similar to stopTheWorld but best-effort and can be called several times. 803 // There is no reverse operation, used during crashing. 804 // This function must not lock any mutexes. 805 func freezetheworld() { 806 atomic.Store(&freezing, 1) 807 // stopwait and preemption requests can be lost 808 // due to races with concurrently executing threads, 809 // so try several times 810 for i := 0; i < 5; i++ { 811 // this should tell the scheduler to not start any new goroutines 812 sched.stopwait = freezeStopWait 813 atomic.Store(&sched.gcwaiting, 1) 814 // this should stop running goroutines 815 if !preemptall() { 816 break // no running goroutines 817 } 818 usleep(1000) 819 } 820 // to be sure 821 usleep(1000) 822 preemptall() 823 usleep(1000) 824 } 825 826 // All reads and writes of g's status go through readgstatus, casgstatus 827 // castogscanstatus, casfrom_Gscanstatus. 828 //go:nosplit 829 func readgstatus(gp *g) uint32 { 830 return atomic.Load(&gp.atomicstatus) 831 } 832 833 // The Gscanstatuses are acting like locks and this releases them. 834 // If it proves to be a performance hit we should be able to make these 835 // simple atomic stores but for now we are going to throw if 836 // we see an inconsistent state. 837 func casfrom_Gscanstatus(gp *g, oldval, newval uint32) { 838 success := false 839 840 // Check that transition is valid. 841 switch oldval { 842 default: 843 print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") 844 dumpgstatus(gp) 845 throw("casfrom_Gscanstatus:top gp->status is not in scan state") 846 case _Gscanrunnable, 847 _Gscanwaiting, 848 _Gscanrunning, 849 _Gscansyscall, 850 _Gscanpreempted: 851 if newval == oldval&^_Gscan { 852 success = atomic.Cas(&gp.atomicstatus, oldval, newval) 853 } 854 } 855 if !success { 856 print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") 857 dumpgstatus(gp) 858 throw("casfrom_Gscanstatus: gp->status is not in scan state") 859 } 860 releaseLockRank(lockRankGscan) 861 } 862 863 // This will return false if the gp is not in the expected status and the cas fails. 864 // This acts like a lock acquire while the casfromgstatus acts like a lock release. 865 func castogscanstatus(gp *g, oldval, newval uint32) bool { 866 switch oldval { 867 case _Grunnable, 868 _Grunning, 869 _Gwaiting, 870 _Gsyscall: 871 if newval == oldval|_Gscan { 872 r := atomic.Cas(&gp.atomicstatus, oldval, newval) 873 if r { 874 acquireLockRank(lockRankGscan) 875 } 876 return r 877 878 } 879 } 880 print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n") 881 throw("castogscanstatus") 882 panic("not reached") 883 } 884 885 // If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus 886 // and casfrom_Gscanstatus instead. 887 // casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that 888 // put it in the Gscan state is finished. 889 //go:nosplit 890 func casgstatus(gp *g, oldval, newval uint32) { 891 if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval { 892 systemstack(func() { 893 print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n") 894 throw("casgstatus: bad incoming values") 895 }) 896 } 897 898 acquireLockRank(lockRankGscan) 899 releaseLockRank(lockRankGscan) 900 901 // See https://golang.org/cl/21503 for justification of the yield delay. 902 const yieldDelay = 5 * 1000 903 var nextYield int64 904 905 // loop if gp->atomicstatus is in a scan state giving 906 // GC time to finish and change the state to oldval. 907 for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ { 908 if oldval == _Gwaiting && gp.atomicstatus == _Grunnable { 909 throw("casgstatus: waiting for Gwaiting but is Grunnable") 910 } 911 if i == 0 { 912 nextYield = nanotime() + yieldDelay 913 } 914 if nanotime() < nextYield { 915 for x := 0; x < 10 && gp.atomicstatus != oldval; x++ { 916 procyield(1) 917 } 918 } else { 919 osyield() 920 nextYield = nanotime() + yieldDelay/2 921 } 922 } 923 } 924 925 // casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable. 926 // Returns old status. Cannot call casgstatus directly, because we are racing with an 927 // async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus, 928 // it might have become Grunnable by the time we get to the cas. If we called casgstatus, 929 // it would loop waiting for the status to go back to Gwaiting, which it never will. 930 //go:nosplit 931 func casgcopystack(gp *g) uint32 { 932 for { 933 oldstatus := readgstatus(gp) &^ _Gscan 934 if oldstatus != _Gwaiting && oldstatus != _Grunnable { 935 throw("copystack: bad status, not Gwaiting or Grunnable") 936 } 937 if atomic.Cas(&gp.atomicstatus, oldstatus, _Gcopystack) { 938 return oldstatus 939 } 940 } 941 } 942 943 // casGToPreemptScan transitions gp from _Grunning to _Gscan|_Gpreempted. 944 // 945 // TODO(austin): This is the only status operation that both changes 946 // the status and locks the _Gscan bit. Rethink this. 947 func casGToPreemptScan(gp *g, old, new uint32) { 948 if old != _Grunning || new != _Gscan|_Gpreempted { 949 throw("bad g transition") 950 } 951 acquireLockRank(lockRankGscan) 952 for !atomic.Cas(&gp.atomicstatus, _Grunning, _Gscan|_Gpreempted) { 953 } 954 } 955 956 // casGFromPreempted attempts to transition gp from _Gpreempted to 957 // _Gwaiting. If successful, the caller is responsible for 958 // re-scheduling gp. 959 func casGFromPreempted(gp *g, old, new uint32) bool { 960 if old != _Gpreempted || new != _Gwaiting { 961 throw("bad g transition") 962 } 963 return atomic.Cas(&gp.atomicstatus, _Gpreempted, _Gwaiting) 964 } 965 966 // stopTheWorld stops all P's from executing goroutines, interrupting 967 // all goroutines at GC safe points and records reason as the reason 968 // for the stop. On return, only the current goroutine's P is running. 969 // stopTheWorld must not be called from a system stack and the caller 970 // must not hold worldsema. The caller must call startTheWorld when 971 // other P's should resume execution. 972 // 973 // stopTheWorld is safe for multiple goroutines to call at the 974 // same time. Each will execute its own stop, and the stops will 975 // be serialized. 976 // 977 // This is also used by routines that do stack dumps. If the system is 978 // in panic or being exited, this may not reliably stop all 979 // goroutines. 980 func stopTheWorld(reason string) { 981 semacquire(&worldsema) 982 gp := getg() 983 gp.m.preemptoff = reason 984 systemstack(func() { 985 // Mark the goroutine which called stopTheWorld preemptible so its 986 // stack may be scanned. 987 // This lets a mark worker scan us while we try to stop the world 988 // since otherwise we could get in a mutual preemption deadlock. 989 // We must not modify anything on the G stack because a stack shrink 990 // may occur. A stack shrink is otherwise OK though because in order 991 // to return from this function (and to leave the system stack) we 992 // must have preempted all goroutines, including any attempting 993 // to scan our stack, in which case, any stack shrinking will 994 // have already completed by the time we exit. 995 casgstatus(gp, _Grunning, _Gwaiting) 996 stopTheWorldWithSema() 997 casgstatus(gp, _Gwaiting, _Grunning) 998 }) 999 } 1000 1001 // startTheWorld undoes the effects of stopTheWorld. 1002 func startTheWorld() { 1003 systemstack(func() { startTheWorldWithSema(false) }) 1004 1005 // worldsema must be held over startTheWorldWithSema to ensure 1006 // gomaxprocs cannot change while worldsema is held. 1007 // 1008 // Release worldsema with direct handoff to the next waiter, but 1009 // acquirem so that semrelease1 doesn't try to yield our time. 1010 // 1011 // Otherwise if e.g. ReadMemStats is being called in a loop, 1012 // it might stomp on other attempts to stop the world, such as 1013 // for starting or ending GC. The operation this blocks is 1014 // so heavy-weight that we should just try to be as fair as 1015 // possible here. 1016 // 1017 // We don't want to just allow us to get preempted between now 1018 // and releasing the semaphore because then we keep everyone 1019 // (including, for example, GCs) waiting longer. 1020 mp := acquirem() 1021 mp.preemptoff = "" 1022 semrelease1(&worldsema, true, 0) 1023 releasem(mp) 1024 } 1025 1026 // stopTheWorldGC has the same effect as stopTheWorld, but blocks 1027 // until the GC is not running. It also blocks a GC from starting 1028 // until startTheWorldGC is called. 1029 func stopTheWorldGC(reason string) { 1030 semacquire(&gcsema) 1031 stopTheWorld(reason) 1032 } 1033 1034 // startTheWorldGC undoes the effects of stopTheWorldGC. 1035 func startTheWorldGC() { 1036 startTheWorld() 1037 semrelease(&gcsema) 1038 } 1039 1040 // Holding worldsema grants an M the right to try to stop the world. 1041 var worldsema uint32 = 1 1042 1043 // Holding gcsema grants the M the right to block a GC, and blocks 1044 // until the current GC is done. In particular, it prevents gomaxprocs 1045 // from changing concurrently. 1046 // 1047 // TODO(mknyszek): Once gomaxprocs and the execution tracer can handle 1048 // being changed/enabled during a GC, remove this. 1049 var gcsema uint32 = 1 1050 1051 // stopTheWorldWithSema is the core implementation of stopTheWorld. 1052 // The caller is responsible for acquiring worldsema and disabling 1053 // preemption first and then should stopTheWorldWithSema on the system 1054 // stack: 1055 // 1056 // semacquire(&worldsema, 0) 1057 // m.preemptoff = "reason" 1058 // systemstack(stopTheWorldWithSema) 1059 // 1060 // When finished, the caller must either call startTheWorld or undo 1061 // these three operations separately: 1062 // 1063 // m.preemptoff = "" 1064 // systemstack(startTheWorldWithSema) 1065 // semrelease(&worldsema) 1066 // 1067 // It is allowed to acquire worldsema once and then execute multiple 1068 // startTheWorldWithSema/stopTheWorldWithSema pairs. 1069 // Other P's are able to execute between successive calls to 1070 // startTheWorldWithSema and stopTheWorldWithSema. 1071 // Holding worldsema causes any other goroutines invoking 1072 // stopTheWorld to block. 1073 func stopTheWorldWithSema() { 1074 _g_ := getg() 1075 1076 // If we hold a lock, then we won't be able to stop another M 1077 // that is blocked trying to acquire the lock. 1078 if _g_.m.locks > 0 { 1079 throw("stopTheWorld: holding locks") 1080 } 1081 1082 lock(&sched.lock) 1083 sched.stopwait = gomaxprocs 1084 atomic.Store(&sched.gcwaiting, 1) 1085 preemptall() 1086 // stop current P 1087 _g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic. 1088 sched.stopwait-- 1089 // try to retake all P's in Psyscall status 1090 for _, p := range allp { 1091 s := p.status 1092 if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) { 1093 if trace.enabled { 1094 traceGoSysBlock(p) 1095 traceProcStop(p) 1096 } 1097 p.syscalltick++ 1098 sched.stopwait-- 1099 } 1100 } 1101 // stop idle P's 1102 for { 1103 p := pidleget() 1104 if p == nil { 1105 break 1106 } 1107 p.status = _Pgcstop 1108 sched.stopwait-- 1109 } 1110 wait := sched.stopwait > 0 1111 unlock(&sched.lock) 1112 1113 // wait for remaining P's to stop voluntarily 1114 if wait { 1115 for { 1116 // wait for 100us, then try to re-preempt in case of any races 1117 if notetsleep(&sched.stopnote, 100*1000) { 1118 noteclear(&sched.stopnote) 1119 break 1120 } 1121 preemptall() 1122 } 1123 } 1124 1125 // sanity checks 1126 bad := "" 1127 if sched.stopwait != 0 { 1128 bad = "stopTheWorld: not stopped (stopwait != 0)" 1129 } else { 1130 for _, p := range allp { 1131 if p.status != _Pgcstop { 1132 bad = "stopTheWorld: not stopped (status != _Pgcstop)" 1133 } 1134 } 1135 } 1136 if atomic.Load(&freezing) != 0 { 1137 // Some other thread is panicking. This can cause the 1138 // sanity checks above to fail if the panic happens in 1139 // the signal handler on a stopped thread. Either way, 1140 // we should halt this thread. 1141 lock(&deadlock) 1142 lock(&deadlock) 1143 } 1144 if bad != "" { 1145 throw(bad) 1146 } 1147 1148 worldStopped() 1149 } 1150 1151 func startTheWorldWithSema(emitTraceEvent bool) int64 { 1152 assertWorldStopped() 1153 1154 mp := acquirem() // disable preemption because it can be holding p in a local var 1155 if netpollinited() { 1156 list := netpoll(0) // non-blocking 1157 injectglist(&list) 1158 } 1159 lock(&sched.lock) 1160 1161 procs := gomaxprocs 1162 if newprocs != 0 { 1163 procs = newprocs 1164 newprocs = 0 1165 } 1166 p1 := procresize(procs) 1167 sched.gcwaiting = 0 1168 if sched.sysmonwait != 0 { 1169 sched.sysmonwait = 0 1170 notewakeup(&sched.sysmonnote) 1171 } 1172 unlock(&sched.lock) 1173 1174 worldStarted() 1175 1176 for p1 != nil { 1177 p := p1 1178 p1 = p1.link.ptr() 1179 if p.m != 0 { 1180 mp := p.m.ptr() 1181 p.m = 0 1182 if mp.nextp != 0 { 1183 throw("startTheWorld: inconsistent mp->nextp") 1184 } 1185 mp.nextp.set(p) 1186 notewakeup(&mp.park) 1187 } else { 1188 // Start M to run P. Do not start another M below. 1189 newm(nil, p, -1) 1190 } 1191 } 1192 1193 // Capture start-the-world time before doing clean-up tasks. 1194 startTime := nanotime() 1195 if emitTraceEvent { 1196 traceGCSTWDone() 1197 } 1198 1199 // Wakeup an additional proc in case we have excessive runnable goroutines 1200 // in local queues or in the global queue. If we don't, the proc will park itself. 1201 // If we have lots of excessive work, resetspinning will unpark additional procs as necessary. 1202 wakep() 1203 1204 releasem(mp) 1205 1206 return startTime 1207 } 1208 1209 // usesLibcall indicates whether this runtime performs system calls 1210 // via libcall. 1211 func usesLibcall() bool { 1212 switch GOOS { 1213 case "aix", "darwin", "illumos", "ios", "solaris", "windows": 1214 return true 1215 case "openbsd": 1216 return GOARCH == "amd64" || GOARCH == "arm64" 1217 } 1218 return false 1219 } 1220 1221 // mStackIsSystemAllocated indicates whether this runtime starts on a 1222 // system-allocated stack. 1223 func mStackIsSystemAllocated() bool { 1224 switch GOOS { 1225 case "aix", "darwin", "plan9", "illumos", "ios", "solaris", "windows": 1226 return true 1227 case "openbsd": 1228 switch GOARCH { 1229 case "amd64", "arm64": 1230 return true 1231 } 1232 } 1233 return false 1234 } 1235 1236 // mstart is the entry-point for new Ms. 1237 // 1238 // This must not split the stack because we may not even have stack 1239 // bounds set up yet. 1240 // 1241 // May run during STW (because it doesn't have a P yet), so write 1242 // barriers are not allowed. 1243 // 1244 //go:nosplit 1245 //go:nowritebarrierrec 1246 func mstart() { 1247 _g_ := getg() 1248 1249 osStack := _g_.stack.lo == 0 1250 if osStack { 1251 // Initialize stack bounds from system stack. 1252 // Cgo may have left stack size in stack.hi. 1253 // minit may update the stack bounds. 1254 // 1255 // Note: these bounds may not be very accurate. 1256 // We set hi to &size, but there are things above 1257 // it. The 1024 is supposed to compensate this, 1258 // but is somewhat arbitrary. 1259 size := _g_.stack.hi 1260 if size == 0 { 1261 size = 8192 * sys.StackGuardMultiplier 1262 } 1263 _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size))) 1264 _g_.stack.lo = _g_.stack.hi - size + 1024 1265 } 1266 // Initialize stack guard so that we can start calling regular 1267 // Go code. 1268 _g_.stackguard0 = _g_.stack.lo + _StackGuard 1269 // This is the g0, so we can also call go:systemstack 1270 // functions, which check stackguard1. 1271 _g_.stackguard1 = _g_.stackguard0 1272 mstart1() 1273 1274 // Exit this thread. 1275 if mStackIsSystemAllocated() { 1276 // Windows, Solaris, illumos, Darwin, AIX and Plan 9 always system-allocate 1277 // the stack, but put it in _g_.stack before mstart, 1278 // so the logic above hasn't set osStack yet. 1279 osStack = true 1280 } 1281 mexit(osStack) 1282 } 1283 1284 func mstart1() { 1285 _g_ := getg() 1286 1287 if _g_ != _g_.m.g0 { 1288 throw("bad runtime·mstart") 1289 } 1290 1291 // Record the caller for use as the top of stack in mcall and 1292 // for terminating the thread. 1293 // We're never coming back to mstart1 after we call schedule, 1294 // so other calls can reuse the current frame. 1295 save(getcallerpc(), getcallersp()) 1296 asminit() 1297 minit() 1298 1299 // Install signal handlers; after minit so that minit can 1300 // prepare the thread to be able to handle the signals. 1301 if _g_.m == &m0 { 1302 mstartm0() 1303 } 1304 1305 if fn := _g_.m.mstartfn; fn != nil { 1306 fn() 1307 } 1308 1309 if _g_.m != &m0 { 1310 acquirep(_g_.m.nextp.ptr()) 1311 _g_.m.nextp = 0 1312 } 1313 schedule() 1314 } 1315 1316 // mstartm0 implements part of mstart1 that only runs on the m0. 1317 // 1318 // Write barriers are allowed here because we know the GC can't be 1319 // running yet, so they'll be no-ops. 1320 // 1321 //go:yeswritebarrierrec 1322 func mstartm0() { 1323 // Create an extra M for callbacks on threads not created by Go. 1324 // An extra M is also needed on Windows for callbacks created by 1325 // syscall.NewCallback. See issue #6751 for details. 1326 if (iscgo || GOOS == "windows") && !cgoHasExtraM { 1327 cgoHasExtraM = true 1328 newextram() 1329 } 1330 initsig(false) 1331 } 1332 1333 // mPark causes a thread to park itself - temporarily waking for 1334 // fixups but otherwise waiting to be fully woken. This is the 1335 // only way that m's should park themselves. 1336 //go:nosplit 1337 func mPark() { 1338 g := getg() 1339 for { 1340 notesleep(&g.m.park) 1341 noteclear(&g.m.park) 1342 if !mDoFixup() { 1343 return 1344 } 1345 } 1346 } 1347 1348 // mexit tears down and exits the current thread. 1349 // 1350 // Don't call this directly to exit the thread, since it must run at 1351 // the top of the thread stack. Instead, use gogo(&_g_.m.g0.sched) to 1352 // unwind the stack to the point that exits the thread. 1353 // 1354 // It is entered with m.p != nil, so write barriers are allowed. It 1355 // will release the P before exiting. 1356 // 1357 //go:yeswritebarrierrec 1358 func mexit(osStack bool) { 1359 g := getg() 1360 m := g.m 1361 1362 if m == &m0 { 1363 // This is the main thread. Just wedge it. 1364 // 1365 // On Linux, exiting the main thread puts the process 1366 // into a non-waitable zombie state. On Plan 9, 1367 // exiting the main thread unblocks wait even though 1368 // other threads are still running. On Solaris we can 1369 // neither exitThread nor return from mstart. Other 1370 // bad things probably happen on other platforms. 1371 // 1372 // We could try to clean up this M more before wedging 1373 // it, but that complicates signal handling. 1374 handoffp(releasep()) 1375 lock(&sched.lock) 1376 sched.nmfreed++ 1377 checkdead() 1378 unlock(&sched.lock) 1379 mPark() 1380 throw("locked m0 woke up") 1381 } 1382 1383 sigblock(true) 1384 unminit() 1385 1386 // Free the gsignal stack. 1387 if m.gsignal != nil { 1388 stackfree(m.gsignal.stack) 1389 // On some platforms, when calling into VDSO (e.g. nanotime) 1390 // we store our g on the gsignal stack, if there is one. 1391 // Now the stack is freed, unlink it from the m, so we 1392 // won't write to it when calling VDSO code. 1393 m.gsignal = nil 1394 } 1395 1396 // Remove m from allm. 1397 lock(&sched.lock) 1398 for pprev := &allm; *pprev != nil; pprev = &(*pprev).alllink { 1399 if *pprev == m { 1400 *pprev = m.alllink 1401 goto found 1402 } 1403 } 1404 throw("m not found in allm") 1405 found: 1406 if !osStack { 1407 // Delay reaping m until it's done with the stack. 1408 // 1409 // If this is using an OS stack, the OS will free it 1410 // so there's no need for reaping. 1411 atomic.Store(&m.freeWait, 1) 1412 // Put m on the free list, though it will not be reaped until 1413 // freeWait is 0. Note that the free list must not be linked 1414 // through alllink because some functions walk allm without 1415 // locking, so may be using alllink. 1416 m.freelink = sched.freem 1417 sched.freem = m 1418 } 1419 unlock(&sched.lock) 1420 1421 // Release the P. 1422 handoffp(releasep()) 1423 // After this point we must not have write barriers. 1424 1425 // Invoke the deadlock detector. This must happen after 1426 // handoffp because it may have started a new M to take our 1427 // P's work. 1428 lock(&sched.lock) 1429 sched.nmfreed++ 1430 checkdead() 1431 unlock(&sched.lock) 1432 1433 if GOOS == "darwin" || GOOS == "ios" { 1434 // Make sure pendingPreemptSignals is correct when an M exits. 1435 // For #41702. 1436 if atomic.Load(&m.signalPending) != 0 { 1437 atomic.Xadd(&pendingPreemptSignals, -1) 1438 } 1439 } 1440 1441 // Destroy all allocated resources. After this is called, we may no 1442 // longer take any locks. 1443 mdestroy(m) 1444 1445 if osStack { 1446 // Return from mstart and let the system thread 1447 // library free the g0 stack and terminate the thread. 1448 return 1449 } 1450 1451 // mstart is the thread's entry point, so there's nothing to 1452 // return to. Exit the thread directly. exitThread will clear 1453 // m.freeWait when it's done with the stack and the m can be 1454 // reaped. 1455 exitThread(&m.freeWait) 1456 } 1457 1458 // forEachP calls fn(p) for every P p when p reaches a GC safe point. 1459 // If a P is currently executing code, this will bring the P to a GC 1460 // safe point and execute fn on that P. If the P is not executing code 1461 // (it is idle or in a syscall), this will call fn(p) directly while 1462 // preventing the P from exiting its state. This does not ensure that 1463 // fn will run on every CPU executing Go code, but it acts as a global 1464 // memory barrier. GC uses this as a "ragged barrier." 1465 // 1466 // The caller must hold worldsema. 1467 // 1468 //go:systemstack 1469 func forEachP(fn func(*p)) { 1470 mp := acquirem() 1471 _p_ := getg().m.p.ptr() 1472 1473 lock(&sched.lock) 1474 if sched.safePointWait != 0 { 1475 throw("forEachP: sched.safePointWait != 0") 1476 } 1477 sched.safePointWait = gomaxprocs - 1 1478 sched.safePointFn = fn 1479 1480 // Ask all Ps to run the safe point function. 1481 for _, p := range allp { 1482 if p != _p_ { 1483 atomic.Store(&p.runSafePointFn, 1) 1484 } 1485 } 1486 preemptall() 1487 1488 // Any P entering _Pidle or _Psyscall from now on will observe 1489 // p.runSafePointFn == 1 and will call runSafePointFn when 1490 // changing its status to _Pidle/_Psyscall. 1491 1492 // Run safe point function for all idle Ps. sched.pidle will 1493 // not change because we hold sched.lock. 1494 for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() { 1495 if atomic.Cas(&p.runSafePointFn, 1, 0) { 1496 fn(p) 1497 sched.safePointWait-- 1498 } 1499 } 1500 1501 wait := sched.safePointWait > 0 1502 unlock(&sched.lock) 1503 1504 // Run fn for the current P. 1505 fn(_p_) 1506 1507 // Force Ps currently in _Psyscall into _Pidle and hand them 1508 // off to induce safe point function execution. 1509 for _, p := range allp { 1510 s := p.status 1511 if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) { 1512 if trace.enabled { 1513 traceGoSysBlock(p) 1514 traceProcStop(p) 1515 } 1516 p.syscalltick++ 1517 handoffp(p) 1518 } 1519 } 1520 1521 // Wait for remaining Ps to run fn. 1522 if wait { 1523 for { 1524 // Wait for 100us, then try to re-preempt in 1525 // case of any races. 1526 // 1527 // Requires system stack. 1528 if notetsleep(&sched.safePointNote, 100*1000) { 1529 noteclear(&sched.safePointNote) 1530 break 1531 } 1532 preemptall() 1533 } 1534 } 1535 if sched.safePointWait != 0 { 1536 throw("forEachP: not done") 1537 } 1538 for _, p := range allp { 1539 if p.runSafePointFn != 0 { 1540 throw("forEachP: P did not run fn") 1541 } 1542 } 1543 1544 lock(&sched.lock) 1545 sched.safePointFn = nil 1546 unlock(&sched.lock) 1547 releasem(mp) 1548 } 1549 1550 // syscall_runtime_doAllThreadsSyscall serializes Go execution and 1551 // executes a specified fn() call on all m's. 1552 // 1553 // The boolean argument to fn() indicates whether the function's 1554 // return value will be consulted or not. That is, fn(true) should 1555 // return true if fn() succeeds, and fn(true) should return false if 1556 // it failed. When fn(false) is called, its return status will be 1557 // ignored. 1558 // 1559 // syscall_runtime_doAllThreadsSyscall first invokes fn(true) on a 1560 // single, coordinating, m, and only if it returns true does it go on 1561 // to invoke fn(false) on all of the other m's known to the process. 1562 // 1563 //go:linkname syscall_runtime_doAllThreadsSyscall syscall.runtime_doAllThreadsSyscall 1564 func syscall_runtime_doAllThreadsSyscall(fn func(bool) bool) { 1565 if iscgo { 1566 panic("doAllThreadsSyscall not supported with cgo enabled") 1567 } 1568 if fn == nil { 1569 return 1570 } 1571 for atomic.Load(&sched.sysmonStarting) != 0 { 1572 osyield() 1573 } 1574 stopTheWorldGC("doAllThreadsSyscall") 1575 if atomic.Load(&newmHandoff.haveTemplateThread) != 0 { 1576 // Ensure that there are no in-flight thread 1577 // creations: don't want to race with allm. 1578 lock(&newmHandoff.lock) 1579 for !newmHandoff.waiting { 1580 unlock(&newmHandoff.lock) 1581 osyield() 1582 lock(&newmHandoff.lock) 1583 } 1584 unlock(&newmHandoff.lock) 1585 } 1586 if netpollinited() { 1587 netpollBreak() 1588 } 1589 sigRecvPrepareForFixup() 1590 _g_ := getg() 1591 if raceenabled { 1592 // For m's running without racectx, we loan out the 1593 // racectx of this call. 1594 lock(&mFixupRace.lock) 1595 mFixupRace.ctx = _g_.racectx 1596 unlock(&mFixupRace.lock) 1597 } 1598 if ok := fn(true); ok { 1599 tid := _g_.m.procid 1600 for mp := allm; mp != nil; mp = mp.alllink { 1601 if mp.procid == tid { 1602 // This m has already completed fn() 1603 // call. 1604 continue 1605 } 1606 // Be wary of mp's without procid values if 1607 // they are known not to park. If they are 1608 // marked as parking with a zero procid, then 1609 // they will be racing with this code to be 1610 // allocated a procid and we will annotate 1611 // them with the need to execute the fn when 1612 // they acquire a procid to run it. 1613 if mp.procid == 0 && !mp.doesPark { 1614 // Reaching here, we are either 1615 // running Windows, or cgo linked 1616 // code. Neither of which are 1617 // currently supported by this API. 1618 throw("unsupported runtime environment") 1619 } 1620 // stopTheWorldGC() doesn't guarantee stopping 1621 // all the threads, so we lock here to avoid 1622 // the possibility of racing with mp. 1623 lock(&mp.mFixup.lock) 1624 mp.mFixup.fn = fn 1625 if mp.doesPark { 1626 // For non-service threads this will 1627 // cause the wakeup to be short lived 1628 // (once the mutex is unlocked). The 1629 // next real wakeup will occur after 1630 // startTheWorldGC() is called. 1631 notewakeup(&mp.park) 1632 } 1633 unlock(&mp.mFixup.lock) 1634 } 1635 for { 1636 done := true 1637 for mp := allm; done && mp != nil; mp = mp.alllink { 1638 if mp.procid == tid { 1639 continue 1640 } 1641 lock(&mp.mFixup.lock) 1642 done = done && (mp.mFixup.fn == nil) 1643 unlock(&mp.mFixup.lock) 1644 } 1645 if done { 1646 break 1647 } 1648 // if needed force sysmon and/or newmHandoff to wakeup. 1649 lock(&sched.lock) 1650 if atomic.Load(&sched.sysmonwait) != 0 { 1651 atomic.Store(&sched.sysmonwait, 0) 1652 notewakeup(&sched.sysmonnote) 1653 } 1654 unlock(&sched.lock) 1655 lock(&newmHandoff.lock) 1656 if newmHandoff.waiting { 1657 newmHandoff.waiting = false 1658 notewakeup(&newmHandoff.wake) 1659 } 1660 unlock(&newmHandoff.lock) 1661 osyield() 1662 } 1663 } 1664 if raceenabled { 1665 lock(&mFixupRace.lock) 1666 mFixupRace.ctx = 0 1667 unlock(&mFixupRace.lock) 1668 } 1669 startTheWorldGC() 1670 } 1671 1672 // runSafePointFn runs the safe point function, if any, for this P. 1673 // This should be called like 1674 // 1675 // if getg().m.p.runSafePointFn != 0 { 1676 // runSafePointFn() 1677 // } 1678 // 1679 // runSafePointFn must be checked on any transition in to _Pidle or 1680 // _Psyscall to avoid a race where forEachP sees that the P is running 1681 // just before the P goes into _Pidle/_Psyscall and neither forEachP 1682 // nor the P run the safe-point function. 1683 func runSafePointFn() { 1684 p := getg().m.p.ptr() 1685 // Resolve the race between forEachP running the safe-point 1686 // function on this P's behalf and this P running the 1687 // safe-point function directly. 1688 if !atomic.Cas(&p.runSafePointFn, 1, 0) { 1689 return 1690 } 1691 sched.safePointFn(p) 1692 lock(&sched.lock) 1693 sched.safePointWait-- 1694 if sched.safePointWait == 0 { 1695 notewakeup(&sched.safePointNote) 1696 } 1697 unlock(&sched.lock) 1698 } 1699 1700 // When running with cgo, we call _cgo_thread_start 1701 // to start threads for us so that we can play nicely with 1702 // foreign code. 1703 var cgoThreadStart unsafe.Pointer 1704 1705 type cgothreadstart struct { 1706 g guintptr 1707 tls *uint64 1708 fn unsafe.Pointer 1709 } 1710 1711 // Allocate a new m unassociated with any thread. 1712 // Can use p for allocation context if needed. 1713 // fn is recorded as the new m's m.mstartfn. 1714 // id is optional pre-allocated m ID. Omit by passing -1. 1715 // 1716 // This function is allowed to have write barriers even if the caller 1717 // isn't because it borrows _p_. 1718 // 1719 //go:yeswritebarrierrec 1720 func allocm(_p_ *p, fn func(), id int64) *m { 1721 _g_ := getg() 1722 acquirem() // disable GC because it can be called from sysmon 1723 if _g_.m.p == 0 { 1724 acquirep(_p_) // temporarily borrow p for mallocs in this function 1725 } 1726 1727 // Release the free M list. We need to do this somewhere and 1728 // this may free up a stack we can use. 1729 if sched.freem != nil { 1730 lock(&sched.lock) 1731 var newList *m 1732 for freem := sched.freem; freem != nil; { 1733 if freem.freeWait != 0 { 1734 next := freem.freelink 1735 freem.freelink = newList 1736 newList = freem 1737 freem = next 1738 continue 1739 } 1740 // stackfree must be on the system stack, but allocm is 1741 // reachable off the system stack transitively from 1742 // startm. 1743 systemstack(func() { 1744 stackfree(freem.g0.stack) 1745 }) 1746 freem = freem.freelink 1747 } 1748 sched.freem = newList 1749 unlock(&sched.lock) 1750 } 1751 1752 mp := new(m) 1753 mp.mstartfn = fn 1754 mcommoninit(mp, id) 1755 1756 // In case of cgo or Solaris or illumos or Darwin, pthread_create will make us a stack. 1757 // Windows and Plan 9 will layout sched stack on OS stack. 1758 if iscgo || mStackIsSystemAllocated() { 1759 mp.g0 = malg(-1) 1760 } else { 1761 mp.g0 = malg(8192 * sys.StackGuardMultiplier) 1762 } 1763 mp.g0.m = mp 1764 1765 if _p_ == _g_.m.p.ptr() { 1766 releasep() 1767 } 1768 releasem(_g_.m) 1769 1770 return mp 1771 } 1772 1773 // needm is called when a cgo callback happens on a 1774 // thread without an m (a thread not created by Go). 1775 // In this case, needm is expected to find an m to use 1776 // and return with m, g initialized correctly. 1777 // Since m and g are not set now (likely nil, but see below) 1778 // needm is limited in what routines it can call. In particular 1779 // it can only call nosplit functions (textflag 7) and cannot 1780 // do any scheduling that requires an m. 1781 // 1782 // In order to avoid needing heavy lifting here, we adopt 1783 // the following strategy: there is a stack of available m's 1784 // that can be stolen. Using compare-and-swap 1785 // to pop from the stack has ABA races, so we simulate 1786 // a lock by doing an exchange (via Casuintptr) to steal the stack 1787 // head and replace the top pointer with MLOCKED (1). 1788 // This serves as a simple spin lock that we can use even 1789 // without an m. The thread that locks the stack in this way 1790 // unlocks the stack by storing a valid stack head pointer. 1791 // 1792 // In order to make sure that there is always an m structure 1793 // available to be stolen, we maintain the invariant that there 1794 // is always one more than needed. At the beginning of the 1795 // program (if cgo is in use) the list is seeded with a single m. 1796 // If needm finds that it has taken the last m off the list, its job 1797 // is - once it has installed its own m so that it can do things like 1798 // allocate memory - to create a spare m and put it on the list. 1799 // 1800 // Each of these extra m's also has a g0 and a curg that are 1801 // pressed into service as the scheduling stack and current 1802 // goroutine for the duration of the cgo callback. 1803 // 1804 // When the callback is done with the m, it calls dropm to 1805 // put the m back on the list. 1806 //go:nosplit 1807 func needm() { 1808 if (iscgo || GOOS == "windows") && !cgoHasExtraM { 1809 // Can happen if C/C++ code calls Go from a global ctor. 1810 // Can also happen on Windows if a global ctor uses a 1811 // callback created by syscall.NewCallback. See issue #6751 1812 // for details. 1813 // 1814 // Can not throw, because scheduler is not initialized yet. 1815 write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback))) 1816 exit(1) 1817 } 1818 1819 // Save and block signals before getting an M. 1820 // The signal handler may call needm itself, 1821 // and we must avoid a deadlock. Also, once g is installed, 1822 // any incoming signals will try to execute, 1823 // but we won't have the sigaltstack settings and other data 1824 // set up appropriately until the end of minit, which will 1825 // unblock the signals. This is the same dance as when 1826 // starting a new m to run Go code via newosproc. 1827 var sigmask sigset 1828 sigsave(&sigmask) 1829 sigblock(false) 1830 1831 // Lock extra list, take head, unlock popped list. 1832 // nilokay=false is safe here because of the invariant above, 1833 // that the extra list always contains or will soon contain 1834 // at least one m. 1835 mp := lockextra(false) 1836 1837 // Set needextram when we've just emptied the list, 1838 // so that the eventual call into cgocallbackg will 1839 // allocate a new m for the extra list. We delay the 1840 // allocation until then so that it can be done 1841 // after exitsyscall makes sure it is okay to be 1842 // running at all (that is, there's no garbage collection 1843 // running right now). 1844 mp.needextram = mp.schedlink == 0 1845 extraMCount-- 1846 unlockextra(mp.schedlink.ptr()) 1847 1848 // Store the original signal mask for use by minit. 1849 mp.sigmask = sigmask 1850 1851 // Install g (= m->g0) and set the stack bounds 1852 // to match the current stack. We don't actually know 1853 // how big the stack is, like we don't know how big any 1854 // scheduling stack is, but we assume there's at least 32 kB, 1855 // which is more than enough for us. 1856 setg(mp.g0) 1857 _g_ := getg() 1858 _g_.stack.hi = getcallersp() + 1024 1859 _g_.stack.lo = getcallersp() - 32*1024 1860 _g_.stackguard0 = _g_.stack.lo + _StackGuard 1861 1862 // Initialize this thread to use the m. 1863 asminit() 1864 minit() 1865 1866 // mp.curg is now a real goroutine. 1867 casgstatus(mp.curg, _Gdead, _Gsyscall) 1868 atomic.Xadd(&sched.ngsys, -1) 1869 } 1870 1871 var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n") 1872 1873 // newextram allocates m's and puts them on the extra list. 1874 // It is called with a working local m, so that it can do things 1875 // like call schedlock and allocate. 1876 func newextram() { 1877 c := atomic.Xchg(&extraMWaiters, 0) 1878 if c > 0 { 1879 for i := uint32(0); i < c; i++ { 1880 oneNewExtraM() 1881 } 1882 } else { 1883 // Make sure there is at least one extra M. 1884 mp := lockextra(true) 1885 unlockextra(mp) 1886 if mp == nil { 1887 oneNewExtraM() 1888 } 1889 } 1890 } 1891 1892 // oneNewExtraM allocates an m and puts it on the extra list. 1893 func oneNewExtraM() { 1894 // Create extra goroutine locked to extra m. 1895 // The goroutine is the context in which the cgo callback will run. 1896 // The sched.pc will never be returned to, but setting it to 1897 // goexit makes clear to the traceback routines where 1898 // the goroutine stack ends. 1899 mp := allocm(nil, nil, -1) 1900 gp := malg(4096) 1901 gp.sched.pc = funcPC(goexit) + sys.PCQuantum 1902 gp.sched.sp = gp.stack.hi 1903 gp.sched.sp -= 4 * sys.RegSize // extra space in case of reads slightly beyond frame 1904 gp.sched.lr = 0 1905 gp.sched.g = guintptr(unsafe.Pointer(gp)) 1906 gp.syscallpc = gp.sched.pc 1907 gp.syscallsp = gp.sched.sp 1908 gp.stktopsp = gp.sched.sp 1909 // malg returns status as _Gidle. Change to _Gdead before 1910 // adding to allg where GC can see it. We use _Gdead to hide 1911 // this from tracebacks and stack scans since it isn't a 1912 // "real" goroutine until needm grabs it. 1913 casgstatus(gp, _Gidle, _Gdead) 1914 gp.m = mp 1915 mp.curg = gp 1916 mp.lockedInt++ 1917 mp.lockedg.set(gp) 1918 gp.lockedm.set(mp) 1919 gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1)) 1920 if raceenabled { 1921 gp.racectx = racegostart(funcPC(newextram) + sys.PCQuantum) 1922 } 1923 // put on allg for garbage collector 1924 allgadd(gp) 1925 1926 // gp is now on the allg list, but we don't want it to be 1927 // counted by gcount. It would be more "proper" to increment 1928 // sched.ngfree, but that requires locking. Incrementing ngsys 1929 // has the same effect. 1930 atomic.Xadd(&sched.ngsys, +1) 1931 1932 // Add m to the extra list. 1933 mnext := lockextra(true) 1934 mp.schedlink.set(mnext) 1935 extraMCount++ 1936 unlockextra(mp) 1937 } 1938 1939 // dropm is called when a cgo callback has called needm but is now 1940 // done with the callback and returning back into the non-Go thread. 1941 // It puts the current m back onto the extra list. 1942 // 1943 // The main expense here is the call to signalstack to release the 1944 // m's signal stack, and then the call to needm on the next callback 1945 // from this thread. It is tempting to try to save the m for next time, 1946 // which would eliminate both these costs, but there might not be 1947 // a next time: the current thread (which Go does not control) might exit. 1948 // If we saved the m for that thread, there would be an m leak each time 1949 // such a thread exited. Instead, we acquire and release an m on each 1950 // call. These should typically not be scheduling operations, just a few 1951 // atomics, so the cost should be small. 1952 // 1953 // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread 1954 // variable using pthread_key_create. Unlike the pthread keys we already use 1955 // on OS X, this dummy key would never be read by Go code. It would exist 1956 // only so that we could register at thread-exit-time destructor. 1957 // That destructor would put the m back onto the extra list. 1958 // This is purely a performance optimization. The current version, 1959 // in which dropm happens on each cgo call, is still correct too. 1960 // We may have to keep the current version on systems with cgo 1961 // but without pthreads, like Windows. 1962 func dropm() { 1963 // Clear m and g, and return m to the extra list. 1964 // After the call to setg we can only call nosplit functions 1965 // with no pointer manipulation. 1966 mp := getg().m 1967 1968 // Return mp.curg to dead state. 1969 casgstatus(mp.curg, _Gsyscall, _Gdead) 1970 mp.curg.preemptStop = false 1971 atomic.Xadd(&sched.ngsys, +1) 1972 1973 // Block signals before unminit. 1974 // Unminit unregisters the signal handling stack (but needs g on some systems). 1975 // Setg(nil) clears g, which is the signal handler's cue not to run Go handlers. 1976 // It's important not to try to handle a signal between those two steps. 1977 sigmask := mp.sigmask 1978 sigblock(false) 1979 unminit() 1980 1981 mnext := lockextra(true) 1982 extraMCount++ 1983 mp.schedlink.set(mnext) 1984 1985 setg(nil) 1986 1987 // Commit the release of mp. 1988 unlockextra(mp) 1989 1990 msigrestore(sigmask) 1991 } 1992 1993 // A helper function for EnsureDropM. 1994 func getm() uintptr { 1995 return uintptr(unsafe.Pointer(getg().m)) 1996 } 1997 1998 var extram uintptr 1999 var extraMCount uint32 // Protected by lockextra 2000 var extraMWaiters uint32 2001 2002 // lockextra locks the extra list and returns the list head. 2003 // The caller must unlock the list by storing a new list head 2004 // to extram. If nilokay is true, then lockextra will 2005 // return a nil list head if that's what it finds. If nilokay is false, 2006 // lockextra will keep waiting until the list head is no longer nil. 2007 //go:nosplit 2008 func lockextra(nilokay bool) *m { 2009 const locked = 1 2010 2011 incr := false 2012 for { 2013 old := atomic.Loaduintptr(&extram) 2014 if old == locked { 2015 osyield() 2016 continue 2017 } 2018 if old == 0 && !nilokay { 2019 if !incr { 2020 // Add 1 to the number of threads 2021 // waiting for an M. 2022 // This is cleared by newextram. 2023 atomic.Xadd(&extraMWaiters, 1) 2024 incr = true 2025 } 2026 usleep(1) 2027 continue 2028 } 2029 if atomic.Casuintptr(&extram, old, locked) { 2030 return (*m)(unsafe.Pointer(old)) 2031 } 2032 osyield() 2033 continue 2034 } 2035 } 2036 2037 //go:nosplit 2038 func unlockextra(mp *m) { 2039 atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp))) 2040 } 2041 2042 // execLock serializes exec and clone to avoid bugs or unspecified behaviour 2043 // around exec'ing while creating/destroying threads. See issue #19546. 2044 var execLock rwmutex 2045 2046 // newmHandoff contains a list of m structures that need new OS threads. 2047 // This is used by newm in situations where newm itself can't safely 2048 // start an OS thread. 2049 var newmHandoff struct { 2050 lock mutex 2051 2052 // newm points to a list of M structures that need new OS 2053 // threads. The list is linked through m.schedlink. 2054 newm muintptr 2055 2056 // waiting indicates that wake needs to be notified when an m 2057 // is put on the list. 2058 waiting bool 2059 wake note 2060 2061 // haveTemplateThread indicates that the templateThread has 2062 // been started. This is not protected by lock. Use cas to set 2063 // to 1. 2064 haveTemplateThread uint32 2065 } 2066 2067 // Create a new m. It will start off with a call to fn, or else the scheduler. 2068 // fn needs to be static and not a heap allocated closure. 2069 // May run with m.p==nil, so write barriers are not allowed. 2070 // 2071 // id is optional pre-allocated m ID. Omit by passing -1. 2072 //go:nowritebarrierrec 2073 func newm(fn func(), _p_ *p, id int64) { 2074 mp := allocm(_p_, fn, id) 2075 mp.doesPark = (_p_ != nil) 2076 mp.nextp.set(_p_) 2077 mp.sigmask = initSigmask 2078 if gp := getg(); gp != nil && gp.m != nil && (gp.m.lockedExt != 0 || gp.m.incgo) && GOOS != "plan9" { 2079 // We're on a locked M or a thread that may have been 2080 // started by C. The kernel state of this thread may 2081 // be strange (the user may have locked it for that 2082 // purpose). We don't want to clone that into another 2083 // thread. Instead, ask a known-good thread to create 2084 // the thread for us. 2085 // 2086 // This is disabled on Plan 9. See golang.org/issue/22227. 2087 // 2088 // TODO: This may be unnecessary on Windows, which 2089 // doesn't model thread creation off fork. 2090 lock(&newmHandoff.lock) 2091 if newmHandoff.haveTemplateThread == 0 { 2092 throw("on a locked thread with no template thread") 2093 } 2094 mp.schedlink = newmHandoff.newm 2095 newmHandoff.newm.set(mp) 2096 if newmHandoff.waiting { 2097 newmHandoff.waiting = false 2098 notewakeup(&newmHandoff.wake) 2099 } 2100 unlock(&newmHandoff.lock) 2101 return 2102 } 2103 newm1(mp) 2104 } 2105 2106 func newm1(mp *m) { 2107 if iscgo { 2108 var ts cgothreadstart 2109 if _cgo_thread_start == nil { 2110 throw("_cgo_thread_start missing") 2111 } 2112 ts.g.set(mp.g0) 2113 ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0])) 2114 ts.fn = unsafe.Pointer(funcPC(mstart)) 2115 if msanenabled { 2116 msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts)) 2117 } 2118 execLock.rlock() // Prevent process clone. 2119 asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts)) 2120 execLock.runlock() 2121 return 2122 } 2123 execLock.rlock() // Prevent process clone. 2124 newosproc(mp) 2125 execLock.runlock() 2126 } 2127 2128 // startTemplateThread starts the template thread if it is not already 2129 // running. 2130 // 2131 // The calling thread must itself be in a known-good state. 2132 func startTemplateThread() { 2133 if GOARCH == "wasm" { // no threads on wasm yet 2134 return 2135 } 2136 2137 // Disable preemption to guarantee that the template thread will be 2138 // created before a park once haveTemplateThread is set. 2139 mp := acquirem() 2140 if !atomic.Cas(&newmHandoff.haveTemplateThread, 0, 1) { 2141 releasem(mp) 2142 return 2143 } 2144 newm(templateThread, nil, -1) 2145 releasem(mp) 2146 } 2147 2148 // mFixupRace is used to temporarily borrow the race context from the 2149 // coordinating m during a syscall_runtime_doAllThreadsSyscall and 2150 // loan it out to each of the m's of the runtime so they can execute a 2151 // mFixup.fn in that context. 2152 var mFixupRace struct { 2153 lock mutex 2154 ctx uintptr 2155 } 2156 2157 // mDoFixup runs any outstanding fixup function for the running m. 2158 // Returns true if a fixup was outstanding and actually executed. 2159 // 2160 //go:nosplit 2161 func mDoFixup() bool { 2162 _g_ := getg() 2163 lock(&_g_.m.mFixup.lock) 2164 fn := _g_.m.mFixup.fn 2165 if fn != nil { 2166 if gcphase != _GCoff { 2167 // We can't have a write barrier in this 2168 // context since we may not have a P, but we 2169 // clear fn to signal that we've executed the 2170 // fixup. As long as fn is kept alive 2171 // elsewhere, technically we should have no 2172 // issues with the GC, but fn is likely 2173 // generated in a different package altogether 2174 // that may change independently. Just assert 2175 // the GC is off so this lack of write barrier 2176 // is more obviously safe. 2177 throw("GC must be disabled to protect validity of fn value") 2178 } 2179 *(*uintptr)(unsafe.Pointer(&_g_.m.mFixup.fn)) = 0 2180 if _g_.racectx != 0 || !raceenabled { 2181 fn(false) 2182 } else { 2183 // temporarily acquire the context of the 2184 // originator of the 2185 // syscall_runtime_doAllThreadsSyscall and 2186 // block others from using it for the duration 2187 // of the fixup call. 2188 lock(&mFixupRace.lock) 2189 _g_.racectx = mFixupRace.ctx 2190 fn(false) 2191 _g_.racectx = 0 2192 unlock(&mFixupRace.lock) 2193 } 2194 } 2195 unlock(&_g_.m.mFixup.lock) 2196 return fn != nil 2197 } 2198 2199 // templateThread is a thread in a known-good state that exists solely 2200 // to start new threads in known-good states when the calling thread 2201 // may not be in a good state. 2202 // 2203 // Many programs never need this, so templateThread is started lazily 2204 // when we first enter a state that might lead to running on a thread 2205 // in an unknown state. 2206 // 2207 // templateThread runs on an M without a P, so it must not have write 2208 // barriers. 2209 // 2210 //go:nowritebarrierrec 2211 func templateThread() { 2212 lock(&sched.lock) 2213 sched.nmsys++ 2214 checkdead() 2215 unlock(&sched.lock) 2216 2217 for { 2218 lock(&newmHandoff.lock) 2219 for newmHandoff.newm != 0 { 2220 newm := newmHandoff.newm.ptr() 2221 newmHandoff.newm = 0 2222 unlock(&newmHandoff.lock) 2223 for newm != nil { 2224 next := newm.schedlink.ptr() 2225 newm.schedlink = 0 2226 newm1(newm) 2227 newm = next 2228 } 2229 lock(&newmHandoff.lock) 2230 } 2231 newmHandoff.waiting = true 2232 noteclear(&newmHandoff.wake) 2233 unlock(&newmHandoff.lock) 2234 notesleep(&newmHandoff.wake) 2235 mDoFixup() 2236 } 2237 } 2238 2239 // Stops execution of the current m until new work is available. 2240 // Returns with acquired P. 2241 func stopm() { 2242 _g_ := getg() 2243 2244 if _g_.m.locks != 0 { 2245 throw("stopm holding locks") 2246 } 2247 if _g_.m.p != 0 { 2248 throw("stopm holding p") 2249 } 2250 if _g_.m.spinning { 2251 throw("stopm spinning") 2252 } 2253 2254 lock(&sched.lock) 2255 mput(_g_.m) 2256 unlock(&sched.lock) 2257 mPark() 2258 acquirep(_g_.m.nextp.ptr()) 2259 _g_.m.nextp = 0 2260 } 2261 2262 func mspinning() { 2263 // startm's caller incremented nmspinning. Set the new M's spinning. 2264 getg().m.spinning = true 2265 } 2266 2267 // Schedules some M to run the p (creates an M if necessary). 2268 // If p==nil, tries to get an idle P, if no idle P's does nothing. 2269 // May run with m.p==nil, so write barriers are not allowed. 2270 // If spinning is set, the caller has incremented nmspinning and startm will 2271 // either decrement nmspinning or set m.spinning in the newly started M. 2272 // 2273 // Callers passing a non-nil P must call from a non-preemptible context. See 2274 // comment on acquirem below. 2275 // 2276 // Must not have write barriers because this may be called without a P. 2277 //go:nowritebarrierrec 2278 func startm(_p_ *p, spinning bool) { 2279 // Disable preemption. 2280 // 2281 // Every owned P must have an owner that will eventually stop it in the 2282 // event of a GC stop request. startm takes transient ownership of a P 2283 // (either from argument or pidleget below) and transfers ownership to 2284 // a started M, which will be responsible for performing the stop. 2285 // 2286 // Preemption must be disabled during this transient ownership, 2287 // otherwise the P this is running on may enter GC stop while still 2288 // holding the transient P, leaving that P in limbo and deadlocking the 2289 // STW. 2290 // 2291 // Callers passing a non-nil P must already be in non-preemptible 2292 // context, otherwise such preemption could occur on function entry to 2293 // startm. Callers passing a nil P may be preemptible, so we must 2294 // disable preemption before acquiring a P from pidleget below. 2295 mp := acquirem() 2296 lock(&sched.lock) 2297 if _p_ == nil { 2298 _p_ = pidleget() 2299 if _p_ == nil { 2300 unlock(&sched.lock) 2301 if spinning { 2302 // The caller incremented nmspinning, but there are no idle Ps, 2303 // so it's okay to just undo the increment and give up. 2304 if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { 2305 throw("startm: negative nmspinning") 2306 } 2307 } 2308 releasem(mp) 2309 return 2310 } 2311 } 2312 nmp := mget() 2313 if nmp == nil { 2314 // No M is available, we must drop sched.lock and call newm. 2315 // However, we already own a P to assign to the M. 2316 // 2317 // Once sched.lock is released, another G (e.g., in a syscall), 2318 // could find no idle P while checkdead finds a runnable G but 2319 // no running M's because this new M hasn't started yet, thus 2320 // throwing in an apparent deadlock. 2321 // 2322 // Avoid this situation by pre-allocating the ID for the new M, 2323 // thus marking it as 'running' before we drop sched.lock. This 2324 // new M will eventually run the scheduler to execute any 2325 // queued G's. 2326 id := mReserveID() 2327 unlock(&sched.lock) 2328 2329 var fn func() 2330 if spinning { 2331 // The caller incremented nmspinning, so set m.spinning in the new M. 2332 fn = mspinning 2333 } 2334 newm(fn, _p_, id) 2335 // Ownership transfer of _p_ committed by start in newm. 2336 // Preemption is now safe. 2337 releasem(mp) 2338 return 2339 } 2340 unlock(&sched.lock) 2341 if nmp.spinning { 2342 throw("startm: m is spinning") 2343 } 2344 if nmp.nextp != 0 { 2345 throw("startm: m has p") 2346 } 2347 if spinning && !runqempty(_p_) { 2348 throw("startm: p has runnable gs") 2349 } 2350 // The caller incremented nmspinning, so set m.spinning in the new M. 2351 nmp.spinning = spinning 2352 nmp.nextp.set(_p_) 2353 notewakeup(&nmp.park) 2354 // Ownership transfer of _p_ committed by wakeup. Preemption is now 2355 // safe. 2356 releasem(mp) 2357 } 2358 2359 // Hands off P from syscall or locked M. 2360 // Always runs without a P, so write barriers are not allowed. 2361 //go:nowritebarrierrec 2362 func handoffp(_p_ *p) { 2363 // handoffp must start an M in any situation where 2364 // findrunnable would return a G to run on _p_. 2365 2366 // if it has local work, start it straight away 2367 if !runqempty(_p_) || sched.runqsize != 0 { 2368 startm(_p_, false) 2369 return 2370 } 2371 // if it has GC work, start it straight away 2372 if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) { 2373 startm(_p_, false) 2374 return 2375 } 2376 // no local work, check that there are no spinning/idle M's, 2377 // otherwise our help is not required 2378 if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic 2379 startm(_p_, true) 2380 return 2381 } 2382 lock(&sched.lock) 2383 if sched.gcwaiting != 0 { 2384 _p_.status = _Pgcstop 2385 sched.stopwait-- 2386 if sched.stopwait == 0 { 2387 notewakeup(&sched.stopnote) 2388 } 2389 unlock(&sched.lock) 2390 return 2391 } 2392 if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) { 2393 sched.safePointFn(_p_) 2394 sched.safePointWait-- 2395 if sched.safePointWait == 0 { 2396 notewakeup(&sched.safePointNote) 2397 } 2398 } 2399 if sched.runqsize != 0 { 2400 unlock(&sched.lock) 2401 startm(_p_, false) 2402 return 2403 } 2404 // If this is the last running P and nobody is polling network, 2405 // need to wakeup another M to poll network. 2406 if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 { 2407 unlock(&sched.lock) 2408 startm(_p_, false) 2409 return 2410 } 2411 2412 // The scheduler lock cannot be held when calling wakeNetPoller below 2413 // because wakeNetPoller may call wakep which may call startm. 2414 when := nobarrierWakeTime(_p_) 2415 pidleput(_p_) 2416 unlock(&sched.lock) 2417 2418 if when != 0 { 2419 wakeNetPoller(when) 2420 } 2421 } 2422 2423 // Tries to add one more P to execute G's. 2424 // Called when a G is made runnable (newproc, ready). 2425 func wakep() { 2426 if atomic.Load(&sched.npidle) == 0 { 2427 return 2428 } 2429 // be conservative about spinning threads 2430 if atomic.Load(&sched.nmspinning) != 0 || !atomic.Cas(&sched.nmspinning, 0, 1) { 2431 return 2432 } 2433 startm(nil, true) 2434 } 2435 2436 // Stops execution of the current m that is locked to a g until the g is runnable again. 2437 // Returns with acquired P. 2438 func stoplockedm() { 2439 _g_ := getg() 2440 2441 if _g_.m.lockedg == 0 || _g_.m.lockedg.ptr().lockedm.ptr() != _g_.m { 2442 throw("stoplockedm: inconsistent locking") 2443 } 2444 if _g_.m.p != 0 { 2445 // Schedule another M to run this p. 2446 _p_ := releasep() 2447 handoffp(_p_) 2448 } 2449 incidlelocked(1) 2450 // Wait until another thread schedules lockedg again. 2451 mPark() 2452 status := readgstatus(_g_.m.lockedg.ptr()) 2453 if status&^_Gscan != _Grunnable { 2454 print("runtime:stoplockedm: lockedg (atomicstatus=", status, ") is not Grunnable or Gscanrunnable\n") 2455 dumpgstatus(_g_.m.lockedg.ptr()) 2456 throw("stoplockedm: not runnable") 2457 } 2458 acquirep(_g_.m.nextp.ptr()) 2459 _g_.m.nextp = 0 2460 } 2461 2462 // Schedules the locked m to run the locked gp. 2463 // May run during STW, so write barriers are not allowed. 2464 //go:nowritebarrierrec 2465 func startlockedm(gp *g) { 2466 _g_ := getg() 2467 2468 mp := gp.lockedm.ptr() 2469 if mp == _g_.m { 2470 throw("startlockedm: locked to me") 2471 } 2472 if mp.nextp != 0 { 2473 throw("startlockedm: m has p") 2474 } 2475 // directly handoff current P to the locked m 2476 incidlelocked(-1) 2477 _p_ := releasep() 2478 mp.nextp.set(_p_) 2479 notewakeup(&mp.park) 2480 stopm() 2481 } 2482 2483 // Stops the current m for stopTheWorld. 2484 // Returns when the world is restarted. 2485 func gcstopm() { 2486 _g_ := getg() 2487 2488 if sched.gcwaiting == 0 { 2489 throw("gcstopm: not waiting for gc") 2490 } 2491 if _g_.m.spinning { 2492 _g_.m.spinning = false 2493 // OK to just drop nmspinning here, 2494 // startTheWorld will unpark threads as necessary. 2495 if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { 2496 throw("gcstopm: negative nmspinning") 2497 } 2498 } 2499 _p_ := releasep() 2500 lock(&sched.lock) 2501 _p_.status = _Pgcstop 2502 sched.stopwait-- 2503 if sched.stopwait == 0 { 2504 notewakeup(&sched.stopnote) 2505 } 2506 unlock(&sched.lock) 2507 stopm() 2508 } 2509 2510 // Schedules gp to run on the current M. 2511 // If inheritTime is true, gp inherits the remaining time in the 2512 // current time slice. Otherwise, it starts a new time slice. 2513 // Never returns. 2514 // 2515 // Write barriers are allowed because this is called immediately after 2516 // acquiring a P in several places. 2517 // 2518 //go:yeswritebarrierrec 2519 func execute(gp *g, inheritTime bool) { 2520 _g_ := getg() 2521 2522 // Assign gp.m before entering _Grunning so running Gs have an 2523 // M. 2524 _g_.m.curg = gp 2525 gp.m = _g_.m 2526 casgstatus(gp, _Grunnable, _Grunning) 2527 gp.waitsince = 0 2528 gp.preempt = false 2529 gp.stackguard0 = gp.stack.lo + _StackGuard 2530 if !inheritTime { 2531 _g_.m.p.ptr().schedtick++ 2532 } 2533 2534 // Check whether the profiler needs to be turned on or off. 2535 hz := sched.profilehz 2536 if _g_.m.profilehz != hz { 2537 setThreadCPUProfiler(hz) 2538 } 2539 2540 if trace.enabled { 2541 // GoSysExit has to happen when we have a P, but before GoStart. 2542 // So we emit it here. 2543 if gp.syscallsp != 0 && gp.sysblocktraced { 2544 traceGoSysExit(gp.sysexitticks) 2545 } 2546 traceGoStart() 2547 } 2548 2549 gogo(&gp.sched) 2550 } 2551 2552 // Finds a runnable goroutine to execute. 2553 // Tries to steal from other P's, get g from local or global queue, poll network. 2554 func findrunnable() (gp *g, inheritTime bool) { 2555 _g_ := getg() 2556 2557 // The conditions here and in handoffp must agree: if 2558 // findrunnable would return a G to run, handoffp must start 2559 // an M. 2560 2561 top: 2562 _p_ := _g_.m.p.ptr() 2563 if sched.gcwaiting != 0 { 2564 gcstopm() 2565 goto top 2566 } 2567 if _p_.runSafePointFn != 0 { 2568 runSafePointFn() 2569 } 2570 2571 now, pollUntil, _ := checkTimers(_p_, 0) 2572 2573 if fingwait && fingwake { 2574 if gp := wakefing(); gp != nil { 2575 ready(gp, 0, true) 2576 } 2577 } 2578 if *cgo_yield != nil { 2579 asmcgocall(*cgo_yield, nil) 2580 } 2581 2582 // local runq 2583 if gp, inheritTime := runqget(_p_); gp != nil { 2584 return gp, inheritTime 2585 } 2586 2587 // global runq 2588 if sched.runqsize != 0 { 2589 lock(&sched.lock) 2590 gp := globrunqget(_p_, 0) 2591 unlock(&sched.lock) 2592 if gp != nil { 2593 return gp, false 2594 } 2595 } 2596 2597 // Poll network. 2598 // This netpoll is only an optimization before we resort to stealing. 2599 // We can safely skip it if there are no waiters or a thread is blocked 2600 // in netpoll already. If there is any kind of logical race with that 2601 // blocked thread (e.g. it has already returned from netpoll, but does 2602 // not set lastpoll yet), this thread will do blocking netpoll below 2603 // anyway. 2604 if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 { 2605 if list := netpoll(0); !list.empty() { // non-blocking 2606 gp := list.pop() 2607 injectglist(&list) 2608 casgstatus(gp, _Gwaiting, _Grunnable) 2609 if trace.enabled { 2610 traceGoUnpark(gp, 0) 2611 } 2612 return gp, false 2613 } 2614 } 2615 2616 // Steal work from other P's. 2617 procs := uint32(gomaxprocs) 2618 ranTimer := false 2619 // If number of spinning M's >= number of busy P's, block. 2620 // This is necessary to prevent excessive CPU consumption 2621 // when GOMAXPROCS>>1 but the program parallelism is low. 2622 if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) { 2623 goto stop 2624 } 2625 if !_g_.m.spinning { 2626 _g_.m.spinning = true 2627 atomic.Xadd(&sched.nmspinning, 1) 2628 } 2629 const stealTries = 4 2630 for i := 0; i < stealTries; i++ { 2631 stealTimersOrRunNextG := i == stealTries-1 2632 2633 for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() { 2634 if sched.gcwaiting != 0 { 2635 goto top 2636 } 2637 p2 := allp[enum.position()] 2638 if _p_ == p2 { 2639 continue 2640 } 2641 2642 // Steal timers from p2. This call to checkTimers is the only place 2643 // where we might hold a lock on a different P's timers. We do this 2644 // once on the last pass before checking runnext because stealing 2645 // from the other P's runnext should be the last resort, so if there 2646 // are timers to steal do that first. 2647 // 2648 // We only check timers on one of the stealing iterations because 2649 // the time stored in now doesn't change in this loop and checking 2650 // the timers for each P more than once with the same value of now 2651 // is probably a waste of time. 2652 // 2653 // timerpMask tells us whether the P may have timers at all. If it 2654 // can't, no need to check at all. 2655 if stealTimersOrRunNextG && timerpMask.read(enum.position()) { 2656 tnow, w, ran := checkTimers(p2, now) 2657 now = tnow 2658 if w != 0 && (pollUntil == 0 || w < pollUntil) { 2659 pollUntil = w 2660 } 2661 if ran { 2662 // Running the timers may have 2663 // made an arbitrary number of G's 2664 // ready and added them to this P's 2665 // local run queue. That invalidates 2666 // the assumption of runqsteal 2667 // that is always has room to add 2668 // stolen G's. So check now if there 2669 // is a local G to run. 2670 if gp, inheritTime := runqget(_p_); gp != nil { 2671 return gp, inheritTime 2672 } 2673 ranTimer = true 2674 } 2675 } 2676 2677 // Don't bother to attempt to steal if p2 is idle. 2678 if !idlepMask.read(enum.position()) { 2679 if gp := runqsteal(_p_, p2, stealTimersOrRunNextG); gp != nil { 2680 return gp, false 2681 } 2682 } 2683 } 2684 } 2685 if ranTimer { 2686 // Running a timer may have made some goroutine ready. 2687 goto top 2688 } 2689 2690 stop: 2691 2692 // We have nothing to do. If we're in the GC mark phase, can 2693 // safely scan and blacken objects, and have work to do, run 2694 // idle-time marking rather than give up the P. 2695 if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) { 2696 node := (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop()) 2697 if node != nil { 2698 _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode 2699 gp := node.gp.ptr() 2700 casgstatus(gp, _Gwaiting, _Grunnable) 2701 if trace.enabled { 2702 traceGoUnpark(gp, 0) 2703 } 2704 return gp, false 2705 } 2706 } 2707 2708 delta := int64(-1) 2709 if pollUntil != 0 { 2710 // checkTimers ensures that polluntil > now. 2711 delta = pollUntil - now 2712 } 2713 2714 // wasm only: 2715 // If a callback returned and no other goroutine is awake, 2716 // then wake event handler goroutine which pauses execution 2717 // until a callback was triggered. 2718 gp, otherReady := beforeIdle(delta) 2719 if gp != nil { 2720 casgstatus(gp, _Gwaiting, _Grunnable) 2721 if trace.enabled { 2722 traceGoUnpark(gp, 0) 2723 } 2724 return gp, false 2725 } 2726 if otherReady { 2727 goto top 2728 } 2729 2730 // Before we drop our P, make a snapshot of the allp slice, 2731 // which can change underfoot once we no longer block 2732 // safe-points. We don't need to snapshot the contents because 2733 // everything up to cap(allp) is immutable. 2734 allpSnapshot := allp 2735 // Also snapshot masks. Value changes are OK, but we can't allow 2736 // len to change out from under us. 2737 idlepMaskSnapshot := idlepMask 2738 timerpMaskSnapshot := timerpMask 2739 2740 // return P and block 2741 lock(&sched.lock) 2742 if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 { 2743 unlock(&sched.lock) 2744 goto top 2745 } 2746 if sched.runqsize != 0 { 2747 gp := globrunqget(_p_, 0) 2748 unlock(&sched.lock) 2749 return gp, false 2750 } 2751 if releasep() != _p_ { 2752 throw("findrunnable: wrong p") 2753 } 2754 pidleput(_p_) 2755 unlock(&sched.lock) 2756 2757 // Delicate dance: thread transitions from spinning to non-spinning state, 2758 // potentially concurrently with submission of new goroutines. We must 2759 // drop nmspinning first and then check all per-P queues again (with 2760 // #StoreLoad memory barrier in between). If we do it the other way around, 2761 // another thread can submit a goroutine after we've checked all run queues 2762 // but before we drop nmspinning; as a result nobody will unpark a thread 2763 // to run the goroutine. 2764 // If we discover new work below, we need to restore m.spinning as a signal 2765 // for resetspinning to unpark a new worker thread (because there can be more 2766 // than one starving goroutine). However, if after discovering new work 2767 // we also observe no idle Ps, it is OK to just park the current thread: 2768 // the system is fully loaded so no spinning threads are required. 2769 // Also see "Worker thread parking/unparking" comment at the top of the file. 2770 wasSpinning := _g_.m.spinning 2771 if _g_.m.spinning { 2772 _g_.m.spinning = false 2773 if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { 2774 throw("findrunnable: negative nmspinning") 2775 } 2776 } 2777 2778 // check all runqueues once again 2779 for id, _p_ := range allpSnapshot { 2780 if !idlepMaskSnapshot.read(uint32(id)) && !runqempty(_p_) { 2781 lock(&sched.lock) 2782 _p_ = pidleget() 2783 unlock(&sched.lock) 2784 if _p_ != nil { 2785 acquirep(_p_) 2786 if wasSpinning { 2787 _g_.m.spinning = true 2788 atomic.Xadd(&sched.nmspinning, 1) 2789 } 2790 goto top 2791 } 2792 break 2793 } 2794 } 2795 2796 // Similar to above, check for timer creation or expiry concurrently with 2797 // transitioning from spinning to non-spinning. Note that we cannot use 2798 // checkTimers here because it calls adjusttimers which may need to allocate 2799 // memory, and that isn't allowed when we don't have an active P. 2800 for id, _p_ := range allpSnapshot { 2801 if timerpMaskSnapshot.read(uint32(id)) { 2802 w := nobarrierWakeTime(_p_) 2803 if w != 0 && (pollUntil == 0 || w < pollUntil) { 2804 pollUntil = w 2805 } 2806 } 2807 } 2808 if pollUntil != 0 { 2809 if now == 0 { 2810 now = nanotime() 2811 } 2812 delta = pollUntil - now 2813 if delta < 0 { 2814 delta = 0 2815 } 2816 } 2817 2818 // Check for idle-priority GC work again. 2819 // 2820 // N.B. Since we have no P, gcBlackenEnabled may change at any time; we 2821 // must check again after acquiring a P. 2822 if atomic.Load(&gcBlackenEnabled) != 0 && gcMarkWorkAvailable(nil) { 2823 // Work is available; we can start an idle GC worker only if 2824 // there is an available P and available worker G. 2825 // 2826 // We can attempt to acquire these in either order. Workers are 2827 // almost always available (see comment in findRunnableGCWorker 2828 // for the one case there may be none). Since we're slightly 2829 // less likely to find a P, check for that first. 2830 lock(&sched.lock) 2831 var node *gcBgMarkWorkerNode 2832 _p_ = pidleget() 2833 if _p_ != nil { 2834 // Now that we own a P, gcBlackenEnabled can't change 2835 // (as it requires STW). 2836 if gcBlackenEnabled != 0 { 2837 node = (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop()) 2838 if node == nil { 2839 pidleput(_p_) 2840 _p_ = nil 2841 } 2842 } else { 2843 pidleput(_p_) 2844 _p_ = nil 2845 } 2846 } 2847 unlock(&sched.lock) 2848 if _p_ != nil { 2849 acquirep(_p_) 2850 if wasSpinning { 2851 _g_.m.spinning = true 2852 atomic.Xadd(&sched.nmspinning, 1) 2853 } 2854 2855 // Run the idle worker. 2856 _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode 2857 gp := node.gp.ptr() 2858 casgstatus(gp, _Gwaiting, _Grunnable) 2859 if trace.enabled { 2860 traceGoUnpark(gp, 0) 2861 } 2862 return gp, false 2863 } 2864 } 2865 2866 // poll network 2867 if netpollinited() && (atomic.Load(&netpollWaiters) > 0 || pollUntil != 0) && atomic.Xchg64(&sched.lastpoll, 0) != 0 { 2868 atomic.Store64(&sched.pollUntil, uint64(pollUntil)) 2869 if _g_.m.p != 0 { 2870 throw("findrunnable: netpoll with p") 2871 } 2872 if _g_.m.spinning { 2873 throw("findrunnable: netpoll with spinning") 2874 } 2875 if faketime != 0 { 2876 // When using fake time, just poll. 2877 delta = 0 2878 } 2879 list := netpoll(delta) // block until new work is available 2880 atomic.Store64(&sched.pollUntil, 0) 2881 atomic.Store64(&sched.lastpoll, uint64(nanotime())) 2882 if faketime != 0 && list.empty() { 2883 // Using fake time and nothing is ready; stop M. 2884 // When all M's stop, checkdead will call timejump. 2885 stopm() 2886 goto top 2887 } 2888 lock(&sched.lock) 2889 _p_ = pidleget() 2890 unlock(&sched.lock) 2891 if _p_ == nil { 2892 injectglist(&list) 2893 } else { 2894 acquirep(_p_) 2895 if !list.empty() { 2896 gp := list.pop() 2897 injectglist(&list) 2898 casgstatus(gp, _Gwaiting, _Grunnable) 2899 if trace.enabled { 2900 traceGoUnpark(gp, 0) 2901 } 2902 return gp, false 2903 } 2904 if wasSpinning { 2905 _g_.m.spinning = true 2906 atomic.Xadd(&sched.nmspinning, 1) 2907 } 2908 goto top 2909 } 2910 } else if pollUntil != 0 && netpollinited() { 2911 pollerPollUntil := int64(atomic.Load64(&sched.pollUntil)) 2912 if pollerPollUntil == 0 || pollerPollUntil > pollUntil { 2913 netpollBreak() 2914 } 2915 } 2916 stopm() 2917 goto top 2918 } 2919 2920 // pollWork reports whether there is non-background work this P could 2921 // be doing. This is a fairly lightweight check to be used for 2922 // background work loops, like idle GC. It checks a subset of the 2923 // conditions checked by the actual scheduler. 2924 func pollWork() bool { 2925 if sched.runqsize != 0 { 2926 return true 2927 } 2928 p := getg().m.p.ptr() 2929 if !runqempty(p) { 2930 return true 2931 } 2932 if netpollinited() && atomic.Load(&netpollWaiters) > 0 && sched.lastpoll != 0 { 2933 if list := netpoll(0); !list.empty() { 2934 injectglist(&list) 2935 return true 2936 } 2937 } 2938 return false 2939 } 2940 2941 // wakeNetPoller wakes up the thread sleeping in the network poller if it isn't 2942 // going to wake up before the when argument; or it wakes an idle P to service 2943 // timers and the network poller if there isn't one already. 2944 func wakeNetPoller(when int64) { 2945 if atomic.Load64(&sched.lastpoll) == 0 { 2946 // In findrunnable we ensure that when polling the pollUntil 2947 // field is either zero or the time to which the current 2948 // poll is expected to run. This can have a spurious wakeup 2949 // but should never miss a wakeup. 2950 pollerPollUntil := int64(atomic.Load64(&sched.pollUntil)) 2951 if pollerPollUntil == 0 || pollerPollUntil > when { 2952 netpollBreak() 2953 } 2954 } else { 2955 // There are no threads in the network poller, try to get 2956 // one there so it can handle new timers. 2957 if GOOS != "plan9" { // Temporary workaround - see issue #42303. 2958 wakep() 2959 } 2960 } 2961 } 2962 2963 func resetspinning() { 2964 _g_ := getg() 2965 if !_g_.m.spinning { 2966 throw("resetspinning: not a spinning m") 2967 } 2968 _g_.m.spinning = false 2969 nmspinning := atomic.Xadd(&sched.nmspinning, -1) 2970 if int32(nmspinning) < 0 { 2971 throw("findrunnable: negative nmspinning") 2972 } 2973 // M wakeup policy is deliberately somewhat conservative, so check if we 2974 // need to wakeup another P here. See "Worker thread parking/unparking" 2975 // comment at the top of the file for details. 2976 wakep() 2977 } 2978 2979 // injectglist adds each runnable G on the list to some run queue, 2980 // and clears glist. If there is no current P, they are added to the 2981 // global queue, and up to npidle M's are started to run them. 2982 // Otherwise, for each idle P, this adds a G to the global queue 2983 // and starts an M. Any remaining G's are added to the current P's 2984 // local run queue. 2985 // This may temporarily acquire sched.lock. 2986 // Can run concurrently with GC. 2987 func injectglist(glist *gList) { 2988 if glist.empty() { 2989 return 2990 } 2991 if trace.enabled { 2992 for gp := glist.head.ptr(); gp != nil; gp = gp.schedlink.ptr() { 2993 traceGoUnpark(gp, 0) 2994 } 2995 } 2996 2997 // Mark all the goroutines as runnable before we put them 2998 // on the run queues. 2999 head := glist.head.ptr() 3000 var tail *g 3001 qsize := 0 3002 for gp := head; gp != nil; gp = gp.schedlink.ptr() { 3003 tail = gp 3004 qsize++ 3005 casgstatus(gp, _Gwaiting, _Grunnable) 3006 } 3007 3008 // Turn the gList into a gQueue. 3009 var q gQueue 3010 q.head.set(head) 3011 q.tail.set(tail) 3012 *glist = gList{} 3013 3014 startIdle := func(n int) { 3015 for ; n != 0 && sched.npidle != 0; n-- { 3016 startm(nil, false) 3017 } 3018 } 3019 3020 pp := getg().m.p.ptr() 3021 if pp == nil { 3022 lock(&sched.lock) 3023 globrunqputbatch(&q, int32(qsize)) 3024 unlock(&sched.lock) 3025 startIdle(qsize) 3026 return 3027 } 3028 3029 npidle := int(atomic.Load(&sched.npidle)) 3030 var globq gQueue 3031 var n int 3032 for n = 0; n < npidle && !q.empty(); n++ { 3033 g := q.pop() 3034 globq.pushBack(g) 3035 } 3036 if n > 0 { 3037 lock(&sched.lock) 3038 globrunqputbatch(&globq, int32(n)) 3039 unlock(&sched.lock) 3040 startIdle(n) 3041 qsize -= n 3042 } 3043 3044 if !q.empty() { 3045 runqputbatch(pp, &q, qsize) 3046 } 3047 } 3048 3049 // One round of scheduler: find a runnable goroutine and execute it. 3050 // Never returns. 3051 func schedule() { 3052 _g_ := getg() 3053 3054 if _g_.m.locks != 0 { 3055 throw("schedule: holding locks") 3056 } 3057 3058 if _g_.m.lockedg != 0 { 3059 stoplockedm() 3060 execute(_g_.m.lockedg.ptr(), false) // Never returns. 3061 } 3062 3063 // We should not schedule away from a g that is executing a cgo call, 3064 // since the cgo call is using the m's g0 stack. 3065 if _g_.m.incgo { 3066 throw("schedule: in cgo") 3067 } 3068 3069 top: 3070 pp := _g_.m.p.ptr() 3071 pp.preempt = false 3072 3073 if sched.gcwaiting != 0 { 3074 gcstopm() 3075 goto top 3076 } 3077 if pp.runSafePointFn != 0 { 3078 runSafePointFn() 3079 } 3080 3081 // Sanity check: if we are spinning, the run queue should be empty. 3082 // Check this before calling checkTimers, as that might call 3083 // goready to put a ready goroutine on the local run queue. 3084 if _g_.m.spinning && (pp.runnext != 0 || pp.runqhead != pp.runqtail) { 3085 throw("schedule: spinning with local work") 3086 } 3087 3088 checkTimers(pp, 0) 3089 3090 var gp *g 3091 var inheritTime bool 3092 3093 // Normal goroutines will check for need to wakeP in ready, 3094 // but GCworkers and tracereaders will not, so the check must 3095 // be done here instead. 3096 tryWakeP := false 3097 if trace.enabled || trace.shutdown { 3098 gp = traceReader() 3099 if gp != nil { 3100 casgstatus(gp, _Gwaiting, _Grunnable) 3101 traceGoUnpark(gp, 0) 3102 tryWakeP = true 3103 } 3104 } 3105 if gp == nil && gcBlackenEnabled != 0 { 3106 gp = gcController.findRunnableGCWorker(_g_.m.p.ptr()) 3107 tryWakeP = tryWakeP || gp != nil 3108 } 3109 if gp == nil { 3110 // Check the global runnable queue once in a while to ensure fairness. 3111 // Otherwise two goroutines can completely occupy the local runqueue 3112 // by constantly respawning each other. 3113 if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 { 3114 lock(&sched.lock) 3115 gp = globrunqget(_g_.m.p.ptr(), 1) 3116 unlock(&sched.lock) 3117 } 3118 } 3119 if gp == nil { 3120 gp, inheritTime = runqget(_g_.m.p.ptr()) 3121 // We can see gp != nil here even if the M is spinning, 3122 // if checkTimers added a local goroutine via goready. 3123 } 3124 if gp == nil { 3125 gp, inheritTime = findrunnable() // blocks until work is available 3126 } 3127 3128 // This thread is going to run a goroutine and is not spinning anymore, 3129 // so if it was marked as spinning we need to reset it now and potentially 3130 // start a new spinning M. 3131 if _g_.m.spinning { 3132 resetspinning() 3133 } 3134 3135 if sched.disable.user && !schedEnabled(gp) { 3136 // Scheduling of this goroutine is disabled. Put it on 3137 // the list of pending runnable goroutines for when we 3138 // re-enable user scheduling and look again. 3139 lock(&sched.lock) 3140 if schedEnabled(gp) { 3141 // Something re-enabled scheduling while we 3142 // were acquiring the lock. 3143 unlock(&sched.lock) 3144 } else { 3145 sched.disable.runnable.pushBack(gp) 3146 sched.disable.n++ 3147 unlock(&sched.lock) 3148 goto top 3149 } 3150 } 3151 3152 // If about to schedule a not-normal goroutine (a GCworker or tracereader), 3153 // wake a P if there is one. 3154 if tryWakeP { 3155 wakep() 3156 } 3157 if gp.lockedm != 0 { 3158 // Hands off own p to the locked m, 3159 // then blocks waiting for a new p. 3160 startlockedm(gp) 3161 goto top 3162 } 3163 3164 execute(gp, inheritTime) 3165 } 3166 3167 // dropg removes the association between m and the current goroutine m->curg (gp for short). 3168 // Typically a caller sets gp's status away from Grunning and then 3169 // immediately calls dropg to finish the job. The caller is also responsible 3170 // for arranging that gp will be restarted using ready at an 3171 // appropriate time. After calling dropg and arranging for gp to be 3172 // readied later, the caller can do other work but eventually should 3173 // call schedule to restart the scheduling of goroutines on this m. 3174 func dropg() { 3175 _g_ := getg() 3176 3177 setMNoWB(&_g_.m.curg.m, nil) 3178 setGNoWB(&_g_.m.curg, nil) 3179 } 3180 3181 // checkTimers runs any timers for the P that are ready. 3182 // If now is not 0 it is the current time. 3183 // It returns the current time or 0 if it is not known, 3184 // and the time when the next timer should run or 0 if there is no next timer, 3185 // and reports whether it ran any timers. 3186 // If the time when the next timer should run is not 0, 3187 // it is always larger than the returned time. 3188 // We pass now in and out to avoid extra calls of nanotime. 3189 //go:yeswritebarrierrec 3190 func checkTimers(pp *p, now int64) (rnow, pollUntil int64, ran bool) { 3191 // If it's not yet time for the first timer, or the first adjusted 3192 // timer, then there is nothing to do. 3193 next := int64(atomic.Load64(&pp.timer0When)) 3194 nextAdj := int64(atomic.Load64(&pp.timerModifiedEarliest)) 3195 if next == 0 || (nextAdj != 0 && nextAdj < next) { 3196 next = nextAdj 3197 } 3198 3199 if next == 0 { 3200 // No timers to run or adjust. 3201 return now, 0, false 3202 } 3203 3204 if now == 0 { 3205 now = nanotime() 3206 } 3207 if now < next { 3208 // Next timer is not ready to run, but keep going 3209 // if we would clear deleted timers. 3210 // This corresponds to the condition below where 3211 // we decide whether to call clearDeletedTimers. 3212 if pp != getg().m.p.ptr() || int(atomic.Load(&pp.deletedTimers)) <= int(atomic.Load(&pp.numTimers)/4) { 3213 return now, next, false 3214 } 3215 } 3216 3217 lock(&pp.timersLock) 3218 3219 if len(pp.timers) > 0 { 3220 adjusttimers(pp, now) 3221 for len(pp.timers) > 0 { 3222 // Note that runtimer may temporarily unlock 3223 // pp.timersLock. 3224 if tw := runtimer(pp, now); tw != 0 { 3225 if tw > 0 { 3226 pollUntil = tw 3227 } 3228 break 3229 } 3230 ran = true 3231 } 3232 } 3233 3234 // If this is the local P, and there are a lot of deleted timers, 3235 // clear them out. We only do this for the local P to reduce 3236 // lock contention on timersLock. 3237 if pp == getg().m.p.ptr() && int(atomic.Load(&pp.deletedTimers)) > len(pp.timers)/4 { 3238 clearDeletedTimers(pp) 3239 } 3240 3241 unlock(&pp.timersLock) 3242 3243 return now, pollUntil, ran 3244 } 3245 3246 func parkunlock_c(gp *g, lock unsafe.Pointer) bool { 3247 unlock((*mutex)(lock)) 3248 return true 3249 } 3250 3251 // park continuation on g0. 3252 func park_m(gp *g) { 3253 _g_ := getg() 3254 3255 if trace.enabled { 3256 traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip) 3257 } 3258 3259 casgstatus(gp, _Grunning, _Gwaiting) 3260 dropg() 3261 3262 if fn := _g_.m.waitunlockf; fn != nil { 3263 ok := fn(gp, _g_.m.waitlock) 3264 _g_.m.waitunlockf = nil 3265 _g_.m.waitlock = nil 3266 if !ok { 3267 if trace.enabled { 3268 traceGoUnpark(gp, 2) 3269 } 3270 casgstatus(gp, _Gwaiting, _Grunnable) 3271 execute(gp, true) // Schedule it back, never returns. 3272 } 3273 } 3274 schedule() 3275 } 3276 3277 func goschedImpl(gp *g) { 3278 status := readgstatus(gp) 3279 if status&^_Gscan != _Grunning { 3280 dumpgstatus(gp) 3281 throw("bad g status") 3282 } 3283 casgstatus(gp, _Grunning, _Grunnable) 3284 dropg() 3285 lock(&sched.lock) 3286 globrunqput(gp) 3287 unlock(&sched.lock) 3288 3289 schedule() 3290 } 3291 3292 // Gosched continuation on g0. 3293 func gosched_m(gp *g) { 3294 if trace.enabled { 3295 traceGoSched() 3296 } 3297 goschedImpl(gp) 3298 } 3299 3300 // goschedguarded is a forbidden-states-avoided version of gosched_m 3301 func goschedguarded_m(gp *g) { 3302 3303 if !canPreemptM(gp.m) { 3304 gogo(&gp.sched) // never return 3305 } 3306 3307 if trace.enabled { 3308 traceGoSched() 3309 } 3310 goschedImpl(gp) 3311 } 3312 3313 func gopreempt_m(gp *g) { 3314 if trace.enabled { 3315 traceGoPreempt() 3316 } 3317 goschedImpl(gp) 3318 } 3319 3320 // preemptPark parks gp and puts it in _Gpreempted. 3321 // 3322 //go:systemstack 3323 func preemptPark(gp *g) { 3324 if trace.enabled { 3325 traceGoPark(traceEvGoBlock, 0) 3326 } 3327 status := readgstatus(gp) 3328 if status&^_Gscan != _Grunning { 3329 dumpgstatus(gp) 3330 throw("bad g status") 3331 } 3332 gp.waitreason = waitReasonPreempted 3333 // Transition from _Grunning to _Gscan|_Gpreempted. We can't 3334 // be in _Grunning when we dropg because then we'd be running 3335 // without an M, but the moment we're in _Gpreempted, 3336 // something could claim this G before we've fully cleaned it 3337 // up. Hence, we set the scan bit to lock down further 3338 // transitions until we can dropg. 3339 casGToPreemptScan(gp, _Grunning, _Gscan|_Gpreempted) 3340 dropg() 3341 casfrom_Gscanstatus(gp, _Gscan|_Gpreempted, _Gpreempted) 3342 schedule() 3343 } 3344 3345 // goyield is like Gosched, but it: 3346 // - emits a GoPreempt trace event instead of a GoSched trace event 3347 // - puts the current G on the runq of the current P instead of the globrunq 3348 func goyield() { 3349 checkTimeouts() 3350 mcall(goyield_m) 3351 } 3352 3353 func goyield_m(gp *g) { 3354 if trace.enabled { 3355 traceGoPreempt() 3356 } 3357 pp := gp.m.p.ptr() 3358 casgstatus(gp, _Grunning, _Grunnable) 3359 dropg() 3360 runqput(pp, gp, false) 3361 schedule() 3362 } 3363 3364 // Finishes execution of the current goroutine. 3365 func goexit1() { 3366 if raceenabled { 3367 racegoend() 3368 } 3369 if trace.enabled { 3370 traceGoEnd() 3371 } 3372 mcall(goexit0) 3373 } 3374 3375 // goexit continuation on g0. 3376 func goexit0(gp *g) { 3377 _g_ := getg() 3378 3379 casgstatus(gp, _Grunning, _Gdead) 3380 if isSystemGoroutine(gp, false) { 3381 atomic.Xadd(&sched.ngsys, -1) 3382 } 3383 gp.m = nil 3384 locked := gp.lockedm != 0 3385 gp.lockedm = 0 3386 _g_.m.lockedg = 0 3387 gp.preemptStop = false 3388 gp.paniconfault = false 3389 gp._defer = nil // should be true already but just in case. 3390 gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data. 3391 gp.writebuf = nil 3392 gp.waitreason = 0 3393 gp.param = nil 3394 gp.labels = nil 3395 gp.timer = nil 3396 3397 if gcBlackenEnabled != 0 && gp.gcAssistBytes > 0 { 3398 // Flush assist credit to the global pool. This gives 3399 // better information to pacing if the application is 3400 // rapidly creating an exiting goroutines. 3401 assistWorkPerByte := float64frombits(atomic.Load64(&gcController.assistWorkPerByte)) 3402 scanCredit := int64(assistWorkPerByte * float64(gp.gcAssistBytes)) 3403 atomic.Xaddint64(&gcController.bgScanCredit, scanCredit) 3404 gp.gcAssistBytes = 0 3405 } 3406 3407 dropg() 3408 3409 if GOARCH == "wasm" { // no threads yet on wasm 3410 gfput(_g_.m.p.ptr(), gp) 3411 schedule() // never returns 3412 } 3413 3414 if _g_.m.lockedInt != 0 { 3415 print("invalid m->lockedInt = ", _g_.m.lockedInt, "\n") 3416 throw("internal lockOSThread error") 3417 } 3418 gfput(_g_.m.p.ptr(), gp) 3419 if locked { 3420 // The goroutine may have locked this thread because 3421 // it put it in an unusual kernel state. Kill it 3422 // rather than returning it to the thread pool. 3423 3424 // Return to mstart, which will release the P and exit 3425 // the thread. 3426 if GOOS != "plan9" { // See golang.org/issue/22227. 3427 gogo(&_g_.m.g0.sched) 3428 } else { 3429 // Clear lockedExt on plan9 since we may end up re-using 3430 // this thread. 3431 _g_.m.lockedExt = 0 3432 } 3433 } 3434 schedule() 3435 } 3436 3437 // save updates getg().sched to refer to pc and sp so that a following 3438 // gogo will restore pc and sp. 3439 // 3440 // save must not have write barriers because invoking a write barrier 3441 // can clobber getg().sched. 3442 // 3443 //go:nosplit 3444 //go:nowritebarrierrec 3445 func save(pc, sp uintptr) { 3446 _g_ := getg() 3447 3448 _g_.sched.pc = pc 3449 _g_.sched.sp = sp 3450 _g_.sched.lr = 0 3451 _g_.sched.ret = 0 3452 _g_.sched.g = guintptr(unsafe.Pointer(_g_)) 3453 // We need to ensure ctxt is zero, but can't have a write 3454 // barrier here. However, it should always already be zero. 3455 // Assert that. 3456 if _g_.sched.ctxt != nil { 3457 badctxt() 3458 } 3459 } 3460 3461 // The goroutine g is about to enter a system call. 3462 // Record that it's not using the cpu anymore. 3463 // This is called only from the go syscall library and cgocall, 3464 // not from the low-level system calls used by the runtime. 3465 // 3466 // Entersyscall cannot split the stack: the gosave must 3467 // make g->sched refer to the caller's stack segment, because 3468 // entersyscall is going to return immediately after. 3469 // 3470 // Nothing entersyscall calls can split the stack either. 3471 // We cannot safely move the stack during an active call to syscall, 3472 // because we do not know which of the uintptr arguments are 3473 // really pointers (back into the stack). 3474 // In practice, this means that we make the fast path run through 3475 // entersyscall doing no-split things, and the slow path has to use systemstack 3476 // to run bigger things on the system stack. 3477 // 3478 // reentersyscall is the entry point used by cgo callbacks, where explicitly 3479 // saved SP and PC are restored. This is needed when exitsyscall will be called 3480 // from a function further up in the call stack than the parent, as g->syscallsp 3481 // must always point to a valid stack frame. entersyscall below is the normal 3482 // entry point for syscalls, which obtains the SP and PC from the caller. 3483 // 3484 // Syscall tracing: 3485 // At the start of a syscall we emit traceGoSysCall to capture the stack trace. 3486 // If the syscall does not block, that is it, we do not emit any other events. 3487 // If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock; 3488 // when syscall returns we emit traceGoSysExit and when the goroutine starts running 3489 // (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart. 3490 // To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock, 3491 // we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick), 3492 // whoever emits traceGoSysBlock increments p.syscalltick afterwards; 3493 // and we wait for the increment before emitting traceGoSysExit. 3494 // Note that the increment is done even if tracing is not enabled, 3495 // because tracing can be enabled in the middle of syscall. We don't want the wait to hang. 3496 // 3497 //go:nosplit 3498 func reentersyscall(pc, sp uintptr) { 3499 _g_ := getg() 3500 3501 // Disable preemption because during this function g is in Gsyscall status, 3502 // but can have inconsistent g->sched, do not let GC observe it. 3503 _g_.m.locks++ 3504 3505 // Entersyscall must not call any function that might split/grow the stack. 3506 // (See details in comment above.) 3507 // Catch calls that might, by replacing the stack guard with something that 3508 // will trip any stack check and leaving a flag to tell newstack to die. 3509 _g_.stackguard0 = stackPreempt 3510 _g_.throwsplit = true 3511 3512 // Leave SP around for GC and traceback. 3513 save(pc, sp) 3514 _g_.syscallsp = sp 3515 _g_.syscallpc = pc 3516 casgstatus(_g_, _Grunning, _Gsyscall) 3517 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 3518 systemstack(func() { 3519 print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 3520 throw("entersyscall") 3521 }) 3522 } 3523 3524 if trace.enabled { 3525 systemstack(traceGoSysCall) 3526 // systemstack itself clobbers g.sched.{pc,sp} and we might 3527 // need them later when the G is genuinely blocked in a 3528 // syscall 3529 save(pc, sp) 3530 } 3531 3532 if atomic.Load(&sched.sysmonwait) != 0 { 3533 systemstack(entersyscall_sysmon) 3534 save(pc, sp) 3535 } 3536 3537 if _g_.m.p.ptr().runSafePointFn != 0 { 3538 // runSafePointFn may stack split if run on this stack 3539 systemstack(runSafePointFn) 3540 save(pc, sp) 3541 } 3542 3543 _g_.m.syscalltick = _g_.m.p.ptr().syscalltick 3544 _g_.sysblocktraced = true 3545 pp := _g_.m.p.ptr() 3546 pp.m = 0 3547 _g_.m.oldp.set(pp) 3548 _g_.m.p = 0 3549 atomic.Store(&pp.status, _Psyscall) 3550 if sched.gcwaiting != 0 { 3551 systemstack(entersyscall_gcwait) 3552 save(pc, sp) 3553 } 3554 3555 _g_.m.locks-- 3556 } 3557 3558 // Standard syscall entry used by the go syscall library and normal cgo calls. 3559 // 3560 // This is exported via linkname to assembly in the syscall package. 3561 // 3562 //go:nosplit 3563 //go:linkname entersyscall 3564 func entersyscall() { 3565 reentersyscall(getcallerpc(), getcallersp()) 3566 } 3567 3568 func entersyscall_sysmon() { 3569 lock(&sched.lock) 3570 if atomic.Load(&sched.sysmonwait) != 0 { 3571 atomic.Store(&sched.sysmonwait, 0) 3572 notewakeup(&sched.sysmonnote) 3573 } 3574 unlock(&sched.lock) 3575 } 3576 3577 func entersyscall_gcwait() { 3578 _g_ := getg() 3579 _p_ := _g_.m.oldp.ptr() 3580 3581 lock(&sched.lock) 3582 if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) { 3583 if trace.enabled { 3584 traceGoSysBlock(_p_) 3585 traceProcStop(_p_) 3586 } 3587 _p_.syscalltick++ 3588 if sched.stopwait--; sched.stopwait == 0 { 3589 notewakeup(&sched.stopnote) 3590 } 3591 } 3592 unlock(&sched.lock) 3593 } 3594 3595 // The same as entersyscall(), but with a hint that the syscall is blocking. 3596 //go:nosplit 3597 func entersyscallblock() { 3598 _g_ := getg() 3599 3600 _g_.m.locks++ // see comment in entersyscall 3601 _g_.throwsplit = true 3602 _g_.stackguard0 = stackPreempt // see comment in entersyscall 3603 _g_.m.syscalltick = _g_.m.p.ptr().syscalltick 3604 _g_.sysblocktraced = true 3605 _g_.m.p.ptr().syscalltick++ 3606 3607 // Leave SP around for GC and traceback. 3608 pc := getcallerpc() 3609 sp := getcallersp() 3610 save(pc, sp) 3611 _g_.syscallsp = _g_.sched.sp 3612 _g_.syscallpc = _g_.sched.pc 3613 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 3614 sp1 := sp 3615 sp2 := _g_.sched.sp 3616 sp3 := _g_.syscallsp 3617 systemstack(func() { 3618 print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 3619 throw("entersyscallblock") 3620 }) 3621 } 3622 casgstatus(_g_, _Grunning, _Gsyscall) 3623 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 3624 systemstack(func() { 3625 print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 3626 throw("entersyscallblock") 3627 }) 3628 } 3629 3630 systemstack(entersyscallblock_handoff) 3631 3632 // Resave for traceback during blocked call. 3633 save(getcallerpc(), getcallersp()) 3634 3635 _g_.m.locks-- 3636 } 3637 3638 func entersyscallblock_handoff() { 3639 if trace.enabled { 3640 traceGoSysCall() 3641 traceGoSysBlock(getg().m.p.ptr()) 3642 } 3643 handoffp(releasep()) 3644 } 3645 3646 // The goroutine g exited its system call. 3647 // Arrange for it to run on a cpu again. 3648 // This is called only from the go syscall library, not 3649 // from the low-level system calls used by the runtime. 3650 // 3651 // Write barriers are not allowed because our P may have been stolen. 3652 // 3653 // This is exported via linkname to assembly in the syscall package. 3654 // 3655 //go:nosplit 3656 //go:nowritebarrierrec 3657 //go:linkname exitsyscall 3658 func exitsyscall() { 3659 _g_ := getg() 3660 3661 _g_.m.locks++ // see comment in entersyscall 3662 if getcallersp() > _g_.syscallsp { 3663 throw("exitsyscall: syscall frame is no longer valid") 3664 } 3665 3666 _g_.waitsince = 0 3667 oldp := _g_.m.oldp.ptr() 3668 _g_.m.oldp = 0 3669 if exitsyscallfast(oldp) { 3670 if trace.enabled { 3671 if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { 3672 systemstack(traceGoStart) 3673 } 3674 } 3675 // There's a cpu for us, so we can run. 3676 _g_.m.p.ptr().syscalltick++ 3677 // We need to cas the status and scan before resuming... 3678 casgstatus(_g_, _Gsyscall, _Grunning) 3679 3680 // Garbage collector isn't running (since we are), 3681 // so okay to clear syscallsp. 3682 _g_.syscallsp = 0 3683 _g_.m.locks-- 3684 if _g_.preempt { 3685 // restore the preemption request in case we've cleared it in newstack 3686 _g_.stackguard0 = stackPreempt 3687 } else { 3688 // otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock 3689 _g_.stackguard0 = _g_.stack.lo + _StackGuard 3690 } 3691 _g_.throwsplit = false 3692 3693 if sched.disable.user && !schedEnabled(_g_) { 3694 // Scheduling of this goroutine is disabled. 3695 Gosched() 3696 } 3697 3698 return 3699 } 3700 3701 _g_.sysexitticks = 0 3702 if trace.enabled { 3703 // Wait till traceGoSysBlock event is emitted. 3704 // This ensures consistency of the trace (the goroutine is started after it is blocked). 3705 for oldp != nil && oldp.syscalltick == _g_.m.syscalltick { 3706 osyield() 3707 } 3708 // We can't trace syscall exit right now because we don't have a P. 3709 // Tracing code can invoke write barriers that cannot run without a P. 3710 // So instead we remember the syscall exit time and emit the event 3711 // in execute when we have a P. 3712 _g_.sysexitticks = cputicks() 3713 } 3714 3715 _g_.m.locks-- 3716 3717 // Call the scheduler. 3718 mcall(exitsyscall0) 3719 3720 // Scheduler returned, so we're allowed to run now. 3721 // Delete the syscallsp information that we left for 3722 // the garbage collector during the system call. 3723 // Must wait until now because until gosched returns 3724 // we don't know for sure that the garbage collector 3725 // is not running. 3726 _g_.syscallsp = 0 3727 _g_.m.p.ptr().syscalltick++ 3728 _g_.throwsplit = false 3729 } 3730 3731 //go:nosplit 3732 func exitsyscallfast(oldp *p) bool { 3733 _g_ := getg() 3734 3735 // Freezetheworld sets stopwait but does not retake P's. 3736 if sched.stopwait == freezeStopWait { 3737 return false 3738 } 3739 3740 // Try to re-acquire the last P. 3741 if oldp != nil && oldp.status == _Psyscall && atomic.Cas(&oldp.status, _Psyscall, _Pidle) { 3742 // There's a cpu for us, so we can run. 3743 wirep(oldp) 3744 exitsyscallfast_reacquired() 3745 return true 3746 } 3747 3748 // Try to get any other idle P. 3749 if sched.pidle != 0 { 3750 var ok bool 3751 systemstack(func() { 3752 ok = exitsyscallfast_pidle() 3753 if ok && trace.enabled { 3754 if oldp != nil { 3755 // Wait till traceGoSysBlock event is emitted. 3756 // This ensures consistency of the trace (the goroutine is started after it is blocked). 3757 for oldp.syscalltick == _g_.m.syscalltick { 3758 osyield() 3759 } 3760 } 3761 traceGoSysExit(0) 3762 } 3763 }) 3764 if ok { 3765 return true 3766 } 3767 } 3768 return false 3769 } 3770 3771 // exitsyscallfast_reacquired is the exitsyscall path on which this G 3772 // has successfully reacquired the P it was running on before the 3773 // syscall. 3774 // 3775 //go:nosplit 3776 func exitsyscallfast_reacquired() { 3777 _g_ := getg() 3778 if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { 3779 if trace.enabled { 3780 // The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed). 3781 // traceGoSysBlock for this syscall was already emitted, 3782 // but here we effectively retake the p from the new syscall running on the same p. 3783 systemstack(func() { 3784 // Denote blocking of the new syscall. 3785 traceGoSysBlock(_g_.m.p.ptr()) 3786 // Denote completion of the current syscall. 3787 traceGoSysExit(0) 3788 }) 3789 } 3790 _g_.m.p.ptr().syscalltick++ 3791 } 3792 } 3793 3794 func exitsyscallfast_pidle() bool { 3795 lock(&sched.lock) 3796 _p_ := pidleget() 3797 if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 { 3798 atomic.Store(&sched.sysmonwait, 0) 3799 notewakeup(&sched.sysmonnote) 3800 } 3801 unlock(&sched.lock) 3802 if _p_ != nil { 3803 acquirep(_p_) 3804 return true 3805 } 3806 return false 3807 } 3808 3809 // exitsyscall slow path on g0. 3810 // Failed to acquire P, enqueue gp as runnable. 3811 // 3812 //go:nowritebarrierrec 3813 func exitsyscall0(gp *g) { 3814 _g_ := getg() 3815 3816 casgstatus(gp, _Gsyscall, _Grunnable) 3817 dropg() 3818 lock(&sched.lock) 3819 var _p_ *p 3820 if schedEnabled(_g_) { 3821 _p_ = pidleget() 3822 } 3823 if _p_ == nil { 3824 globrunqput(gp) 3825 } else if atomic.Load(&sched.sysmonwait) != 0 { 3826 atomic.Store(&sched.sysmonwait, 0) 3827 notewakeup(&sched.sysmonnote) 3828 } 3829 unlock(&sched.lock) 3830 if _p_ != nil { 3831 acquirep(_p_) 3832 execute(gp, false) // Never returns. 3833 } 3834 if _g_.m.lockedg != 0 { 3835 // Wait until another thread schedules gp and so m again. 3836 stoplockedm() 3837 execute(gp, false) // Never returns. 3838 } 3839 stopm() 3840 schedule() // Never returns. 3841 } 3842 3843 func beforefork() { 3844 gp := getg().m.curg 3845 3846 // Block signals during a fork, so that the child does not run 3847 // a signal handler before exec if a signal is sent to the process 3848 // group. See issue #18600. 3849 gp.m.locks++ 3850 sigsave(&gp.m.sigmask) 3851 sigblock(false) 3852 3853 // This function is called before fork in syscall package. 3854 // Code between fork and exec must not allocate memory nor even try to grow stack. 3855 // Here we spoil g->_StackGuard to reliably detect any attempts to grow stack. 3856 // runtime_AfterFork will undo this in parent process, but not in child. 3857 gp.stackguard0 = stackFork 3858 } 3859 3860 // Called from syscall package before fork. 3861 //go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork 3862 //go:nosplit 3863 func syscall_runtime_BeforeFork() { 3864 systemstack(beforefork) 3865 } 3866 3867 func afterfork() { 3868 gp := getg().m.curg 3869 3870 // See the comments in beforefork. 3871 gp.stackguard0 = gp.stack.lo + _StackGuard 3872 3873 msigrestore(gp.m.sigmask) 3874 3875 gp.m.locks-- 3876 } 3877 3878 // Called from syscall package after fork in parent. 3879 //go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork 3880 //go:nosplit 3881 func syscall_runtime_AfterFork() { 3882 systemstack(afterfork) 3883 } 3884 3885 // inForkedChild is true while manipulating signals in the child process. 3886 // This is used to avoid calling libc functions in case we are using vfork. 3887 var inForkedChild bool 3888 3889 // Called from syscall package after fork in child. 3890 // It resets non-sigignored signals to the default handler, and 3891 // restores the signal mask in preparation for the exec. 3892 // 3893 // Because this might be called during a vfork, and therefore may be 3894 // temporarily sharing address space with the parent process, this must 3895 // not change any global variables or calling into C code that may do so. 3896 // 3897 //go:linkname syscall_runtime_AfterForkInChild syscall.runtime_AfterForkInChild 3898 //go:nosplit 3899 //go:nowritebarrierrec 3900 func syscall_runtime_AfterForkInChild() { 3901 // It's OK to change the global variable inForkedChild here 3902 // because we are going to change it back. There is no race here, 3903 // because if we are sharing address space with the parent process, 3904 // then the parent process can not be running concurrently. 3905 inForkedChild = true 3906 3907 clearSignalHandlers() 3908 3909 // When we are the child we are the only thread running, 3910 // so we know that nothing else has changed gp.m.sigmask. 3911 msigrestore(getg().m.sigmask) 3912 3913 inForkedChild = false 3914 } 3915 3916 // pendingPreemptSignals is the number of preemption signals 3917 // that have been sent but not received. This is only used on Darwin. 3918 // For #41702. 3919 var pendingPreemptSignals uint32 3920 3921 // Called from syscall package before Exec. 3922 //go:linkname syscall_runtime_BeforeExec syscall.runtime_BeforeExec 3923 func syscall_runtime_BeforeExec() { 3924 // Prevent thread creation during exec. 3925 execLock.lock() 3926 3927 // On Darwin, wait for all pending preemption signals to 3928 // be received. See issue #41702. 3929 if GOOS == "darwin" || GOOS == "ios" { 3930 for int32(atomic.Load(&pendingPreemptSignals)) > 0 { 3931 osyield() 3932 } 3933 } 3934 } 3935 3936 // Called from syscall package after Exec. 3937 //go:linkname syscall_runtime_AfterExec syscall.runtime_AfterExec 3938 func syscall_runtime_AfterExec() { 3939 execLock.unlock() 3940 } 3941 3942 // Allocate a new g, with a stack big enough for stacksize bytes. 3943 func malg(stacksize int32) *g { 3944 newg := new(g) 3945 if stacksize >= 0 { 3946 stacksize = round2(_StackSystem + stacksize) 3947 systemstack(func() { 3948 newg.stack = stackalloc(uint32(stacksize)) 3949 }) 3950 newg.stackguard0 = newg.stack.lo + _StackGuard 3951 newg.stackguard1 = ^uintptr(0) 3952 // Clear the bottom word of the stack. We record g 3953 // there on gsignal stack during VDSO on ARM and ARM64. 3954 *(*uintptr)(unsafe.Pointer(newg.stack.lo)) = 0 3955 } 3956 return newg 3957 } 3958 3959 // Create a new g running fn with siz bytes of arguments. 3960 // Put it on the queue of g's waiting to run. 3961 // The compiler turns a go statement into a call to this. 3962 // 3963 // The stack layout of this call is unusual: it assumes that the 3964 // arguments to pass to fn are on the stack sequentially immediately 3965 // after &fn. Hence, they are logically part of newproc's argument 3966 // frame, even though they don't appear in its signature (and can't 3967 // because their types differ between call sites). 3968 // 3969 // This must be nosplit because this stack layout means there are 3970 // untyped arguments in newproc's argument frame. Stack copies won't 3971 // be able to adjust them and stack splits won't be able to copy them. 3972 // 3973 //go:nosplit 3974 func newproc(siz int32, fn *funcval) { 3975 argp := add(unsafe.Pointer(&fn), sys.PtrSize) 3976 gp := getg() 3977 pc := getcallerpc() 3978 systemstack(func() { 3979 newg := newproc1(fn, argp, siz, gp, pc) 3980 3981 _p_ := getg().m.p.ptr() 3982 runqput(_p_, newg, true) 3983 3984 if mainStarted { 3985 wakep() 3986 } 3987 }) 3988 } 3989 3990 // Create a new g in state _Grunnable, starting at fn, with narg bytes 3991 // of arguments starting at argp. callerpc is the address of the go 3992 // statement that created this. The caller is responsible for adding 3993 // the new g to the scheduler. 3994 // 3995 // This must run on the system stack because it's the continuation of 3996 // newproc, which cannot split the stack. 3997 // 3998 //go:systemstack 3999 func newproc1(fn *funcval, argp unsafe.Pointer, narg int32, callergp *g, callerpc uintptr) *g { 4000 _g_ := getg() 4001 4002 if fn == nil { 4003 _g_.m.throwing = -1 // do not dump full stacks 4004 throw("go of nil func value") 4005 } 4006 acquirem() // disable preemption because it can be holding p in a local var 4007 siz := narg 4008 siz = (siz + 7) &^ 7 4009 4010 // We could allocate a larger initial stack if necessary. 4011 // Not worth it: this is almost always an error. 4012 // 4*sizeof(uintreg): extra space added below 4013 // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall). 4014 if siz >= _StackMin-4*sys.RegSize-sys.RegSize { 4015 throw("newproc: function arguments too large for new goroutine") 4016 } 4017 4018 _p_ := _g_.m.p.ptr() 4019 newg := gfget(_p_) 4020 if newg == nil { 4021 newg = malg(_StackMin) 4022 casgstatus(newg, _Gidle, _Gdead) 4023 allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack. 4024 } 4025 if newg.stack.hi == 0 { 4026 throw("newproc1: newg missing stack") 4027 } 4028 4029 if readgstatus(newg) != _Gdead { 4030 throw("newproc1: new g is not Gdead") 4031 } 4032 4033 totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame 4034 totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign 4035 sp := newg.stack.hi - totalSize 4036 spArg := sp 4037 if usesLR { 4038 // caller's LR 4039 *(*uintptr)(unsafe.Pointer(sp)) = 0 4040 prepGoExitFrame(sp) 4041 spArg += sys.MinFrameSize 4042 } 4043 if narg > 0 { 4044 memmove(unsafe.Pointer(spArg), argp, uintptr(narg)) 4045 // This is a stack-to-stack copy. If write barriers 4046 // are enabled and the source stack is grey (the 4047 // destination is always black), then perform a 4048 // barrier copy. We do this *after* the memmove 4049 // because the destination stack may have garbage on 4050 // it. 4051 if writeBarrier.needed && !_g_.m.curg.gcscandone { 4052 f := findfunc(fn.fn) 4053 stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps)) 4054 if stkmap.nbit > 0 { 4055 // We're in the prologue, so it's always stack map index 0. 4056 bv := stackmapdata(stkmap, 0) 4057 bulkBarrierBitmap(spArg, spArg, uintptr(bv.n)*sys.PtrSize, 0, bv.bytedata) 4058 } 4059 } 4060 } 4061 4062 memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched)) 4063 newg.sched.sp = sp 4064 newg.stktopsp = sp 4065 newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function 4066 newg.sched.g = guintptr(unsafe.Pointer(newg)) 4067 gostartcallfn(&newg.sched, fn) 4068 newg.gopc = callerpc 4069 newg.ancestors = saveAncestors(callergp) 4070 newg.startpc = fn.fn 4071 if _g_.m.curg != nil { 4072 newg.labels = _g_.m.curg.labels 4073 } 4074 if isSystemGoroutine(newg, false) { 4075 atomic.Xadd(&sched.ngsys, +1) 4076 } 4077 casgstatus(newg, _Gdead, _Grunnable) 4078 4079 if _p_.goidcache == _p_.goidcacheend { 4080 // Sched.goidgen is the last allocated id, 4081 // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch]. 4082 // At startup sched.goidgen=0, so main goroutine receives goid=1. 4083 _p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch) 4084 _p_.goidcache -= _GoidCacheBatch - 1 4085 _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch 4086 } 4087 newg.goid = int64(_p_.goidcache) 4088 _p_.goidcache++ 4089 if raceenabled { 4090 newg.racectx = racegostart(callerpc) 4091 } 4092 if trace.enabled { 4093 traceGoCreate(newg, newg.startpc) 4094 } 4095 releasem(_g_.m) 4096 4097 return newg 4098 } 4099 4100 // saveAncestors copies previous ancestors of the given caller g and 4101 // includes infor for the current caller into a new set of tracebacks for 4102 // a g being created. 4103 func saveAncestors(callergp *g) *[]ancestorInfo { 4104 // Copy all prior info, except for the root goroutine (goid 0). 4105 if debug.tracebackancestors <= 0 || callergp.goid == 0 { 4106 return nil 4107 } 4108 var callerAncestors []ancestorInfo 4109 if callergp.ancestors != nil { 4110 callerAncestors = *callergp.ancestors 4111 } 4112 n := int32(len(callerAncestors)) + 1 4113 if n > debug.tracebackancestors { 4114 n = debug.tracebackancestors 4115 } 4116 ancestors := make([]ancestorInfo, n) 4117 copy(ancestors[1:], callerAncestors) 4118 4119 var pcs [_TracebackMaxFrames]uintptr 4120 npcs := gcallers(callergp, 0, pcs[:]) 4121 ipcs := make([]uintptr, npcs) 4122 copy(ipcs, pcs[:]) 4123 ancestors[0] = ancestorInfo{ 4124 pcs: ipcs, 4125 goid: callergp.goid, 4126 gopc: callergp.gopc, 4127 } 4128 4129 ancestorsp := new([]ancestorInfo) 4130 *ancestorsp = ancestors 4131 return ancestorsp 4132 } 4133 4134 // Put on gfree list. 4135 // If local list is too long, transfer a batch to the global list. 4136 func gfput(_p_ *p, gp *g) { 4137 if readgstatus(gp) != _Gdead { 4138 throw("gfput: bad status (not Gdead)") 4139 } 4140 4141 stksize := gp.stack.hi - gp.stack.lo 4142 4143 if stksize != _FixedStack { 4144 // non-standard stack size - free it. 4145 stackfree(gp.stack) 4146 gp.stack.lo = 0 4147 gp.stack.hi = 0 4148 gp.stackguard0 = 0 4149 } 4150 4151 _p_.gFree.push(gp) 4152 _p_.gFree.n++ 4153 if _p_.gFree.n >= 64 { 4154 lock(&sched.gFree.lock) 4155 for _p_.gFree.n >= 32 { 4156 _p_.gFree.n-- 4157 gp = _p_.gFree.pop() 4158 if gp.stack.lo == 0 { 4159 sched.gFree.noStack.push(gp) 4160 } else { 4161 sched.gFree.stack.push(gp) 4162 } 4163 sched.gFree.n++ 4164 } 4165 unlock(&sched.gFree.lock) 4166 } 4167 } 4168 4169 // Get from gfree list. 4170 // If local list is empty, grab a batch from global list. 4171 func gfget(_p_ *p) *g { 4172 retry: 4173 if _p_.gFree.empty() && (!sched.gFree.stack.empty() || !sched.gFree.noStack.empty()) { 4174 lock(&sched.gFree.lock) 4175 // Move a batch of free Gs to the P. 4176 for _p_.gFree.n < 32 { 4177 // Prefer Gs with stacks. 4178 gp := sched.gFree.stack.pop() 4179 if gp == nil { 4180 gp = sched.gFree.noStack.pop() 4181 if gp == nil { 4182 break 4183 } 4184 } 4185 sched.gFree.n-- 4186 _p_.gFree.push(gp) 4187 _p_.gFree.n++ 4188 } 4189 unlock(&sched.gFree.lock) 4190 goto retry 4191 } 4192 gp := _p_.gFree.pop() 4193 if gp == nil { 4194 return nil 4195 } 4196 _p_.gFree.n-- 4197 if gp.stack.lo == 0 { 4198 // Stack was deallocated in gfput. Allocate a new one. 4199 systemstack(func() { 4200 gp.stack = stackalloc(_FixedStack) 4201 }) 4202 gp.stackguard0 = gp.stack.lo + _StackGuard 4203 } else { 4204 if raceenabled { 4205 racemalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo) 4206 } 4207 if msanenabled { 4208 msanmalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo) 4209 } 4210 } 4211 return gp 4212 } 4213 4214 // Purge all cached G's from gfree list to the global list. 4215 func gfpurge(_p_ *p) { 4216 lock(&sched.gFree.lock) 4217 for !_p_.gFree.empty() { 4218 gp := _p_.gFree.pop() 4219 _p_.gFree.n-- 4220 if gp.stack.lo == 0 { 4221 sched.gFree.noStack.push(gp) 4222 } else { 4223 sched.gFree.stack.push(gp) 4224 } 4225 sched.gFree.n++ 4226 } 4227 unlock(&sched.gFree.lock) 4228 } 4229 4230 // Breakpoint executes a breakpoint trap. 4231 func Breakpoint() { 4232 breakpoint() 4233 } 4234 4235 // dolockOSThread is called by LockOSThread and lockOSThread below 4236 // after they modify m.locked. Do not allow preemption during this call, 4237 // or else the m might be different in this function than in the caller. 4238 //go:nosplit 4239 func dolockOSThread() { 4240 if GOARCH == "wasm" { 4241 return // no threads on wasm yet 4242 } 4243 _g_ := getg() 4244 _g_.m.lockedg.set(_g_) 4245 _g_.lockedm.set(_g_.m) 4246 } 4247 4248 //go:nosplit 4249 4250 // LockOSThread wires the calling goroutine to its current operating system thread. 4251 // The calling goroutine will always execute in that thread, 4252 // and no other goroutine will execute in it, 4253 // until the calling goroutine has made as many calls to 4254 // UnlockOSThread as to LockOSThread. 4255 // If the calling goroutine exits without unlocking the thread, 4256 // the thread will be terminated. 4257 // 4258 // All init functions are run on the startup thread. Calling LockOSThread 4259 // from an init function will cause the main function to be invoked on 4260 // that thread. 4261 // 4262 // A goroutine should call LockOSThread before calling OS services or 4263 // non-Go library functions that depend on per-thread state. 4264 func LockOSThread() { 4265 if atomic.Load(&newmHandoff.haveTemplateThread) == 0 && GOOS != "plan9" { 4266 // If we need to start a new thread from the locked 4267 // thread, we need the template thread. Start it now 4268 // while we're in a known-good state. 4269 startTemplateThread() 4270 } 4271 _g_ := getg() 4272 _g_.m.lockedExt++ 4273 if _g_.m.lockedExt == 0 { 4274 _g_.m.lockedExt-- 4275 panic("LockOSThread nesting overflow") 4276 } 4277 dolockOSThread() 4278 } 4279 4280 //go:nosplit 4281 func lockOSThread() { 4282 getg().m.lockedInt++ 4283 dolockOSThread() 4284 } 4285 4286 // dounlockOSThread is called by UnlockOSThread and unlockOSThread below 4287 // after they update m->locked. Do not allow preemption during this call, 4288 // or else the m might be in different in this function than in the caller. 4289 //go:nosplit 4290 func dounlockOSThread() { 4291 if GOARCH == "wasm" { 4292 return // no threads on wasm yet 4293 } 4294 _g_ := getg() 4295 if _g_.m.lockedInt != 0 || _g_.m.lockedExt != 0 { 4296 return 4297 } 4298 _g_.m.lockedg = 0 4299 _g_.lockedm = 0 4300 } 4301 4302 //go:nosplit 4303 4304 // UnlockOSThread undoes an earlier call to LockOSThread. 4305 // If this drops the number of active LockOSThread calls on the 4306 // calling goroutine to zero, it unwires the calling goroutine from 4307 // its fixed operating system thread. 4308 // If there are no active LockOSThread calls, this is a no-op. 4309 // 4310 // Before calling UnlockOSThread, the caller must ensure that the OS 4311 // thread is suitable for running other goroutines. If the caller made 4312 // any permanent changes to the state of the thread that would affect 4313 // other goroutines, it should not call this function and thus leave 4314 // the goroutine locked to the OS thread until the goroutine (and 4315 // hence the thread) exits. 4316 func UnlockOSThread() { 4317 _g_ := getg() 4318 if _g_.m.lockedExt == 0 { 4319 return 4320 } 4321 _g_.m.lockedExt-- 4322 dounlockOSThread() 4323 } 4324 4325 //go:nosplit 4326 func unlockOSThread() { 4327 _g_ := getg() 4328 if _g_.m.lockedInt == 0 { 4329 systemstack(badunlockosthread) 4330 } 4331 _g_.m.lockedInt-- 4332 dounlockOSThread() 4333 } 4334 4335 func badunlockosthread() { 4336 throw("runtime: internal error: misuse of lockOSThread/unlockOSThread") 4337 } 4338 4339 func gcount() int32 { 4340 n := int32(atomic.Loaduintptr(&allglen)) - sched.gFree.n - int32(atomic.Load(&sched.ngsys)) 4341 for _, _p_ := range allp { 4342 n -= _p_.gFree.n 4343 } 4344 4345 // All these variables can be changed concurrently, so the result can be inconsistent. 4346 // But at least the current goroutine is running. 4347 if n < 1 { 4348 n = 1 4349 } 4350 return n 4351 } 4352 4353 func mcount() int32 { 4354 return int32(sched.mnext - sched.nmfreed) 4355 } 4356 4357 var prof struct { 4358 signalLock uint32 4359 hz int32 4360 } 4361 4362 func _System() { _System() } 4363 func _ExternalCode() { _ExternalCode() } 4364 func _LostExternalCode() { _LostExternalCode() } 4365 func _GC() { _GC() } 4366 func _LostSIGPROFDuringAtomic64() { _LostSIGPROFDuringAtomic64() } 4367 func _VDSO() { _VDSO() } 4368 4369 // Called if we receive a SIGPROF signal. 4370 // Called by the signal handler, may run during STW. 4371 //go:nowritebarrierrec 4372 func sigprof(pc, sp, lr uintptr, gp *g, mp *m) { 4373 if prof.hz == 0 { 4374 return 4375 } 4376 4377 // If mp.profilehz is 0, then profiling is not enabled for this thread. 4378 // We must check this to avoid a deadlock between setcpuprofilerate 4379 // and the call to cpuprof.add, below. 4380 if mp != nil && mp.profilehz == 0 { 4381 return 4382 } 4383 4384 // On mips{,le}, 64bit atomics are emulated with spinlocks, in 4385 // runtime/internal/atomic. If SIGPROF arrives while the program is inside 4386 // the critical section, it creates a deadlock (when writing the sample). 4387 // As a workaround, create a counter of SIGPROFs while in critical section 4388 // to store the count, and pass it to sigprof.add() later when SIGPROF is 4389 // received from somewhere else (with _LostSIGPROFDuringAtomic64 as pc). 4390 if GOARCH == "mips" || GOARCH == "mipsle" || GOARCH == "arm" { 4391 if f := findfunc(pc); f.valid() { 4392 if hasPrefix(funcname(f), "runtime/internal/atomic") { 4393 cpuprof.lostAtomic++ 4394 return 4395 } 4396 } 4397 } 4398 4399 // Profiling runs concurrently with GC, so it must not allocate. 4400 // Set a trap in case the code does allocate. 4401 // Note that on windows, one thread takes profiles of all the 4402 // other threads, so mp is usually not getg().m. 4403 // In fact mp may not even be stopped. 4404 // See golang.org/issue/17165. 4405 getg().m.mallocing++ 4406 4407 // Define that a "user g" is a user-created goroutine, and a "system g" 4408 // is one that is m->g0 or m->gsignal. 4409 // 4410 // We might be interrupted for profiling halfway through a 4411 // goroutine switch. The switch involves updating three (or four) values: 4412 // g, PC, SP, and (on arm) LR. The PC must be the last to be updated, 4413 // because once it gets updated the new g is running. 4414 // 4415 // When switching from a user g to a system g, LR is not considered live, 4416 // so the update only affects g, SP, and PC. Since PC must be last, there 4417 // the possible partial transitions in ordinary execution are (1) g alone is updated, 4418 // (2) both g and SP are updated, and (3) SP alone is updated. 4419 // If SP or g alone is updated, we can detect the partial transition by checking 4420 // whether the SP is within g's stack bounds. (We could also require that SP 4421 // be changed only after g, but the stack bounds check is needed by other 4422 // cases, so there is no need to impose an additional requirement.) 4423 // 4424 // There is one exceptional transition to a system g, not in ordinary execution. 4425 // When a signal arrives, the operating system starts the signal handler running 4426 // with an updated PC and SP. The g is updated last, at the beginning of the 4427 // handler. There are two reasons this is okay. First, until g is updated the 4428 // g and SP do not match, so the stack bounds check detects the partial transition. 4429 // Second, signal handlers currently run with signals disabled, so a profiling 4430 // signal cannot arrive during the handler. 4431 // 4432 // When switching from a system g to a user g, there are three possibilities. 4433 // 4434 // First, it may be that the g switch has no PC update, because the SP 4435 // either corresponds to a user g throughout (as in asmcgocall) 4436 // or because it has been arranged to look like a user g frame 4437 // (as in cgocallback). In this case, since the entire 4438 // transition is a g+SP update, a partial transition updating just one of 4439 // those will be detected by the stack bounds check. 4440 // 4441 // Second, when returning from a signal handler, the PC and SP updates 4442 // are performed by the operating system in an atomic update, so the g 4443 // update must be done before them. The stack bounds check detects 4444 // the partial transition here, and (again) signal handlers run with signals 4445 // disabled, so a profiling signal cannot arrive then anyway. 4446 // 4447 // Third, the common case: it may be that the switch updates g, SP, and PC 4448 // separately. If the PC is within any of the functions that does this, 4449 // we don't ask for a traceback. C.F. the function setsSP for more about this. 4450 // 4451 // There is another apparently viable approach, recorded here in case 4452 // the "PC within setsSP function" check turns out not to be usable. 4453 // It would be possible to delay the update of either g or SP until immediately 4454 // before the PC update instruction. Then, because of the stack bounds check, 4455 // the only problematic interrupt point is just before that PC update instruction, 4456 // and the sigprof handler can detect that instruction and simulate stepping past 4457 // it in order to reach a consistent state. On ARM, the update of g must be made 4458 // in two places (in R10 and also in a TLS slot), so the delayed update would 4459 // need to be the SP update. The sigprof handler must read the instruction at 4460 // the current PC and if it was the known instruction (for example, JMP BX or 4461 // MOV R2, PC), use that other register in place of the PC value. 4462 // The biggest drawback to this solution is that it requires that we can tell 4463 // whether it's safe to read from the memory pointed at by PC. 4464 // In a correct program, we can test PC == nil and otherwise read, 4465 // but if a profiling signal happens at the instant that a program executes 4466 // a bad jump (before the program manages to handle the resulting fault) 4467 // the profiling handler could fault trying to read nonexistent memory. 4468 // 4469 // To recap, there are no constraints on the assembly being used for the 4470 // transition. We simply require that g and SP match and that the PC is not 4471 // in gogo. 4472 traceback := true 4473 if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) || (mp != nil && mp.vdsoSP != 0) { 4474 traceback = false 4475 } 4476 var stk [maxCPUProfStack]uintptr 4477 n := 0 4478 if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 { 4479 cgoOff := 0 4480 // Check cgoCallersUse to make sure that we are not 4481 // interrupting other code that is fiddling with 4482 // cgoCallers. We are running in a signal handler 4483 // with all signals blocked, so we don't have to worry 4484 // about any other code interrupting us. 4485 if atomic.Load(&mp.cgoCallersUse) == 0 && mp.cgoCallers != nil && mp.cgoCallers[0] != 0 { 4486 for cgoOff < len(mp.cgoCallers) && mp.cgoCallers[cgoOff] != 0 { 4487 cgoOff++ 4488 } 4489 copy(stk[:], mp.cgoCallers[:cgoOff]) 4490 mp.cgoCallers[0] = 0 4491 } 4492 4493 // Collect Go stack that leads to the cgo call. 4494 n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[cgoOff], len(stk)-cgoOff, nil, nil, 0) 4495 if n > 0 { 4496 n += cgoOff 4497 } 4498 } else if traceback { 4499 n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack) 4500 } 4501 4502 if n <= 0 { 4503 // Normal traceback is impossible or has failed. 4504 // See if it falls into several common cases. 4505 n = 0 4506 if usesLibcall() && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 { 4507 // Libcall, i.e. runtime syscall on windows. 4508 // Collect Go stack that leads to the call. 4509 n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0) 4510 } 4511 if n == 0 && mp != nil && mp.vdsoSP != 0 { 4512 n = gentraceback(mp.vdsoPC, mp.vdsoSP, 0, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack) 4513 } 4514 if n == 0 { 4515 // If all of the above has failed, account it against abstract "System" or "GC". 4516 n = 2 4517 if inVDSOPage(pc) { 4518 pc = funcPC(_VDSO) + sys.PCQuantum 4519 } else if pc > firstmoduledata.etext { 4520 // "ExternalCode" is better than "etext". 4521 pc = funcPC(_ExternalCode) + sys.PCQuantum 4522 } 4523 stk[0] = pc 4524 if mp.preemptoff != "" { 4525 stk[1] = funcPC(_GC) + sys.PCQuantum 4526 } else { 4527 stk[1] = funcPC(_System) + sys.PCQuantum 4528 } 4529 } 4530 } 4531 4532 if prof.hz != 0 { 4533 cpuprof.add(gp, stk[:n]) 4534 } 4535 getg().m.mallocing-- 4536 } 4537 4538 // If the signal handler receives a SIGPROF signal on a non-Go thread, 4539 // it tries to collect a traceback into sigprofCallers. 4540 // sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback. 4541 var sigprofCallers cgoCallers 4542 var sigprofCallersUse uint32 4543 4544 // sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread, 4545 // and the signal handler collected a stack trace in sigprofCallers. 4546 // When this is called, sigprofCallersUse will be non-zero. 4547 // g is nil, and what we can do is very limited. 4548 //go:nosplit 4549 //go:nowritebarrierrec 4550 func sigprofNonGo() { 4551 if prof.hz != 0 { 4552 n := 0 4553 for n < len(sigprofCallers) && sigprofCallers[n] != 0 { 4554 n++ 4555 } 4556 cpuprof.addNonGo(sigprofCallers[:n]) 4557 } 4558 4559 atomic.Store(&sigprofCallersUse, 0) 4560 } 4561 4562 // sigprofNonGoPC is called when a profiling signal arrived on a 4563 // non-Go thread and we have a single PC value, not a stack trace. 4564 // g is nil, and what we can do is very limited. 4565 //go:nosplit 4566 //go:nowritebarrierrec 4567 func sigprofNonGoPC(pc uintptr) { 4568 if prof.hz != 0 { 4569 stk := []uintptr{ 4570 pc, 4571 funcPC(_ExternalCode) + sys.PCQuantum, 4572 } 4573 cpuprof.addNonGo(stk) 4574 } 4575 } 4576 4577 // Reports whether a function will set the SP 4578 // to an absolute value. Important that 4579 // we don't traceback when these are at the bottom 4580 // of the stack since we can't be sure that we will 4581 // find the caller. 4582 // 4583 // If the function is not on the bottom of the stack 4584 // we assume that it will have set it up so that traceback will be consistent, 4585 // either by being a traceback terminating function 4586 // or putting one on the stack at the right offset. 4587 func setsSP(pc uintptr) bool { 4588 f := findfunc(pc) 4589 if !f.valid() { 4590 // couldn't find the function for this PC, 4591 // so assume the worst and stop traceback 4592 return true 4593 } 4594 switch f.funcID { 4595 case funcID_gogo, funcID_systemstack, funcID_mcall, funcID_morestack: 4596 return true 4597 } 4598 return false 4599 } 4600 4601 // setcpuprofilerate sets the CPU profiling rate to hz times per second. 4602 // If hz <= 0, setcpuprofilerate turns off CPU profiling. 4603 func setcpuprofilerate(hz int32) { 4604 // Force sane arguments. 4605 if hz < 0 { 4606 hz = 0 4607 } 4608 4609 // Disable preemption, otherwise we can be rescheduled to another thread 4610 // that has profiling enabled. 4611 _g_ := getg() 4612 _g_.m.locks++ 4613 4614 // Stop profiler on this thread so that it is safe to lock prof. 4615 // if a profiling signal came in while we had prof locked, 4616 // it would deadlock. 4617 setThreadCPUProfiler(0) 4618 4619 for !atomic.Cas(&prof.signalLock, 0, 1) { 4620 osyield() 4621 } 4622 if prof.hz != hz { 4623 setProcessCPUProfiler(hz) 4624 prof.hz = hz 4625 } 4626 atomic.Store(&prof.signalLock, 0) 4627 4628 lock(&sched.lock) 4629 sched.profilehz = hz 4630 unlock(&sched.lock) 4631 4632 if hz != 0 { 4633 setThreadCPUProfiler(hz) 4634 } 4635 4636 _g_.m.locks-- 4637 } 4638 4639 // init initializes pp, which may be a freshly allocated p or a 4640 // previously destroyed p, and transitions it to status _Pgcstop. 4641 func (pp *p) init(id int32) { 4642 pp.id = id 4643 pp.status = _Pgcstop 4644 pp.sudogcache = pp.sudogbuf[:0] 4645 for i := range pp.deferpool { 4646 pp.deferpool[i] = pp.deferpoolbuf[i][:0] 4647 } 4648 pp.wbBuf.reset() 4649 if pp.mcache == nil { 4650 if id == 0 { 4651 if mcache0 == nil { 4652 throw("missing mcache?") 4653 } 4654 // Use the bootstrap mcache0. Only one P will get 4655 // mcache0: the one with ID 0. 4656 pp.mcache = mcache0 4657 } else { 4658 pp.mcache = allocmcache() 4659 } 4660 } 4661 if raceenabled && pp.raceprocctx == 0 { 4662 if id == 0 { 4663 pp.raceprocctx = raceprocctx0 4664 raceprocctx0 = 0 // bootstrap 4665 } else { 4666 pp.raceprocctx = raceproccreate() 4667 } 4668 } 4669 lockInit(&pp.timersLock, lockRankTimers) 4670 4671 // This P may get timers when it starts running. Set the mask here 4672 // since the P may not go through pidleget (notably P 0 on startup). 4673 timerpMask.set(id) 4674 // Similarly, we may not go through pidleget before this P starts 4675 // running if it is P 0 on startup. 4676 idlepMask.clear(id) 4677 } 4678 4679 // destroy releases all of the resources associated with pp and 4680 // transitions it to status _Pdead. 4681 // 4682 // sched.lock must be held and the world must be stopped. 4683 func (pp *p) destroy() { 4684 assertLockHeld(&sched.lock) 4685 assertWorldStopped() 4686 4687 // Move all runnable goroutines to the global queue 4688 for pp.runqhead != pp.runqtail { 4689 // Pop from tail of local queue 4690 pp.runqtail-- 4691 gp := pp.runq[pp.runqtail%uint32(len(pp.runq))].ptr() 4692 // Push onto head of global queue 4693 globrunqputhead(gp) 4694 } 4695 if pp.runnext != 0 { 4696 globrunqputhead(pp.runnext.ptr()) 4697 pp.runnext = 0 4698 } 4699 if len(pp.timers) > 0 { 4700 plocal := getg().m.p.ptr() 4701 // The world is stopped, but we acquire timersLock to 4702 // protect against sysmon calling timeSleepUntil. 4703 // This is the only case where we hold the timersLock of 4704 // more than one P, so there are no deadlock concerns. 4705 lock(&plocal.timersLock) 4706 lock(&pp.timersLock) 4707 moveTimers(plocal, pp.timers) 4708 pp.timers = nil 4709 pp.numTimers = 0 4710 pp.adjustTimers = 0 4711 pp.deletedTimers = 0 4712 atomic.Store64(&pp.timer0When, 0) 4713 unlock(&pp.timersLock) 4714 unlock(&plocal.timersLock) 4715 } 4716 // Flush p's write barrier buffer. 4717 if gcphase != _GCoff { 4718 wbBufFlush1(pp) 4719 pp.gcw.dispose() 4720 } 4721 for i := range pp.sudogbuf { 4722 pp.sudogbuf[i] = nil 4723 } 4724 pp.sudogcache = pp.sudogbuf[:0] 4725 for i := range pp.deferpool { 4726 for j := range pp.deferpoolbuf[i] { 4727 pp.deferpoolbuf[i][j] = nil 4728 } 4729 pp.deferpool[i] = pp.deferpoolbuf[i][:0] 4730 } 4731 systemstack(func() { 4732 for i := 0; i < pp.mspancache.len; i++ { 4733 // Safe to call since the world is stopped. 4734 mheap_.spanalloc.free(unsafe.Pointer(pp.mspancache.buf[i])) 4735 } 4736 pp.mspancache.len = 0 4737 lock(&mheap_.lock) 4738 pp.pcache.flush(&mheap_.pages) 4739 unlock(&mheap_.lock) 4740 }) 4741 freemcache(pp.mcache) 4742 pp.mcache = nil 4743 gfpurge(pp) 4744 traceProcFree(pp) 4745 if raceenabled { 4746 if pp.timerRaceCtx != 0 { 4747 // The race detector code uses a callback to fetch 4748 // the proc context, so arrange for that callback 4749 // to see the right thing. 4750 // This hack only works because we are the only 4751 // thread running. 4752 mp := getg().m 4753 phold := mp.p.ptr() 4754 mp.p.set(pp) 4755 4756 racectxend(pp.timerRaceCtx) 4757 pp.timerRaceCtx = 0 4758 4759 mp.p.set(phold) 4760 } 4761 raceprocdestroy(pp.raceprocctx) 4762 pp.raceprocctx = 0 4763 } 4764 pp.gcAssistTime = 0 4765 pp.status = _Pdead 4766 } 4767 4768 // Change number of processors. 4769 // 4770 // sched.lock must be held, and the world must be stopped. 4771 // 4772 // gcworkbufs must not be being modified by either the GC or the write barrier 4773 // code, so the GC must not be running if the number of Ps actually changes. 4774 // 4775 // Returns list of Ps with local work, they need to be scheduled by the caller. 4776 func procresize(nprocs int32) *p { 4777 assertLockHeld(&sched.lock) 4778 assertWorldStopped() 4779 4780 old := gomaxprocs 4781 if old < 0 || nprocs <= 0 { 4782 throw("procresize: invalid arg") 4783 } 4784 if trace.enabled { 4785 traceGomaxprocs(nprocs) 4786 } 4787 4788 // update statistics 4789 now := nanotime() 4790 if sched.procresizetime != 0 { 4791 sched.totaltime += int64(old) * (now - sched.procresizetime) 4792 } 4793 sched.procresizetime = now 4794 4795 maskWords := (nprocs + 31) / 32 4796 4797 // Grow allp if necessary. 4798 if nprocs > int32(len(allp)) { 4799 // Synchronize with retake, which could be running 4800 // concurrently since it doesn't run on a P. 4801 lock(&allpLock) 4802 if nprocs <= int32(cap(allp)) { 4803 allp = allp[:nprocs] 4804 } else { 4805 nallp := make([]*p, nprocs) 4806 // Copy everything up to allp's cap so we 4807 // never lose old allocated Ps. 4808 copy(nallp, allp[:cap(allp)]) 4809 allp = nallp 4810 } 4811 4812 if maskWords <= int32(cap(idlepMask)) { 4813 idlepMask = idlepMask[:maskWords] 4814 timerpMask = timerpMask[:maskWords] 4815 } else { 4816 nidlepMask := make([]uint32, maskWords) 4817 // No need to copy beyond len, old Ps are irrelevant. 4818 copy(nidlepMask, idlepMask) 4819 idlepMask = nidlepMask 4820 4821 ntimerpMask := make([]uint32, maskWords) 4822 copy(ntimerpMask, timerpMask) 4823 timerpMask = ntimerpMask 4824 } 4825 unlock(&allpLock) 4826 } 4827 4828 // initialize new P's 4829 for i := old; i < nprocs; i++ { 4830 pp := allp[i] 4831 if pp == nil { 4832 pp = new(p) 4833 } 4834 pp.init(i) 4835 atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp)) 4836 } 4837 4838 _g_ := getg() 4839 if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs { 4840 // continue to use the current P 4841 _g_.m.p.ptr().status = _Prunning 4842 _g_.m.p.ptr().mcache.prepareForSweep() 4843 } else { 4844 // release the current P and acquire allp[0]. 4845 // 4846 // We must do this before destroying our current P 4847 // because p.destroy itself has write barriers, so we 4848 // need to do that from a valid P. 4849 if _g_.m.p != 0 { 4850 if trace.enabled { 4851 // Pretend that we were descheduled 4852 // and then scheduled again to keep 4853 // the trace sane. 4854 traceGoSched() 4855 traceProcStop(_g_.m.p.ptr()) 4856 } 4857 _g_.m.p.ptr().m = 0 4858 } 4859 _g_.m.p = 0 4860 p := allp[0] 4861 p.m = 0 4862 p.status = _Pidle 4863 acquirep(p) 4864 if trace.enabled { 4865 traceGoStart() 4866 } 4867 } 4868 4869 // g.m.p is now set, so we no longer need mcache0 for bootstrapping. 4870 mcache0 = nil 4871 4872 // release resources from unused P's 4873 for i := nprocs; i < old; i++ { 4874 p := allp[i] 4875 p.destroy() 4876 // can't free P itself because it can be referenced by an M in syscall 4877 } 4878 4879 // Trim allp. 4880 if int32(len(allp)) != nprocs { 4881 lock(&allpLock) 4882 allp = allp[:nprocs] 4883 idlepMask = idlepMask[:maskWords] 4884 timerpMask = timerpMask[:maskWords] 4885 unlock(&allpLock) 4886 } 4887 4888 var runnablePs *p 4889 for i := nprocs - 1; i >= 0; i-- { 4890 p := allp[i] 4891 if _g_.m.p.ptr() == p { 4892 continue 4893 } 4894 p.status = _Pidle 4895 if runqempty(p) { 4896 pidleput(p) 4897 } else { 4898 p.m.set(mget()) 4899 p.link.set(runnablePs) 4900 runnablePs = p 4901 } 4902 } 4903 stealOrder.reset(uint32(nprocs)) 4904 var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32 4905 atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs)) 4906 return runnablePs 4907 } 4908 4909 // Associate p and the current m. 4910 // 4911 // This function is allowed to have write barriers even if the caller 4912 // isn't because it immediately acquires _p_. 4913 // 4914 //go:yeswritebarrierrec 4915 func acquirep(_p_ *p) { 4916 // Do the part that isn't allowed to have write barriers. 4917 wirep(_p_) 4918 4919 // Have p; write barriers now allowed. 4920 4921 // Perform deferred mcache flush before this P can allocate 4922 // from a potentially stale mcache. 4923 _p_.mcache.prepareForSweep() 4924 4925 if trace.enabled { 4926 traceProcStart() 4927 } 4928 } 4929 4930 // wirep is the first step of acquirep, which actually associates the 4931 // current M to _p_. This is broken out so we can disallow write 4932 // barriers for this part, since we don't yet have a P. 4933 // 4934 //go:nowritebarrierrec 4935 //go:nosplit 4936 func wirep(_p_ *p) { 4937 _g_ := getg() 4938 4939 if _g_.m.p != 0 { 4940 throw("wirep: already in go") 4941 } 4942 if _p_.m != 0 || _p_.status != _Pidle { 4943 id := int64(0) 4944 if _p_.m != 0 { 4945 id = _p_.m.ptr().id 4946 } 4947 print("wirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n") 4948 throw("wirep: invalid p state") 4949 } 4950 _g_.m.p.set(_p_) 4951 _p_.m.set(_g_.m) 4952 _p_.status = _Prunning 4953 } 4954 4955 // Disassociate p and the current m. 4956 func releasep() *p { 4957 _g_ := getg() 4958 4959 if _g_.m.p == 0 { 4960 throw("releasep: invalid arg") 4961 } 4962 _p_ := _g_.m.p.ptr() 4963 if _p_.m.ptr() != _g_.m || _p_.status != _Prunning { 4964 print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", hex(_p_.m), " p->status=", _p_.status, "\n") 4965 throw("releasep: invalid p state") 4966 } 4967 if trace.enabled { 4968 traceProcStop(_g_.m.p.ptr()) 4969 } 4970 _g_.m.p = 0 4971 _p_.m = 0 4972 _p_.status = _Pidle 4973 return _p_ 4974 } 4975 4976 func incidlelocked(v int32) { 4977 lock(&sched.lock) 4978 sched.nmidlelocked += v 4979 if v > 0 { 4980 checkdead() 4981 } 4982 unlock(&sched.lock) 4983 } 4984 4985 // Check for deadlock situation. 4986 // The check is based on number of running M's, if 0 -> deadlock. 4987 // sched.lock must be held. 4988 func checkdead() { 4989 assertLockHeld(&sched.lock) 4990 4991 // For -buildmode=c-shared or -buildmode=c-archive it's OK if 4992 // there are no running goroutines. The calling program is 4993 // assumed to be running. 4994 if islibrary || isarchive { 4995 return 4996 } 4997 4998 // If we are dying because of a signal caught on an already idle thread, 4999 // freezetheworld will cause all running threads to block. 5000 // And runtime will essentially enter into deadlock state, 5001 // except that there is a thread that will call exit soon. 5002 if panicking > 0 { 5003 return 5004 } 5005 5006 // If we are not running under cgo, but we have an extra M then account 5007 // for it. (It is possible to have an extra M on Windows without cgo to 5008 // accommodate callbacks created by syscall.NewCallback. See issue #6751 5009 // for details.) 5010 var run0 int32 5011 if !iscgo && cgoHasExtraM { 5012 mp := lockextra(true) 5013 haveExtraM := extraMCount > 0 5014 unlockextra(mp) 5015 if haveExtraM { 5016 run0 = 1 5017 } 5018 } 5019 5020 run := mcount() - sched.nmidle - sched.nmidlelocked - sched.nmsys 5021 if run > run0 { 5022 return 5023 } 5024 if run < 0 { 5025 print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", mcount(), " nmsys=", sched.nmsys, "\n") 5026 throw("checkdead: inconsistent counts") 5027 } 5028 5029 grunning := 0 5030 lock(&allglock) 5031 for i := 0; i < len(allgs); i++ { 5032 gp := allgs[i] 5033 if isSystemGoroutine(gp, false) { 5034 continue 5035 } 5036 s := readgstatus(gp) 5037 switch s &^ _Gscan { 5038 case _Gwaiting, 5039 _Gpreempted: 5040 grunning++ 5041 case _Grunnable, 5042 _Grunning, 5043 _Gsyscall: 5044 print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n") 5045 throw("checkdead: runnable g") 5046 } 5047 } 5048 unlock(&allglock) 5049 if grunning == 0 { // possible if main goroutine calls runtime·Goexit() 5050 unlock(&sched.lock) // unlock so that GODEBUG=scheddetail=1 doesn't hang 5051 throw("no goroutines (main called runtime.Goexit) - deadlock!") 5052 } 5053 5054 // Maybe jump time forward for playground. 5055 if faketime != 0 { 5056 when, _p_ := timeSleepUntil() 5057 if _p_ != nil { 5058 faketime = when 5059 for pp := &sched.pidle; *pp != 0; pp = &(*pp).ptr().link { 5060 if (*pp).ptr() == _p_ { 5061 *pp = _p_.link 5062 break 5063 } 5064 } 5065 mp := mget() 5066 if mp == nil { 5067 // There should always be a free M since 5068 // nothing is running. 5069 throw("checkdead: no m for timer") 5070 } 5071 mp.nextp.set(_p_) 5072 notewakeup(&mp.park) 5073 return 5074 } 5075 } 5076 5077 // There are no goroutines running, so we can look at the P's. 5078 for _, _p_ := range allp { 5079 if len(_p_.timers) > 0 { 5080 return 5081 } 5082 } 5083 5084 getg().m.throwing = -1 // do not dump full stacks 5085 unlock(&sched.lock) // unlock so that GODEBUG=scheddetail=1 doesn't hang 5086 throw("all goroutines are asleep - deadlock!") 5087 } 5088 5089 // forcegcperiod is the maximum time in nanoseconds between garbage 5090 // collections. If we go this long without a garbage collection, one 5091 // is forced to run. 5092 // 5093 // This is a variable for testing purposes. It normally doesn't change. 5094 var forcegcperiod int64 = 2 * 60 * 1e9 5095 5096 // Always runs without a P, so write barriers are not allowed. 5097 // 5098 //go:nowritebarrierrec 5099 func sysmon() { 5100 lock(&sched.lock) 5101 sched.nmsys++ 5102 checkdead() 5103 unlock(&sched.lock) 5104 5105 // For syscall_runtime_doAllThreadsSyscall, sysmon is 5106 // sufficiently up to participate in fixups. 5107 atomic.Store(&sched.sysmonStarting, 0) 5108 5109 lasttrace := int64(0) 5110 idle := 0 // how many cycles in succession we had not wokeup somebody 5111 delay := uint32(0) 5112 5113 for { 5114 if idle == 0 { // start with 20us sleep... 5115 delay = 20 5116 } else if idle > 50 { // start doubling the sleep after 1ms... 5117 delay *= 2 5118 } 5119 if delay > 10*1000 { // up to 10ms 5120 delay = 10 * 1000 5121 } 5122 usleep(delay) 5123 mDoFixup() 5124 5125 // sysmon should not enter deep sleep if schedtrace is enabled so that 5126 // it can print that information at the right time. 5127 // 5128 // It should also not enter deep sleep if there are any active P's so 5129 // that it can retake P's from syscalls, preempt long running G's, and 5130 // poll the network if all P's are busy for long stretches. 5131 // 5132 // It should wakeup from deep sleep if any P's become active either due 5133 // to exiting a syscall or waking up due to a timer expiring so that it 5134 // can resume performing those duties. If it wakes from a syscall it 5135 // resets idle and delay as a bet that since it had retaken a P from a 5136 // syscall before, it may need to do it again shortly after the 5137 // application starts work again. It does not reset idle when waking 5138 // from a timer to avoid adding system load to applications that spend 5139 // most of their time sleeping. 5140 now := nanotime() 5141 if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) { 5142 lock(&sched.lock) 5143 if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) { 5144 syscallWake := false 5145 next, _ := timeSleepUntil() 5146 if next > now { 5147 atomic.Store(&sched.sysmonwait, 1) 5148 unlock(&sched.lock) 5149 // Make wake-up period small enough 5150 // for the sampling to be correct. 5151 sleep := forcegcperiod / 2 5152 if next-now < sleep { 5153 sleep = next - now 5154 } 5155 shouldRelax := sleep >= osRelaxMinNS 5156 if shouldRelax { 5157 osRelax(true) 5158 } 5159 syscallWake = notetsleep(&sched.sysmonnote, sleep) 5160 mDoFixup() 5161 if shouldRelax { 5162 osRelax(false) 5163 } 5164 lock(&sched.lock) 5165 atomic.Store(&sched.sysmonwait, 0) 5166 noteclear(&sched.sysmonnote) 5167 } 5168 if syscallWake { 5169 idle = 0 5170 delay = 20 5171 } 5172 } 5173 unlock(&sched.lock) 5174 } 5175 5176 lock(&sched.sysmonlock) 5177 // Update now in case we blocked on sysmonnote or spent a long time 5178 // blocked on schedlock or sysmonlock above. 5179 now = nanotime() 5180 5181 // trigger libc interceptors if needed 5182 if *cgo_yield != nil { 5183 asmcgocall(*cgo_yield, nil) 5184 } 5185 // poll network if not polled for more than 10ms 5186 lastpoll := int64(atomic.Load64(&sched.lastpoll)) 5187 if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now { 5188 atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now)) 5189 list := netpoll(0) // non-blocking - returns list of goroutines 5190 if !list.empty() { 5191 // Need to decrement number of idle locked M's 5192 // (pretending that one more is running) before injectglist. 5193 // Otherwise it can lead to the following situation: 5194 // injectglist grabs all P's but before it starts M's to run the P's, 5195 // another M returns from syscall, finishes running its G, 5196 // observes that there is no work to do and no other running M's 5197 // and reports deadlock. 5198 incidlelocked(-1) 5199 injectglist(&list) 5200 incidlelocked(1) 5201 } 5202 } 5203 mDoFixup() 5204 if GOOS == "netbsd" { 5205 // netpoll is responsible for waiting for timer 5206 // expiration, so we typically don't have to worry 5207 // about starting an M to service timers. (Note that 5208 // sleep for timeSleepUntil above simply ensures sysmon 5209 // starts running again when that timer expiration may 5210 // cause Go code to run again). 5211 // 5212 // However, netbsd has a kernel bug that sometimes 5213 // misses netpollBreak wake-ups, which can lead to 5214 // unbounded delays servicing timers. If we detect this 5215 // overrun, then startm to get something to handle the 5216 // timer. 5217 // 5218 // See issue 42515 and 5219 // https://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=50094. 5220 if next, _ := timeSleepUntil(); next < now { 5221 startm(nil, false) 5222 } 5223 } 5224 if atomic.Load(&scavenge.sysmonWake) != 0 { 5225 // Kick the scavenger awake if someone requested it. 5226 wakeScavenger() 5227 } 5228 // retake P's blocked in syscalls 5229 // and preempt long running G's 5230 if retake(now) != 0 { 5231 idle = 0 5232 } else { 5233 idle++ 5234 } 5235 // check if we need to force a GC 5236 if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 { 5237 lock(&forcegc.lock) 5238 forcegc.idle = 0 5239 var list gList 5240 list.push(forcegc.g) 5241 injectglist(&list) 5242 unlock(&forcegc.lock) 5243 } 5244 if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now { 5245 lasttrace = now 5246 schedtrace(debug.scheddetail > 0) 5247 } 5248 unlock(&sched.sysmonlock) 5249 } 5250 } 5251 5252 type sysmontick struct { 5253 schedtick uint32 5254 schedwhen int64 5255 syscalltick uint32 5256 syscallwhen int64 5257 } 5258 5259 // forcePreemptNS is the time slice given to a G before it is 5260 // preempted. 5261 const forcePreemptNS = 10 * 1000 * 1000 // 10ms 5262 5263 func retake(now int64) uint32 { 5264 n := 0 5265 // Prevent allp slice changes. This lock will be completely 5266 // uncontended unless we're already stopping the world. 5267 lock(&allpLock) 5268 // We can't use a range loop over allp because we may 5269 // temporarily drop the allpLock. Hence, we need to re-fetch 5270 // allp each time around the loop. 5271 for i := 0; i < len(allp); i++ { 5272 _p_ := allp[i] 5273 if _p_ == nil { 5274 // This can happen if procresize has grown 5275 // allp but not yet created new Ps. 5276 continue 5277 } 5278 pd := &_p_.sysmontick 5279 s := _p_.status 5280 sysretake := false 5281 if s == _Prunning || s == _Psyscall { 5282 // Preempt G if it's running for too long. 5283 t := int64(_p_.schedtick) 5284 if int64(pd.schedtick) != t { 5285 pd.schedtick = uint32(t) 5286 pd.schedwhen = now 5287 } else if pd.schedwhen+forcePreemptNS <= now { 5288 preemptone(_p_) 5289 // In case of syscall, preemptone() doesn't 5290 // work, because there is no M wired to P. 5291 sysretake = true 5292 } 5293 } 5294 if s == _Psyscall { 5295 // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us). 5296 t := int64(_p_.syscalltick) 5297 if !sysretake && int64(pd.syscalltick) != t { 5298 pd.syscalltick = uint32(t) 5299 pd.syscallwhen = now 5300 continue 5301 } 5302 // On the one hand we don't want to retake Ps if there is no other work to do, 5303 // but on the other hand we want to retake them eventually 5304 // because they can prevent the sysmon thread from deep sleep. 5305 if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now { 5306 continue 5307 } 5308 // Drop allpLock so we can take sched.lock. 5309 unlock(&allpLock) 5310 // Need to decrement number of idle locked M's 5311 // (pretending that one more is running) before the CAS. 5312 // Otherwise the M from which we retake can exit the syscall, 5313 // increment nmidle and report deadlock. 5314 incidlelocked(-1) 5315 if atomic.Cas(&_p_.status, s, _Pidle) { 5316 if trace.enabled { 5317 traceGoSysBlock(_p_) 5318 traceProcStop(_p_) 5319 } 5320 n++ 5321 _p_.syscalltick++ 5322 handoffp(_p_) 5323 } 5324 incidlelocked(1) 5325 lock(&allpLock) 5326 } 5327 } 5328 unlock(&allpLock) 5329 return uint32(n) 5330 } 5331 5332 // Tell all goroutines that they have been preempted and they should stop. 5333 // This function is purely best-effort. It can fail to inform a goroutine if a 5334 // processor just started running it. 5335 // No locks need to be held. 5336 // Returns true if preemption request was issued to at least one goroutine. 5337 func preemptall() bool { 5338 res := false 5339 for _, _p_ := range allp { 5340 if _p_.status != _Prunning { 5341 continue 5342 } 5343 if preemptone(_p_) { 5344 res = true 5345 } 5346 } 5347 return res 5348 } 5349 5350 // Tell the goroutine running on processor P to stop. 5351 // This function is purely best-effort. It can incorrectly fail to inform the 5352 // goroutine. It can send inform the wrong goroutine. Even if it informs the 5353 // correct goroutine, that goroutine might ignore the request if it is 5354 // simultaneously executing newstack. 5355 // No lock needs to be held. 5356 // Returns true if preemption request was issued. 5357 // The actual preemption will happen at some point in the future 5358 // and will be indicated by the gp->status no longer being 5359 // Grunning 5360 func preemptone(_p_ *p) bool { 5361 mp := _p_.m.ptr() 5362 if mp == nil || mp == getg().m { 5363 return false 5364 } 5365 gp := mp.curg 5366 if gp == nil || gp == mp.g0 { 5367 return false 5368 } 5369 5370 gp.preempt = true 5371 5372 // Every call in a go routine checks for stack overflow by 5373 // comparing the current stack pointer to gp->stackguard0. 5374 // Setting gp->stackguard0 to StackPreempt folds 5375 // preemption into the normal stack overflow check. 5376 gp.stackguard0 = stackPreempt 5377 5378 // Request an async preemption of this P. 5379 if preemptMSupported && debug.asyncpreemptoff == 0 { 5380 _p_.preempt = true 5381 preemptM(mp) 5382 } 5383 5384 return true 5385 } 5386 5387 var starttime int64 5388 5389 func schedtrace(detailed bool) { 5390 now := nanotime() 5391 if starttime == 0 { 5392 starttime = now 5393 } 5394 5395 lock(&sched.lock) 5396 print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", mcount(), " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize) 5397 if detailed { 5398 print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n") 5399 } 5400 // We must be careful while reading data from P's, M's and G's. 5401 // Even if we hold schedlock, most data can be changed concurrently. 5402 // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil. 5403 for i, _p_ := range allp { 5404 mp := _p_.m.ptr() 5405 h := atomic.Load(&_p_.runqhead) 5406 t := atomic.Load(&_p_.runqtail) 5407 if detailed { 5408 id := int64(-1) 5409 if mp != nil { 5410 id = mp.id 5411 } 5412 print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gFree.n, " timerslen=", len(_p_.timers), "\n") 5413 } else { 5414 // In non-detailed mode format lengths of per-P run queues as: 5415 // [len1 len2 len3 len4] 5416 print(" ") 5417 if i == 0 { 5418 print("[") 5419 } 5420 print(t - h) 5421 if i == len(allp)-1 { 5422 print("]\n") 5423 } 5424 } 5425 } 5426 5427 if !detailed { 5428 unlock(&sched.lock) 5429 return 5430 } 5431 5432 for mp := allm; mp != nil; mp = mp.alllink { 5433 _p_ := mp.p.ptr() 5434 gp := mp.curg 5435 lockedg := mp.lockedg.ptr() 5436 id1 := int32(-1) 5437 if _p_ != nil { 5438 id1 = _p_.id 5439 } 5440 id2 := int64(-1) 5441 if gp != nil { 5442 id2 = gp.goid 5443 } 5444 id3 := int64(-1) 5445 if lockedg != nil { 5446 id3 = lockedg.goid 5447 } 5448 print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n") 5449 } 5450 5451 lock(&allglock) 5452 for gi := 0; gi < len(allgs); gi++ { 5453 gp := allgs[gi] 5454 mp := gp.m 5455 lockedm := gp.lockedm.ptr() 5456 id1 := int64(-1) 5457 if mp != nil { 5458 id1 = mp.id 5459 } 5460 id2 := int64(-1) 5461 if lockedm != nil { 5462 id2 = lockedm.id 5463 } 5464 print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason.String(), ") m=", id1, " lockedm=", id2, "\n") 5465 } 5466 unlock(&allglock) 5467 unlock(&sched.lock) 5468 } 5469 5470 // schedEnableUser enables or disables the scheduling of user 5471 // goroutines. 5472 // 5473 // This does not stop already running user goroutines, so the caller 5474 // should first stop the world when disabling user goroutines. 5475 func schedEnableUser(enable bool) { 5476 lock(&sched.lock) 5477 if sched.disable.user == !enable { 5478 unlock(&sched.lock) 5479 return 5480 } 5481 sched.disable.user = !enable 5482 if enable { 5483 n := sched.disable.n 5484 sched.disable.n = 0 5485 globrunqputbatch(&sched.disable.runnable, n) 5486 unlock(&sched.lock) 5487 for ; n != 0 && sched.npidle != 0; n-- { 5488 startm(nil, false) 5489 } 5490 } else { 5491 unlock(&sched.lock) 5492 } 5493 } 5494 5495 // schedEnabled reports whether gp should be scheduled. It returns 5496 // false is scheduling of gp is disabled. 5497 // 5498 // sched.lock must be held. 5499 func schedEnabled(gp *g) bool { 5500 assertLockHeld(&sched.lock) 5501 5502 if sched.disable.user { 5503 return isSystemGoroutine(gp, true) 5504 } 5505 return true 5506 } 5507 5508 // Put mp on midle list. 5509 // sched.lock must be held. 5510 // May run during STW, so write barriers are not allowed. 5511 //go:nowritebarrierrec 5512 func mput(mp *m) { 5513 assertLockHeld(&sched.lock) 5514 5515 mp.schedlink = sched.midle 5516 sched.midle.set(mp) 5517 sched.nmidle++ 5518 checkdead() 5519 } 5520 5521 // Try to get an m from midle list. 5522 // sched.lock must be held. 5523 // May run during STW, so write barriers are not allowed. 5524 //go:nowritebarrierrec 5525 func mget() *m { 5526 assertLockHeld(&sched.lock) 5527 5528 mp := sched.midle.ptr() 5529 if mp != nil { 5530 sched.midle = mp.schedlink 5531 sched.nmidle-- 5532 } 5533 return mp 5534 } 5535 5536 // Put gp on the global runnable queue. 5537 // sched.lock must be held. 5538 // May run during STW, so write barriers are not allowed. 5539 //go:nowritebarrierrec 5540 func globrunqput(gp *g) { 5541 assertLockHeld(&sched.lock) 5542 5543 sched.runq.pushBack(gp) 5544 sched.runqsize++ 5545 } 5546 5547 // Put gp at the head of the global runnable queue. 5548 // sched.lock must be held. 5549 // May run during STW, so write barriers are not allowed. 5550 //go:nowritebarrierrec 5551 func globrunqputhead(gp *g) { 5552 assertLockHeld(&sched.lock) 5553 5554 sched.runq.push(gp) 5555 sched.runqsize++ 5556 } 5557 5558 // Put a batch of runnable goroutines on the global runnable queue. 5559 // This clears *batch. 5560 // sched.lock must be held. 5561 func globrunqputbatch(batch *gQueue, n int32) { 5562 assertLockHeld(&sched.lock) 5563 5564 sched.runq.pushBackAll(*batch) 5565 sched.runqsize += n 5566 *batch = gQueue{} 5567 } 5568 5569 // Try get a batch of G's from the global runnable queue. 5570 // sched.lock must be held. 5571 func globrunqget(_p_ *p, max int32) *g { 5572 assertLockHeld(&sched.lock) 5573 5574 if sched.runqsize == 0 { 5575 return nil 5576 } 5577 5578 n := sched.runqsize/gomaxprocs + 1 5579 if n > sched.runqsize { 5580 n = sched.runqsize 5581 } 5582 if max > 0 && n > max { 5583 n = max 5584 } 5585 if n > int32(len(_p_.runq))/2 { 5586 n = int32(len(_p_.runq)) / 2 5587 } 5588 5589 sched.runqsize -= n 5590 5591 gp := sched.runq.pop() 5592 n-- 5593 for ; n > 0; n-- { 5594 gp1 := sched.runq.pop() 5595 runqput(_p_, gp1, false) 5596 } 5597 return gp 5598 } 5599 5600 // pMask is an atomic bitstring with one bit per P. 5601 type pMask []uint32 5602 5603 // read returns true if P id's bit is set. 5604 func (p pMask) read(id uint32) bool { 5605 word := id / 32 5606 mask := uint32(1) << (id % 32) 5607 return (atomic.Load(&p[word]) & mask) != 0 5608 } 5609 5610 // set sets P id's bit. 5611 func (p pMask) set(id int32) { 5612 word := id / 32 5613 mask := uint32(1) << (id % 32) 5614 atomic.Or(&p[word], mask) 5615 } 5616 5617 // clear clears P id's bit. 5618 func (p pMask) clear(id int32) { 5619 word := id / 32 5620 mask := uint32(1) << (id % 32) 5621 atomic.And(&p[word], ^mask) 5622 } 5623 5624 // updateTimerPMask clears pp's timer mask if it has no timers on its heap. 5625 // 5626 // Ideally, the timer mask would be kept immediately consistent on any timer 5627 // operations. Unfortunately, updating a shared global data structure in the 5628 // timer hot path adds too much overhead in applications frequently switching 5629 // between no timers and some timers. 5630 // 5631 // As a compromise, the timer mask is updated only on pidleget / pidleput. A 5632 // running P (returned by pidleget) may add a timer at any time, so its mask 5633 // must be set. An idle P (passed to pidleput) cannot add new timers while 5634 // idle, so if it has no timers at that time, its mask may be cleared. 5635 // 5636 // Thus, we get the following effects on timer-stealing in findrunnable: 5637 // 5638 // * Idle Ps with no timers when they go idle are never checked in findrunnable 5639 // (for work- or timer-stealing; this is the ideal case). 5640 // * Running Ps must always be checked. 5641 // * Idle Ps whose timers are stolen must continue to be checked until they run 5642 // again, even after timer expiration. 5643 // 5644 // When the P starts running again, the mask should be set, as a timer may be 5645 // added at any time. 5646 // 5647 // TODO(prattmic): Additional targeted updates may improve the above cases. 5648 // e.g., updating the mask when stealing a timer. 5649 func updateTimerPMask(pp *p) { 5650 if atomic.Load(&pp.numTimers) > 0 { 5651 return 5652 } 5653 5654 // Looks like there are no timers, however another P may transiently 5655 // decrement numTimers when handling a timerModified timer in 5656 // checkTimers. We must take timersLock to serialize with these changes. 5657 lock(&pp.timersLock) 5658 if atomic.Load(&pp.numTimers) == 0 { 5659 timerpMask.clear(pp.id) 5660 } 5661 unlock(&pp.timersLock) 5662 } 5663 5664 // pidleput puts p to on the _Pidle list. 5665 // 5666 // This releases ownership of p. Once sched.lock is released it is no longer 5667 // safe to use p. 5668 // 5669 // sched.lock must be held. 5670 // 5671 // May run during STW, so write barriers are not allowed. 5672 //go:nowritebarrierrec 5673 func pidleput(_p_ *p) { 5674 assertLockHeld(&sched.lock) 5675 5676 if !runqempty(_p_) { 5677 throw("pidleput: P has non-empty run queue") 5678 } 5679 updateTimerPMask(_p_) // clear if there are no timers. 5680 idlepMask.set(_p_.id) 5681 _p_.link = sched.pidle 5682 sched.pidle.set(_p_) 5683 atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic 5684 } 5685 5686 // pidleget tries to get a p from the _Pidle list, acquiring ownership. 5687 // 5688 // sched.lock must be held. 5689 // 5690 // May run during STW, so write barriers are not allowed. 5691 //go:nowritebarrierrec 5692 func pidleget() *p { 5693 assertLockHeld(&sched.lock) 5694 5695 _p_ := sched.pidle.ptr() 5696 if _p_ != nil { 5697 // Timer may get added at any time now. 5698 timerpMask.set(_p_.id) 5699 idlepMask.clear(_p_.id) 5700 sched.pidle = _p_.link 5701 atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic 5702 } 5703 return _p_ 5704 } 5705 5706 // runqempty reports whether _p_ has no Gs on its local run queue. 5707 // It never returns true spuriously. 5708 func runqempty(_p_ *p) bool { 5709 // Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail, 5710 // 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext. 5711 // Simply observing that runqhead == runqtail and then observing that runqnext == nil 5712 // does not mean the queue is empty. 5713 for { 5714 head := atomic.Load(&_p_.runqhead) 5715 tail := atomic.Load(&_p_.runqtail) 5716 runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext))) 5717 if tail == atomic.Load(&_p_.runqtail) { 5718 return head == tail && runnext == 0 5719 } 5720 } 5721 } 5722 5723 // To shake out latent assumptions about scheduling order, 5724 // we introduce some randomness into scheduling decisions 5725 // when running with the race detector. 5726 // The need for this was made obvious by changing the 5727 // (deterministic) scheduling order in Go 1.5 and breaking 5728 // many poorly-written tests. 5729 // With the randomness here, as long as the tests pass 5730 // consistently with -race, they shouldn't have latent scheduling 5731 // assumptions. 5732 const randomizeScheduler = raceenabled 5733 5734 // runqput tries to put g on the local runnable queue. 5735 // If next is false, runqput adds g to the tail of the runnable queue. 5736 // If next is true, runqput puts g in the _p_.runnext slot. 5737 // If the run queue is full, runnext puts g on the global queue. 5738 // Executed only by the owner P. 5739 func runqput(_p_ *p, gp *g, next bool) { 5740 if randomizeScheduler && next && fastrand()%2 == 0 { 5741 next = false 5742 } 5743 5744 if next { 5745 retryNext: 5746 oldnext := _p_.runnext 5747 if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) { 5748 goto retryNext 5749 } 5750 if oldnext == 0 { 5751 return 5752 } 5753 // Kick the old runnext out to the regular run queue. 5754 gp = oldnext.ptr() 5755 } 5756 5757 retry: 5758 h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers 5759 t := _p_.runqtail 5760 if t-h < uint32(len(_p_.runq)) { 5761 _p_.runq[t%uint32(len(_p_.runq))].set(gp) 5762 atomic.StoreRel(&_p_.runqtail, t+1) // store-release, makes the item available for consumption 5763 return 5764 } 5765 if runqputslow(_p_, gp, h, t) { 5766 return 5767 } 5768 // the queue is not full, now the put above must succeed 5769 goto retry 5770 } 5771 5772 // Put g and a batch of work from local runnable queue on global queue. 5773 // Executed only by the owner P. 5774 func runqputslow(_p_ *p, gp *g, h, t uint32) bool { 5775 var batch [len(_p_.runq)/2 + 1]*g 5776 5777 // First, grab a batch from local queue. 5778 n := t - h 5779 n = n / 2 5780 if n != uint32(len(_p_.runq)/2) { 5781 throw("runqputslow: queue is not full") 5782 } 5783 for i := uint32(0); i < n; i++ { 5784 batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr() 5785 } 5786 if !atomic.CasRel(&_p_.runqhead, h, h+n) { // cas-release, commits consume 5787 return false 5788 } 5789 batch[n] = gp 5790 5791 if randomizeScheduler { 5792 for i := uint32(1); i <= n; i++ { 5793 j := fastrandn(i + 1) 5794 batch[i], batch[j] = batch[j], batch[i] 5795 } 5796 } 5797 5798 // Link the goroutines. 5799 for i := uint32(0); i < n; i++ { 5800 batch[i].schedlink.set(batch[i+1]) 5801 } 5802 var q gQueue 5803 q.head.set(batch[0]) 5804 q.tail.set(batch[n]) 5805 5806 // Now put the batch on global queue. 5807 lock(&sched.lock) 5808 globrunqputbatch(&q, int32(n+1)) 5809 unlock(&sched.lock) 5810 return true 5811 } 5812 5813 // runqputbatch tries to put all the G's on q on the local runnable queue. 5814 // If the queue is full, they are put on the global queue; in that case 5815 // this will temporarily acquire the scheduler lock. 5816 // Executed only by the owner P. 5817 func runqputbatch(pp *p, q *gQueue, qsize int) { 5818 h := atomic.LoadAcq(&pp.runqhead) 5819 t := pp.runqtail 5820 n := uint32(0) 5821 for !q.empty() && t-h < uint32(len(pp.runq)) { 5822 gp := q.pop() 5823 pp.runq[t%uint32(len(pp.runq))].set(gp) 5824 t++ 5825 n++ 5826 } 5827 qsize -= int(n) 5828 5829 if randomizeScheduler { 5830 off := func(o uint32) uint32 { 5831 return (pp.runqtail + o) % uint32(len(pp.runq)) 5832 } 5833 for i := uint32(1); i < n; i++ { 5834 j := fastrandn(i + 1) 5835 pp.runq[off(i)], pp.runq[off(j)] = pp.runq[off(j)], pp.runq[off(i)] 5836 } 5837 } 5838 5839 atomic.StoreRel(&pp.runqtail, t) 5840 if !q.empty() { 5841 lock(&sched.lock) 5842 globrunqputbatch(q, int32(qsize)) 5843 unlock(&sched.lock) 5844 } 5845 } 5846 5847 // Get g from local runnable queue. 5848 // If inheritTime is true, gp should inherit the remaining time in the 5849 // current time slice. Otherwise, it should start a new time slice. 5850 // Executed only by the owner P. 5851 func runqget(_p_ *p) (gp *g, inheritTime bool) { 5852 // If there's a runnext, it's the next G to run. 5853 for { 5854 next := _p_.runnext 5855 if next == 0 { 5856 break 5857 } 5858 if _p_.runnext.cas(next, 0) { 5859 return next.ptr(), true 5860 } 5861 } 5862 5863 for { 5864 h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers 5865 t := _p_.runqtail 5866 if t == h { 5867 return nil, false 5868 } 5869 gp := _p_.runq[h%uint32(len(_p_.runq))].ptr() 5870 if atomic.CasRel(&_p_.runqhead, h, h+1) { // cas-release, commits consume 5871 return gp, false 5872 } 5873 } 5874 } 5875 5876 // Grabs a batch of goroutines from _p_'s runnable queue into batch. 5877 // Batch is a ring buffer starting at batchHead. 5878 // Returns number of grabbed goroutines. 5879 // Can be executed by any P. 5880 func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 { 5881 for { 5882 h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers 5883 t := atomic.LoadAcq(&_p_.runqtail) // load-acquire, synchronize with the producer 5884 n := t - h 5885 n = n - n/2 5886 if n == 0 { 5887 if stealRunNextG { 5888 // Try to steal from _p_.runnext. 5889 if next := _p_.runnext; next != 0 { 5890 if _p_.status == _Prunning { 5891 // Sleep to ensure that _p_ isn't about to run the g 5892 // we are about to steal. 5893 // The important use case here is when the g running 5894 // on _p_ ready()s another g and then almost 5895 // immediately blocks. Instead of stealing runnext 5896 // in this window, back off to give _p_ a chance to 5897 // schedule runnext. This will avoid thrashing gs 5898 // between different Ps. 5899 // A sync chan send/recv takes ~50ns as of time of 5900 // writing, so 3us gives ~50x overshoot. 5901 if GOOS != "windows" { 5902 usleep(3) 5903 } else { 5904 // On windows system timer granularity is 5905 // 1-15ms, which is way too much for this 5906 // optimization. So just yield. 5907 osyield() 5908 } 5909 } 5910 if !_p_.runnext.cas(next, 0) { 5911 continue 5912 } 5913 batch[batchHead%uint32(len(batch))] = next 5914 return 1 5915 } 5916 } 5917 return 0 5918 } 5919 if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t 5920 continue 5921 } 5922 for i := uint32(0); i < n; i++ { 5923 g := _p_.runq[(h+i)%uint32(len(_p_.runq))] 5924 batch[(batchHead+i)%uint32(len(batch))] = g 5925 } 5926 if atomic.CasRel(&_p_.runqhead, h, h+n) { // cas-release, commits consume 5927 return n 5928 } 5929 } 5930 } 5931 5932 // Steal half of elements from local runnable queue of p2 5933 // and put onto local runnable queue of p. 5934 // Returns one of the stolen elements (or nil if failed). 5935 func runqsteal(_p_, p2 *p, stealRunNextG bool) *g { 5936 t := _p_.runqtail 5937 n := runqgrab(p2, &_p_.runq, t, stealRunNextG) 5938 if n == 0 { 5939 return nil 5940 } 5941 n-- 5942 gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr() 5943 if n == 0 { 5944 return gp 5945 } 5946 h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers 5947 if t-h+n >= uint32(len(_p_.runq)) { 5948 throw("runqsteal: runq overflow") 5949 } 5950 atomic.StoreRel(&_p_.runqtail, t+n) // store-release, makes the item available for consumption 5951 return gp 5952 } 5953 5954 // A gQueue is a dequeue of Gs linked through g.schedlink. A G can only 5955 // be on one gQueue or gList at a time. 5956 type gQueue struct { 5957 head guintptr 5958 tail guintptr 5959 } 5960 5961 // empty reports whether q is empty. 5962 func (q *gQueue) empty() bool { 5963 return q.head == 0 5964 } 5965 5966 // push adds gp to the head of q. 5967 func (q *gQueue) push(gp *g) { 5968 gp.schedlink = q.head 5969 q.head.set(gp) 5970 if q.tail == 0 { 5971 q.tail.set(gp) 5972 } 5973 } 5974 5975 // pushBack adds gp to the tail of q. 5976 func (q *gQueue) pushBack(gp *g) { 5977 gp.schedlink = 0 5978 if q.tail != 0 { 5979 q.tail.ptr().schedlink.set(gp) 5980 } else { 5981 q.head.set(gp) 5982 } 5983 q.tail.set(gp) 5984 } 5985 5986 // pushBackAll adds all Gs in l2 to the tail of q. After this q2 must 5987 // not be used. 5988 func (q *gQueue) pushBackAll(q2 gQueue) { 5989 if q2.tail == 0 { 5990 return 5991 } 5992 q2.tail.ptr().schedlink = 0 5993 if q.tail != 0 { 5994 q.tail.ptr().schedlink = q2.head 5995 } else { 5996 q.head = q2.head 5997 } 5998 q.tail = q2.tail 5999 } 6000 6001 // pop removes and returns the head of queue q. It returns nil if 6002 // q is empty. 6003 func (q *gQueue) pop() *g { 6004 gp := q.head.ptr() 6005 if gp != nil { 6006 q.head = gp.schedlink 6007 if q.head == 0 { 6008 q.tail = 0 6009 } 6010 } 6011 return gp 6012 } 6013 6014 // popList takes all Gs in q and returns them as a gList. 6015 func (q *gQueue) popList() gList { 6016 stack := gList{q.head} 6017 *q = gQueue{} 6018 return stack 6019 } 6020 6021 // A gList is a list of Gs linked through g.schedlink. A G can only be 6022 // on one gQueue or gList at a time. 6023 type gList struct { 6024 head guintptr 6025 } 6026 6027 // empty reports whether l is empty. 6028 func (l *gList) empty() bool { 6029 return l.head == 0 6030 } 6031 6032 // push adds gp to the head of l. 6033 func (l *gList) push(gp *g) { 6034 gp.schedlink = l.head 6035 l.head.set(gp) 6036 } 6037 6038 // pushAll prepends all Gs in q to l. 6039 func (l *gList) pushAll(q gQueue) { 6040 if !q.empty() { 6041 q.tail.ptr().schedlink = l.head 6042 l.head = q.head 6043 } 6044 } 6045 6046 // pop removes and returns the head of l. If l is empty, it returns nil. 6047 func (l *gList) pop() *g { 6048 gp := l.head.ptr() 6049 if gp != nil { 6050 l.head = gp.schedlink 6051 } 6052 return gp 6053 } 6054 6055 //go:linkname setMaxThreads runtime/debug.setMaxThreads 6056 func setMaxThreads(in int) (out int) { 6057 lock(&sched.lock) 6058 out = int(sched.maxmcount) 6059 if in > 0x7fffffff { // MaxInt32 6060 sched.maxmcount = 0x7fffffff 6061 } else { 6062 sched.maxmcount = int32(in) 6063 } 6064 checkmcount() 6065 unlock(&sched.lock) 6066 return 6067 } 6068 6069 func haveexperiment(name string) bool { 6070 x := sys.Goexperiment 6071 for x != "" { 6072 xname := "" 6073 i := bytealg.IndexByteString(x, ',') 6074 if i < 0 { 6075 xname, x = x, "" 6076 } else { 6077 xname, x = x[:i], x[i+1:] 6078 } 6079 if xname == name { 6080 return true 6081 } 6082 if len(xname) > 2 && xname[:2] == "no" && xname[2:] == name { 6083 return false 6084 } 6085 } 6086 return false 6087 } 6088 6089 //go:nosplit 6090 func procPin() int { 6091 _g_ := getg() 6092 mp := _g_.m 6093 6094 mp.locks++ 6095 return int(mp.p.ptr().id) 6096 } 6097 6098 //go:nosplit 6099 func procUnpin() { 6100 _g_ := getg() 6101 _g_.m.locks-- 6102 } 6103 6104 //go:linkname sync_runtime_procPin sync.runtime_procPin 6105 //go:nosplit 6106 func sync_runtime_procPin() int { 6107 return procPin() 6108 } 6109 6110 //go:linkname sync_runtime_procUnpin sync.runtime_procUnpin 6111 //go:nosplit 6112 func sync_runtime_procUnpin() { 6113 procUnpin() 6114 } 6115 6116 //go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin 6117 //go:nosplit 6118 func sync_atomic_runtime_procPin() int { 6119 return procPin() 6120 } 6121 6122 //go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin 6123 //go:nosplit 6124 func sync_atomic_runtime_procUnpin() { 6125 procUnpin() 6126 } 6127 6128 // Active spinning for sync.Mutex. 6129 //go:linkname sync_runtime_canSpin sync.runtime_canSpin 6130 //go:nosplit 6131 func sync_runtime_canSpin(i int) bool { 6132 // sync.Mutex is cooperative, so we are conservative with spinning. 6133 // Spin only few times and only if running on a multicore machine and 6134 // GOMAXPROCS>1 and there is at least one other running P and local runq is empty. 6135 // As opposed to runtime mutex we don't do passive spinning here, 6136 // because there can be work on global runq or on other Ps. 6137 if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 { 6138 return false 6139 } 6140 if p := getg().m.p.ptr(); !runqempty(p) { 6141 return false 6142 } 6143 return true 6144 } 6145 6146 //go:linkname sync_runtime_doSpin sync.runtime_doSpin 6147 //go:nosplit 6148 func sync_runtime_doSpin() { 6149 procyield(active_spin_cnt) 6150 } 6151 6152 var stealOrder randomOrder 6153 6154 // randomOrder/randomEnum are helper types for randomized work stealing. 6155 // They allow to enumerate all Ps in different pseudo-random orders without repetitions. 6156 // The algorithm is based on the fact that if we have X such that X and GOMAXPROCS 6157 // are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration. 6158 type randomOrder struct { 6159 count uint32 6160 coprimes []uint32 6161 } 6162 6163 type randomEnum struct { 6164 i uint32 6165 count uint32 6166 pos uint32 6167 inc uint32 6168 } 6169 6170 func (ord *randomOrder) reset(count uint32) { 6171 ord.count = count 6172 ord.coprimes = ord.coprimes[:0] 6173 for i := uint32(1); i <= count; i++ { 6174 if gcd(i, count) == 1 { 6175 ord.coprimes = append(ord.coprimes, i) 6176 } 6177 } 6178 } 6179 6180 func (ord *randomOrder) start(i uint32) randomEnum { 6181 return randomEnum{ 6182 count: ord.count, 6183 pos: i % ord.count, 6184 inc: ord.coprimes[i%uint32(len(ord.coprimes))], 6185 } 6186 } 6187 6188 func (enum *randomEnum) done() bool { 6189 return enum.i == enum.count 6190 } 6191 6192 func (enum *randomEnum) next() { 6193 enum.i++ 6194 enum.pos = (enum.pos + enum.inc) % enum.count 6195 } 6196 6197 func (enum *randomEnum) position() uint32 { 6198 return enum.pos 6199 } 6200 6201 func gcd(a, b uint32) uint32 { 6202 for b != 0 { 6203 a, b = b, a%b 6204 } 6205 return a 6206 } 6207 6208 // An initTask represents the set of initializations that need to be done for a package. 6209 // Keep in sync with ../../test/initempty.go:initTask 6210 type initTask struct { 6211 // TODO: pack the first 3 fields more tightly? 6212 state uintptr // 0 = uninitialized, 1 = in progress, 2 = done 6213 ndeps uintptr 6214 nfns uintptr 6215 // followed by ndeps instances of an *initTask, one per package depended on 6216 // followed by nfns pcs, one per init function to run 6217 } 6218 6219 // inittrace stores statistics for init functions which are 6220 // updated by malloc and newproc when active is true. 6221 var inittrace tracestat 6222 6223 type tracestat struct { 6224 active bool // init tracing activation status 6225 id int64 // init go routine id 6226 allocs uint64 // heap allocations 6227 bytes uint64 // heap allocated bytes 6228 } 6229 6230 func doInit(t *initTask) { 6231 switch t.state { 6232 case 2: // fully initialized 6233 return 6234 case 1: // initialization in progress 6235 throw("recursive call during initialization - linker skew") 6236 default: // not initialized yet 6237 t.state = 1 // initialization in progress 6238 6239 for i := uintptr(0); i < t.ndeps; i++ { 6240 p := add(unsafe.Pointer(t), (3+i)*sys.PtrSize) 6241 t2 := *(**initTask)(p) 6242 doInit(t2) 6243 } 6244 6245 if t.nfns == 0 { 6246 t.state = 2 // initialization done 6247 return 6248 } 6249 6250 var ( 6251 start int64 6252 before tracestat 6253 ) 6254 6255 if inittrace.active { 6256 start = nanotime() 6257 // Load stats non-atomically since tracinit is updated only by this init go routine. 6258 before = inittrace 6259 } 6260 6261 firstFunc := add(unsafe.Pointer(t), (3+t.ndeps)*sys.PtrSize) 6262 for i := uintptr(0); i < t.nfns; i++ { 6263 p := add(firstFunc, i*sys.PtrSize) 6264 f := *(*func())(unsafe.Pointer(&p)) 6265 f() 6266 } 6267 6268 if inittrace.active { 6269 end := nanotime() 6270 // Load stats non-atomically since tracinit is updated only by this init go routine. 6271 after := inittrace 6272 6273 pkg := funcpkgpath(findfunc(funcPC(firstFunc))) 6274 6275 var sbuf [24]byte 6276 print("init ", pkg, " @") 6277 print(string(fmtNSAsMS(sbuf[:], uint64(start-runtimeInitTime))), " ms, ") 6278 print(string(fmtNSAsMS(sbuf[:], uint64(end-start))), " ms clock, ") 6279 print(string(itoa(sbuf[:], after.bytes-before.bytes)), " bytes, ") 6280 print(string(itoa(sbuf[:], after.allocs-before.allocs)), " allocs") 6281 print("\n") 6282 } 6283 6284 t.state = 2 // initialization done 6285 } 6286 }