
QNX® Neutrino® Device Drivers
Universal Serial Bus (USB) Devices

For QNX® Neutrino® 6.3.0 or later, or QNX® 4

© 2012, QNX Software Systems Limited

© 2000–2012, QNX Software Systems Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Kanata, Ontario
Canada
K2K 0B3
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

Publishing history

Electronic edition published 2012.

QNX, Momentics, Neutrino, Aviage, Photon, Photon microGUI, and Foundry27 are trademarks of QNX Software Systems Limited, which are registered trademarks and/or
used in certain jurisdictions. All other trademarks belong to their respective owners.

Contents

About the USB DDK vii
What you’ll find in this guide ix

Assumptions ix

Building DDKs ix

Typographical conventions xii

Note to Windows users xiii

Technical support xiii

Before You Begin 11
System requirements 3

For QNX Neutrino 3

For QNX 4 3

USB devices supported 3

Known limitations 3

EHCI 3

Photon and text mode 4

Overview 52
The USB stack and library 7

Host Controller Interface (HCI) types 7

Data buffers 7

USB enumerator 7

How a class driver works 8

USB Utilities 93

USB Library Reference 134
Functions arranged by category 15

Connection functions 15

Memory-management functions 15

I/O functions 15

Pipe-management functions 16

Configuration and interface functions 16

June 13, 2012 Contents iii

© 2012, QNX Software Systems Limited

Miscellaneous and convenience functions 16

usbd_abort_pipe() 18

usbd_alloc() 19

usbd_alloc_urb() 21

usbd_args_lookup() 22

usbd_attach() 23

usbd_close_pipe() 25

usbd_configuration_descriptor() 26

usbd_connect() 28

usbd_descriptor() 32

usbd_detach() 34

usbd_device_descriptor() 36

usbd_device_extra() 38

usbd_device_lookup() 39

usbd_disconnect() 40

usbd_endpoint_descriptor() 41

usbd_feature() 43

usbd_free() 45

usbd_free_urb() 46

usbd_get_frame() 47

usbd_hcd_ext_info(), usbd_hcd_info() 48

usbd_hub_descriptor() 50

usbd_interface_descriptor() 52

usbd_io() 54

usbd_languages_descriptor() 56

usbd_mphys() 58

usbd_open_pipe() 59

usbd_parse_descriptors() 61

usbd_pipe_device() 63

usbd_pipe_endpoint() 64

usbd_reset_device() 65

usbd_reset_pipe() 66

usbd_select_config() 67

usbd_select_interface() 68

usbd_setup_bulk() 70

usbd_setup_control() 72

usbd_setup_interrupt() 74

usbd_setup_isochronous() 76

usbd_setup_vendor() 78

usbd_status() 80

usbd_string() 82

iv Contents June 13, 2012

© 2012, QNX Software Systems Limited

usbd_topology(), usbd_topology_ext() 84

usbd_urb_status() 86

Index 89

June 13, 2012 Contents v

About the USB DDK

June 13, 2012 About the USB DDK vii

© 2012, QNX Software Systems Limited Assumptions

What you’ll find in this guide
The USB Driver Development Kit will help you write drivers for Universal Serial Bus
devices.

Our USB API is designed to work with either QNX Neutrino or QNX 4. Exceptions
will be noted where appropriate.

The following table may help you find information quickly:

For information on: See:

System requirements and other vital information Before You Begin

How the OS supports USB Overview

Command-line utilities USB Utilities

USB driver interface calls USB Library Reference

The USB DDK includes source code for several USB class drivers. Each class driver
is contained in its own separate archive. Look under the
/ddk_working_dir/usb/src/hardware/devu/class directory on your system.

Assumptions
We assume you’re familiar with the Universal Serial Bus (USB) Specification revision
2.0, especially the chapters on:

• Architectural Overview

• USB Data Flow Model

• USB Device Framework

• USB Host: Hardware and Software.

You’ll need a good understanding of the concepts in those chapters in order to write
USB client device drivers.

For up-to-date information on USB developments, visit www.usb.org.

Building DDKs
You can compile the DDK from the IDE or the command line.

• To compile the DDK from the IDE:

June 13, 2012 About the USB DDK ix

Building DDKs © 2012, QNX Software Systems Limited

Please refer to the Managing Source Code chapter, and “QNX Source Package” in
the Common Wizards Reference chapter of the IDE User’s Guide.

• To compile the DDK from the command line:

Please refer to the release notes or the installation notes for information on the
location of the DDK archives.

DDKs are simple zipped archives, with no special requirements. You must
manually expand their directory structure from the archive. You can install them
into whichever directory you choose, assuming you have write permissions for the
chosen directory.

Historically, DDKs were placed in /usr/src/ddk_VERSION directory, e.g.
/usr/src/ddk-6.2.1. This method is no longer required, as each DDK archive
is completely self-contained.

The following example indicates how you create a directory and unzip the archive
file:

cd ˜
mkdir my_DDK
cd my_DDK
unzip /path_to_ddks/ddk-device_type.zip
The top-level directory structure for the DDK looks like this:

x About the USB DDK June 13, 2012

© 2012, QNX Software Systems Limited Building DDKs

prebuilt install src

ddk_install_dir

platforms

mouse

printer

keyboard

devu

hardware

includeclass

Directory structure for this DDK.

You must run:

. ./setenv.sh
before running make, or make install.

Additionally, on Windows hosts you’ll need to run the Bash shell (bash.exe) before
you run the . ./setenv.sh command.

If you fail to run the . ./setenv.sh shell script prior to building the DDK, you
can overwrite existing binaries or libs that are installed in $QNX_TARGET.

Each time you start a new shell, run the . ./setenv.sh command. The shell needs
to be initialized before you can compile the archive.

The script will be located in the same directory where you unzipped the archive
file. It must be run in such a way that it modifies the current shell’s environment,
not a sub-shell environment.

June 13, 2012 About the USB DDK xi

Typographical conventions © 2012, QNX Software Systems Limited

In ksh and bash shells, All shell scripts are executed in a sub-shell by default.
Therefore, it’s important that you use the syntax

. <script>
which will prevent a sub-shell from being used.

Each DDK is rooted in whatever directory you copy it to. If you type make within
this directory, you’ll generate all of the buildable entities within that DDK no
matter where you move the directory.

All binaries are placed in a scratch area within the DDK directory that mimics the
layout of a target system.

When you build a DDK, everything it needs, aside from standard system headers, is
pulled in from within its own directory. Nothing that’s built is installed outside of
the DDK’s directory. The makefiles shipped with the DDKs copy the contents of
the prebuilt directory into the install directory. The binaries are built from
the source using include files and link libraries in the install directory.

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

continued. . .

xii About the USB DDK June 13, 2012

© 2012, QNX Software Systems Limited Technical support

Reference Example

User-interface components Cancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item under Perspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter in all pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support
To obtain technical support for any QNX product, visit the Support area on our
website (www.qnx.com). You’ll find a wide range of support options, including
community forums.

June 13, 2012 About the USB DDK xiii

Chapter 1

Before You Begin

In this chapter. . .
System requirements 3
USB devices supported 3
Known limitations 3

June 13, 2012 Chapter 1 • Before You Begin 1

© 2012, QNX Software Systems Limited Known limitations

System requirements
This USB DDK is designed to work with both QNX Neutrino 6 and with QNX 4.

For QNX Neutrino
You’ll need the following:

• QNX Neutrino 6.3 or later

• GNU GCC 2.95.2 or later

• USB EHCI, OHCI or UHCI controller, version 1.1 and 2.0 compliant

For QNX 4
You’ll need the following:

• QNX 4.25, patch D or later

• Watcom 10.6, patch B or later

• USB EHCI, OHCI or UHCI controller, version 1.1 and 2.0 compliant

USB devices supported

Type of device Manufacturer Model

Keyboard Belkin MediaBoard F8E211-USB

″ Micro Innovations –

Mouse Logitech USB Wheel Mouse M-BB48

″ ″ WingMan Gaming Mouse M-BC38

″ Microsoft IntelliMouse

Hub ADS Technologies 4-port

″ Belkin 4-port

Printer Canon BJC-85

″ Epson Stylus Color 740

″ HP DeskJet 895Cse

Known limitations
EHCI

Retrieving the “Other Speed Descriptor” has not been implemented.

June 13, 2012 Chapter 1 • Before You Begin 3

Known limitations © 2012, QNX Software Systems Limited

Photon and text mode
If you’re using Photon as well as text mode, you won’t be able to switch between them
and use a USB keyboard once the USB stack has been started.

From a cold boot, you’ll be able to use a USB keyboard in text mode before the USB
stack has been started. As soon as you start the USB stack, you can’t use a USB
keyboard in text mode.

CAUTION:

Make sure that the command line for devi-hirun (or Input) includes the option to
not reset the keyboard controller. For example:

devi-hirun kbd -R fd -d/dev/usbkbd0 &

Or with QNX 4:

Input kbd -R fd -d/dev/usbkbd0 &

If you don’t use the -R option, then the keyboard controller will be reset whenever you
switch between Photon and text mode, and the machine may hang.

!

4 Chapter 1 • Before You Begin June 13, 2012

Chapter 2

Overview

In this chapter. . .
The USB stack and library 7
How a class driver works 8

June 13, 2012 Chapter 2 • Overview 5

© 2012, QNX Software Systems Limited The USB stack and library

The USB stack and library
USB (Universal Serial Bus) is a hardware and protocol specification for
interconnecting various devices to a host controller. We supply a USB stack that
implements the USB protocol and allows user-written class drivers to communicate
with USB devices.

We also supply a USB driver library (usbd_*()) for class drivers to use in order to
communicate with the USB stack. Note that a class driver can be considered a “client”
of the USB stack.

The stack is implemented as a standalone process that registers the pathname of
/dev/io-usb/io-usb (by default). Currently, the stack contains the hub class driver
within it.

Host Controller Interface (HCI) types
The stack supports the three industry-standard HCI types:

• Open Host Controller Interface (OHCI)

• Universal Host Controller Interface (UHCI)

• Enhanced Host Controller Interface (EHCI)

We provide separate servers for each type (devu-ohci.so, devu-uhci.so, and
devu-ehci.so). Note that USB devices don’t care whether a computer has an OHCI,
UHCI, or an EHCI controller.

Data buffers
The client library provides functions to allocate data buffers in shared memory; the
stack manages these data buffers and gives the client library access to them. This
means that all data transfers must use the provided buffers.

As a result, a class driver must reside on the same physical node as the USB stack. The
clients of the class driver, however, can be network-distributed. The advantage of this
approach is that no additional memory copy occurs between the time that the data is
received by the USB stack and the time that it’s delivered to the class driver (and vice
versa).

USB enumerator
With the QNX Neutrino OS, the USB enumerator attaches to the USB stack and waits
for device insertions. When a device insertion is detected, the enumerator looks in the
configuration manager’s database to see which class driver it should start. It then starts
the appropriate driver, which provides for that class of device. For example, a USB
Ethernet class driver would register with io-pkt* and bring the interface up.

For small, deeply embedded systems, the enumerator isn’t required. The class drivers
can be started individually — they’ll wait around for their particular devices to be
detected by the stack. At that point, they’ll provide the appropriate services for that

June 13, 2012 Chapter 2 • Overview 7

How a class driver works © 2012, QNX Software Systems Limited

class of device, just as if they’d been started by the enumerator. When a device is
removed, the enumerator will shut down the class driver.

For more information about device enumeration, see the Controlling How Neutrino
Starts chapter of the Neutrino User’s Guide.

How a class driver works
A class driver typically performs the following operations:

1 Connect to the USB stack (usbd_connect()) and provide two callbacks: one for
insertion and one for removal.

2 In the insertion callback:

2a Connect to the USB device (usbd_attach()).

2b Get descriptors (usbd_descriptor()).

2c Select the configuration (usbd_select_config()) and interface
(usbd_select_interface()).

2d Set up communications pipes to the appropriate endpoint
(usbd_open_pipe()).

3 In the removal callback, detach from the USB device (usbd_detach()).

4 Set up all data communications (e.g. reading and writing data, sending and
receiving control information, etc.) via the usbd_setup_*() functions
(usbd_setup_bulk(), usbd_setup_interrupt(), etc.).

5 Initiate data transfer using the usbd_io() function (with completion callbacks if
required).

In this context, the term “pipe” is a USB-specific term that has nothing to do with
standard POSIX “pipes” (as used, for example, in the command line ls | more). In
USB terminology, a “pipe” is simply a handle; something that identifies a connection
to an endpoint.

8 Chapter 2 • Overview June 13, 2012

Chapter 3

USB Utilities

June 13, 2012 Chapter 3 • USB Utilities 9

© 2012, QNX Software Systems Limited

The USB Software Development Kit contains the following command-line utilities.
For more information, see their entries in the Utilities Reference.

devu-ehci.so USB manager for Enhanced Host Controller Interface standard
controllers. (USB 2.0)

devu-ohci.so USB manager for Open Host Controller Interface standard
controllers. (USB 2.0)

devu-prn Class Driver for USB printers.

devu-uhci.so USB manager for Universal Host Controller Interface standard
controllers. (USB 2.0)

io-usb USB server.

usb Display USB device configuration.

June 13, 2012 Chapter 3 • USB Utilities 11

Chapter 4

USB Library Reference

In this chapter. . .
Functions arranged by category 15
usbd_abort_pipe() 18
usbd_alloc() 19
usbd_alloc_urb() 21
usbd_args_lookup() 22
usbd_attach() 23
usbd_close_pipe() 25
usbd_configuration_descriptor() 26
usbd_connect() 28
usbd_descriptor() 32
usbd_detach() 34
usbd_device_descriptor() 36
usbd_device_extra() 38
usbd_device_lookup() 39
usbd_disconnect() 40
usbd_endpoint_descriptor() 41
usbd_feature() 43
usbd_free() 45
usbd_free_urb() 46
usbd_get_frame() 47
usbd_hcd_ext_info(), usbd_hcd_info() 48
usbd_hub_descriptor() 50
usbd_interface_descriptor() 52
usbd_io() 54
usbd_languages_descriptor() 56
usbd_mphys() 58
usbd_open_pipe() 59
usbd_parse_descriptors() 61
usbd_pipe_device() 63
usbd_pipe_endpoint() 64
usbd_reset_device() 65
usbd_reset_pipe() 66
usbd_select_config() 67
usbd_select_interface() 68
usbd_setup_bulk() 70
usbd_setup_control() 72
usbd_setup_interrupt() 74
usbd_setup_isochronous() 76
usbd_setup_vendor() 78
usbd_status() 80

June 13, 2012 Chapter 4 • USB Library Reference 13

© 2012, QNX Software Systems Limited

usbd_string() 82
usbd_topology(), usbd_topology_ext() 84
usbd_urb_status() 86

14 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited Functions arranged by category

This chapter includes descriptions of the USB functions in alphabetical order, along
with a listing of the functions arranged by category.

These functions are defined in the libusbdi library. Use the -l usbdi option to
link against this library.

Functions arranged by category
The USB functions may be grouped into these categories:

• Connection functions

• Memory-management functions

• I/O functions

• Pipe-management functions

• Configuration/interface functions

• Miscellaneous functions

Connection functions
usbd_connect() Connect a client driver to the USB stack.

usbd_disconnect() Disconnect a client driver from the USB stack.

usbd_attach() Attach to a USB device.

usbd_detach() Detach from a USB device.

Memory-management functions
usbd_alloc() Allocate memory area to use for data transfers.

usbd_free() Free memory allocated by usbd_alloc().

usbd_mphys() Get the physical address of memory allocated by usbd_alloc().

usbd_alloc_urb() Allocate a USB Request Block for subsequent URB-based
operations.

usbd_free_urb() Free the URB allocated by usbd_alloc_urb().

I/O functions
usbd_setup_bulk() Set up a URB for a bulk data transfer.

usbd_setup_interrupt()

Set up a URB for an interrupt transfer.

June 13, 2012 Chapter 4 • USB Library Reference 15

Functions arranged by category © 2012, QNX Software Systems Limited

usbd_setup_isochronous()

Set up a URB for an isochronous transfer.

usbd_setup_vendor()

Set up a URB for a vendor-specific transfer.

usbd_setup_control()

Set up a URB for a control transfer.

usbd_io() Submit a previously set up URB to the USB stack.

usbd_feature() Control a feature for a USB device.

usbd_descriptor() Get or set USB descriptors.

usbd_status() Get specific device status.

Pipe-management functions
usbd_open_pipe() Initialize the pipe described by the device or endpoint

descriptor.

usbd_close_pipe() Close a pipe previously opened by the usbd_open_pipe()
function.

usbd_reset_pipe() Clear a stall condition on an endpoint identified by the pipe
handle.

usbd_abort_pipe() Abort all requests on a pipe.

usbd_pipe_device() Retrieve the device associated with the pipe.

usbd_pipe_endpoint()

Retrieve the endpoint number associated with the pipe.

Configuration and interface functions
usbd_select_config()

Select the configuration for a USB device.

usbd_select_interface()

Select the interface for a USB device.

Miscellaneous and convenience functions
usbd_args_lookup() Look up a driver’s command-line arguments.

usbd_configuration_descriptor()

Get the configuration descriptor for a specific configuration
setting.

16 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited Functions arranged by category

usbd_device_lookup()

Map the device instance identifier to an opaque device handle
(from usbd_attach()).

usbd_device_extra() Retrieve a pointer to the device-specific extra memory
allocated by usbd_attach().

usbd_device_descriptor()

Get the device descriptor for a specific device.

usbd_endpoint_descriptor()

Get the endpoint descriptor for a specific endpoint setting.

usbd_get_frame() Get the current frame number and frame length for a device.

usbd_hcd_ext_info(), usbd_hcd_info()

Get information on the USB host controller and DDK library.

usbd_hub_descriptor()

Get the hub descriptor for a specific (hub) device.

usbd_interface_descriptor()

Get the interface descriptor for a specific interface setting.

usbd_languages_descriptor()

Get the table of supported LANGIDs for the given device.

usbd_parse_descriptors()

Parse device descriptors looking for a specific entry.

usbd_reset_device() Reset a USB device.

usbd_string() Get a string descriptor.

usbd_urb_status() Return status information on a URB.

usbd_topology(), usbd_topology_ext()

Get the USB bus physical topology.

June 13, 2012 Chapter 4 • USB Library Reference 17

usbd_abort_pipe() © 2012, QNX Software Systems Limited

Abort all requests on a pipe

Synopsis:
#include <sys/usbdi.h>

int usbd_abort_pipe(struct usbd_pipe *pipe);

Arguments:
pipe An opaque handle returned by usbd_open_pipe().

Library:
libusbdi

Description:
The usbd_abort_pipe() function aborts all requests on the specified pipe. You can use
this function during an error condition (e.g. to abort a pending operation) or during
normal operation (e.g. to halt an isochronous transfer).

Returns:
EOK Success.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_open_pipe(), usbd_close_pipe(), usbd_pipe_endpoint(), usbd_reset_pipe()

18 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_alloc()
Allocate a memory area to use for data transfers

Synopsis:
#include <sys/usbdi.h>

void *usbd_alloc(size_t size);

Arguments:
size The size, in bytes, of the area to allocate.

Library:
libusbdi

Description:
The usbd_alloc() function allocates a memory area that can then be used for data
transfers. You should use the memory area allocated by this function, because it’s
allocated efficiently and because its physical address is quickly obtained via
usbd_mphys().

The usbd_setup_*() functions require usbd_alloc()’d data buffers.

To free the memory, use usbd_free().

Returns:
A pointer to the start of the allocated memory, or NULL if there’s not enough memory.

Errors:
ENOMEM Insufficient memory available.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

June 13, 2012 Chapter 4 • USB Library Reference 19

usbd_alloc() © 2012, QNX Software Systems Limited

See also:
usbd_alloc_urb(), usbd_free(), usbd_free_urb(), usbd_mphys()

20 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_alloc_urb()
Allocate a USB Request Block for subsequent URB-based operations

Synopsis:
#include <sys/usbdi.h>

struct usbd_urb *usbd_alloc_urb(struct usbd_urb *link);

Arguments:
link Specifies multiple URBs linked together. (Not yet implemented.)

Library:
libusbdi

Description:
The usbd_alloc_urb() function allocates a USB Request Block (URB) to be used for
subsequent URB-based I/O transfers.

To free the block, use usbd_free_urb().

Returns:
A pointer to the start of the allocated block, or NULL if there isn’t enough memory.

Errors:
ENOMEM Insufficient memory available.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_alloc(), usbd_free(), usbd_free_urb(), usbd_mphys()

June 13, 2012 Chapter 4 • USB Library Reference 21

usbd_args_lookup() © 2012, QNX Software Systems Limited

Look up a driver’s command-line arguments

Synopsis:
#include <sys/usbdi.h>

void usbd_args_lookup(struct usbd_connection *connection,
int *argc,
char ***argv);

Arguments:
connection Identifies the USB stack (from usbd_connect()).

Library:
libusbdi

Description:
The usbd_args_lookup() function lets you look up a device driver’s command-line
arguments at insertion/attach time.

The command-line arguments are held in argc and argv within the
usbd_connect_parm data structure. See usbd_connect() for details.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_configuration_descriptor(), usbd_connect(), usbd_device_lookup(),
usbd_device_extra(), usbd_device_descriptor(), usbd_endpoint_descriptor(),
usbd_hcd_info(), usbd_hub_descriptor(), usbd_interface_descriptor(),
usbd_languages_descriptor(), usbd_parse_descriptors(), usbd_string(),
usbd_urb_status()

22 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_attach()
Attach to a USB device

Synopsis:
#include <sys/usbdi.h>

int usbd_attach(struct usbd_connection *connection,
usbd_device_instance_t *instance,
size_t extra,
struct usbd_device **device);

Arguments:
connection An opaque handle that identifies the USB stack (from usbd_connect()).

instance Describes which device you wish to attach to.

extra The size of additional memory you’d like allocated with the device.
You can use usbd_device_extra() later to get a pointer to this
additional memory. Typically, the class driver would store various
status/config/device-specific details in here (if needed).

device An opaque handle used to identify the device in later calls.

Library:
libusbdi

Description:
You use the usbd_attach() function to attach to a USB device. Typically, you do this
out of the insertion callback (made when the device matched your filter), which will
give you the connection and instance parameters involved. The insertion callback is
prototyped as follows:

void (*insertion)(struct usbd_connection *, usbd_device_instance_t *instance)

The usbd_device_instance_t structure looks like this:

typedef struct usbd_device_instance {
uint8_t path;
uint8_t devno;
uint16_t generation;
usbd_device_ident_t ident;
uint32_t config;
uint32_t iface;
uint32_t alternate;

} usbd_device_instance_t;

June 13, 2012 Chapter 4 • USB Library Reference 23

usbd_attach() © 2012, QNX Software Systems Limited

Looping

Another way to attach is to loop and attach to all devices (in which case you build the
instance yourself). For example:
for (busno = 0; busno < 10; ++busno) {

for (devno = 0; devno < 64; ++devno) {
memset(&instance, USBD_CONNECT_WILDCARD, sizeof(usbd_device_instance_t));
instance.path = busno, instance.devno = devno;

if (usbd_attach(connection, &instance, 0, &device) == EOK) {
......

}

}
}

The degree of “attachedness” depends on how you connected:

• If you specified insertion/removal callback functions, then you’ll get exclusive
access to the device and can make I/O to it.

• If you didn’t use callbacks and you attached as in the loop above, you get shared
access, so you can only read device configuration.

Returns:
EOK Success.

ENODEV Specified device doesn’t exist. If in a loop, then there’s nothing at that
devno. If from a callback, then the device has since been removed.

EBUSY A shared/exclusive conflict.

ENOMEM No memory for internal device structures.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_connect(), usbd_detach(), usbd_device_extra(), usbd_disconnect()

24 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_close_pipe()
Close a pipe previously opened by usbd_open_pipe()

Synopsis:
#include <sys/usbdi.h>

int usbd_close_pipe(struct usbd_pipe *pipe);

Arguments:
pipe An opaque handle returned by usbd_open_pipe().

Library:
libusbdi

Description:
You use the usbd_close_pipe() function to close a pipe that was previously opened via
usbd_open_pipe().

Returns:
EOK Success.

EBUSY Active or pending I/O.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_abort_pipe(), usbd_open_pipe(), usbd_pipe_endpoint(), usbd_reset_pipe()

June 13, 2012 Chapter 4 • USB Library Reference 25

usbd_configuration_descriptor() © 2012, QNX Software Systems Limited

Get the configuration descriptor for a specific configuration setting

Synopsis:
#include <sys/usbdi.h>

usbd_configuration_descriptor_t
*usbd_configuration_descriptor(

struct usbd_device *device,
uint8_t cfg,
struct usbd_desc_node **node);

Arguments:
device An opaque handle used to identify the USB device.

cfg The device’s configuration identifier (bConfigurationValue).

node Indicates the descriptor’s location for rooting future requests (e.g.
interfaces of this configuration).

Library:
libusbdi

Description:
The usbd_configuration_descriptor() function lets you obtain the configuration
descriptor for a specific configuration setting.

The usbd_configuration_descriptor_t structure looks like this:

typedef struct usbd_configuration_descriptor {
uint8_t bLength;
uint8_t bDescriptorType;
uint16_t wTotalLength;
uint8_t bNumInterfaces;
uint8_t bConfigurationValue;
uint8_t iConfiguration;
uint8_t bmAttributes;
uint8_t MaxPower;

} usbd_configuration_descriptor_t;

Returns:
A pointer to usbd_configuration_descriptor_t on success, or NULL on error.

Classification:
QNX Neutrino, QNX 4

26 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_configuration_descriptor()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_args_lookup(), usbd_device_lookup(), usbd_device_extra(),
usbd_device_descriptor(), usbd_endpoint_descriptor(), usbd_hcd_info(),
usbd_hub_descriptor(), usbd_interface_descriptor(), usbd_languages_descriptor(),
usbd_parse_descriptors(), usbd_string(), usbd_urb_status()

June 13, 2012 Chapter 4 • USB Library Reference 27

usbd_connect() © 2012, QNX Software Systems Limited

Connect a client driver to the USB stack

Synopsis:
#include <sys/usbdi.h>

int usbd_connect(usbd_connect_parm_t *parm,
struct usbd_connection **connection);

Arguments:
parm Connection parameters describing how to connect to the USB stack

and how you intend to operate with it.

connection An opaque handle returned on a successful connection; it’s used to
pass into other routines to identify the connection.

Library:
libusbdi

Description:
You use the usbd_connect() function to connect to a USB device and to provide
insertion/removal callbacks (in the usbd_connect_parm_t data structure).

Data structures
typedef struct usbd_connect_parm {

const char *path;
uint16_t vusb;
uint16_t vusbd;
uint32_t flags;
int argc;
char **argv;
uint32_t evtbufsz;
usbd_device_ident_t *ident;
usbd_funcs_t *funcs;
uint16_t connect_wait

} usbd_connect_parm_t;

path Name of the stack (NULL means /dev/io-usb/io-usb, the
default name).

vusb and vusbd Versions of the USB stack (USB_VERSION) and DDK
(USBD_VERSION).

flags Currently none defined. Pass 0.

argc and argv Command-line arguments to the device driver that can be made
available via usbd_args_lookup() at insertion/attach time.

evtbufsz Size of the event buffer used by the handler thread to buffer events
from the USB stack. For the default size, pass 0.

28 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_connect()

ident A pointer to a usbd_device_ident_t structure that identifies
the devices you’re interested in receiving insertion/removal
callbacks for (a filter):

typedef struct usbd_device_ident {
uint32_t vendor;
uint32_t device;
uint32_t dclass;
uint32_t subclass;
uint32_t protocol;

} usbd_device_ident_t;

You can set the fields to USBD_CONNECT_WILDCARD or to an
explicit value. You would typically make the
usbd_device_ident_t structure be a filter for devices you
support from this specific class driver.

funcs A pointer to a usbd_funcs_t structure that specifies the
insertion/removal callbacks:

typedef struct usbd_funcs {

uint32_t nentries;
void (*insertion)(struct usbd_connection *, usbd_device_instance_t *instance);
void (*removal)(struct usbd_connection *, usbd_device_instance_t *instance);

void (*event)(struct usbd_connection *, usbd_device_instance_t *instance,
uint16_t type);

} usbd_funcs_t;

The usbd_funcs_t structure includes the following members:

nentries The number of entries in the structure. Set this to
_USBDI_NFUNCS.

insertion The function to call when a device that matches the
defined filter is detected.

removal The function to call when a device is removed.

event A future extension for various other event notifications
(e.g. bandwidth problems).

By passing NULL as the usbd_funcs, you’re saying that you’re not interested in
receiving dynamic insertion/removal notifications, which means that you won’t be a
fully operational class driver. No asynchronous I/O will be allowed, no event thread,
etc. This approach is taken, for example, by the usb display utility.

connect_wait A value (in seconds) or USBD_CONNECT_WAIT.

Returns:
EOK Success.

EPROGMISMATCH

Versionitis.

ENOMEM No memory for internal connect structures.

June 13, 2012 Chapter 4 • USB Library Reference 29

usbd_connect() © 2012, QNX Software Systems Limited

ESRCH USB server not running.
EACCES Permission denied to USB server.

EAGAIN Can’t create async/callback thread.

Examples:
A class driver (in its main(), probably) for a 3COM Ethernet card might connect like
this:

usbd_device_ident_t interest = {
USB_VENDOR_3COM,
USB_PRODUCT_3COM_3C19250,
USBD_CONNECT_WILDCARD,
USBD_CONNECT_WILDCARD,
USBD_CONNECT_WILDCARD,

};
usbd_funcs_t funcs = {

_USBDI_NFUNCS,
insertion,
removal,
NULL

};
usbd_connect_parm_t cparms = {

NULL,
USB_VERSION,
USBD_VERSION,
0,
argc,
argv,
0,
&interest,
&funcs

};
struct usbd_connection *connection;
int error;

error = usbd_connect(&cparms, &connection);

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

30 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_connect()

Caveats:
The usbd_connect() function creates a thread on your behalf that’s used by the library
to monitor the USB stack for device insertion or removal. Since your insertion and
removal callback functions are called by this new thread, you must ensure that any
common resources used between that thread and any other thread(s) in your class
driver are properly protected (e.g. via a mutex).

See also:
usbd_args_lookup(), usbd_attach(), usbd_detach(), usbd_disconnect()

June 13, 2012 Chapter 4 • USB Library Reference 31

usbd_descriptor() © 2012, QNX Software Systems Limited

Get or set USB descriptors

Synopsis:
#include <sys/usbdi.h>

int usbd_descriptor(struct usbd_device *device,
int set,
uint8_t type,
uint16_t rtype,
uint8_t index,
uint16_t langid,
uint8_t *desc,
size_t len);

Arguments:
device An opaque handle used to identify the USB device.

set A flag that says to either get or set a descriptor.

type Type of descriptor (e.g. USB_DESC_DEVICE,
USB_DESC_CONFIGURATION, USB_DESC_STRING, USB_DESC_HUB).

rtype Type of request (e.g. USB_RECIPIENT_DEVICE,
USB_RECIPIENT_INTERFACE, USB_RECIPIENT_ENDPOINT,
USB_RECIPIENT_OTHER, USB_TYPE_STANDARD, USB_TYPE_CLASS,
USB_TYPE_VENDOR).

index This varies, depending on the request. It’s used for passing a parameter to
the device.

langid Identifies the language supported in strings (according to the LANGID
table).

desc Pointer at buffer to put descriptors.

len The length of the data transfer in bytes.

Library:
libusbdi

Description:
The usbd_descriptor() function lets you obtain the USB descriptors.

Returns:
EMSGSIZE Buffer too small for descriptor.

ENOMEM No memory for URB.

32 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_descriptor()

ENODEV Device was removed.
EIO I/O error on USB device.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_feature() usbd_io(), usbd_parse_descriptors(), usbd_setup_bulk(),
usbd_setup_control(), usbd_setup_interrupt(), usbd_setup_isochronous(),
usbd_setup_vendor(), usbd_status()

June 13, 2012 Chapter 4 • USB Library Reference 33

usbd_detach() © 2012, QNX Software Systems Limited

Detach from the USB device

Synopsis:
#include <sys/usbdi.h>

int usbd_detach(struct usbd_device *device);

Arguments:
device An opaque handle from usbd_attach().

Library:
libusbdi

Description:
You use the usbd_detach() function to disconnect from a USB device that you
previously had attached to via usbd_attach().

The usbd_detach() function automatically closes any pipes previously opened via
usbd_open_pipe().

Returns:
EOK Success.

EBUSY I/O pending on the device.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Don’t try to detach if there’s I/O pending on the device. If there is, usbd_detach() will
fail.

34 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_detach()

See also:
usbd_attach(), usbd_close_pipe(), usbd_connect(), usbd_disconnect(),
usbd_open_pipe()

June 13, 2012 Chapter 4 • USB Library Reference 35

usbd_device_descriptor() © 2012, QNX Software Systems Limited

Get the device descriptor for a specific device

Synopsis:
#include <sys/usbdi.h>

usbd_device_descriptor_t
*usbd_device_descriptor(
struct usbd_device *device,
struct usbd_desc_node **node);

Arguments:
device A handle obtained by calling usbd_attach().

node The address of a pointer to a usbd_device_descriptor_t structure
where the function stores the device descriptor.

Library:
libusbdi

Description:
The usbd_device_descriptor() function lets you obtain the device descriptor for a
specific device.

The node parameter tells you where a descriptor was found to root future requests
from (e.g. configurations of the device).

The usbd_device_descriptor_t structure looks like this:

typedef struct usbd_device_descriptor {
uint8_t bLength;
uint8_t bDescriptorType;
uint16_t bcdUSB;
uint8_t bDeviceClass;
uint8_t bDeviceSubClass;
uint8_t bDeviceProtocol;
uint8_t bMaxPacketSize0;
uint16_t idVendor;
uint16_t idProduct;
uint16_t bcdDevice;
uint8_t iManufacturer;
uint8_t iProduct;
uint8_t iSerialNumber;
uint8_t bNumConfigurations;

} usbd_device_descriptor_t;

Returns:
A pointer to usbd_device_descriptor_t on success, or NULL on error.

36 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_device_descriptor()

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_args_lookup(), usbd_configuration_descriptor(), usbd_device_lookup(),
usbd_device_extra(), usbd_endpoint_descriptor(), usbd_hcd_info(),
usbd_hub_descriptor(), usbd_interface_descriptor(), usbd_languages_descriptor(),
usbd_parse_descriptors(), usbd_string(), usbd_urb_status()

June 13, 2012 Chapter 4 • USB Library Reference 37

usbd_device_extra() © 2012, QNX Software Systems Limited

Get a pointer to the memory allocated by the extra parameter

Synopsis:
#include <sys/usbdi.h>

void *usbd_device_extra(struct usbd_device *device);

Arguments:
device A handle obtained by calling usbd_attach().

Library:
libusbdi

Description:
You use the usbd_device_extra() function to get a pointer to the additional memory
allocated via the extra parameter in usbd_attach().

Returns:
A pointer to the additional memory, or NULL if no device-specific memory was
allocated by usbd_attach().

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_args_lookup(), usbd_attach() usbd_configuration_descriptor(),
usbd_device_lookup(), usbd_device_descriptor(), usbd_endpoint_descriptor(),
usbd_hcd_info(), usbd_hub_descriptor(), usbd_interface_descriptor(),
usbd_languages_descriptor(), usbd_parse_descriptors(), usbd_string(),
usbd_urb_status()

38 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_device_lookup()
Map the device instance identifier to an opaque device handle (from usbd_attach())

Synopsis:
#include <sys/usbdi.h>

struct usbd_device *usbd_device_lookup(
struct usbd_connection *connection,
usbd_device_instance_t *instance);

Arguments:
connection A handle obtained by calling usbd_connect().

instance The device instance identifier obtained by calling usbd_attach().

Library:
libusbdi

Description:
You use the usbd_device_lookup() function to map the device instance identifier to an
opaque device handle. This is typically required in the removal callback.

Returns:
An opaque device handle, or NULL.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_args_lookup(), usbd_attach(), usbd_configuration_descriptor(),
usbd_device_extra(), usbd_device_descriptor(), usbd_endpoint_descriptor(),
usbd_hcd_info(), usbd_hub_descriptor(), usbd_interface_descriptor(),
usbd_languages_descriptor(), usbd_parse_descriptors(), usbd_string(),
usbd_urb_status()

June 13, 2012 Chapter 4 • USB Library Reference 39

usbd_disconnect() © 2012, QNX Software Systems Limited

Disconnect a client driver from the USB stack

Synopsis:
#include <sys/usbdi.h>

int usbd_disconnect(struct usbd_connection *connection);

Arguments:
connection A handle for the USB stack, obtained by calling usbd_connect().

Library:
libusbdi

Description:
You use the usbd_disconnect() to disconnect a client driver that had been previously
connected to the USB stack via the usbd_connect() function.

The usbd_disconnect() function automatically closes any pipes previously opened via
usbd_attach().

Returns:
EOK Success.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_attach(), usbd_connect(), usbd_detach()

40 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_endpoint_descriptor()
Get the endpoint descriptor for a specific endpoint setting

Synopsis:
#include <sys/usbdi.h>

usbd_endpoint_descriptor_t
*usbd_endpoint_descriptor(

struct usbd_device *device,
uint8_t config,
uint8_t iface,
uint8_t alt,
uint8_t endpoint,
struct usbd_desc_node **node);

Arguments:
device An opaque handle used to identify the USB device.

config Configuration identifier (bConfigurationValue).

ifc Interface identifier (bInterfaceNumber).

alt Alternate identifier (bAlternateSetting).

endpoint Endpoint identifier (bEndpointAddress).

node Indicates the descriptor’s location for rooting future requests.

Library:
libusbdi

Description:
The usbd_endpoint_descriptor() function lets you obtain the endpoint descriptor for a
specific endpoint on a configuration/interface.

The endpoint_descriptor_t structure looks like this:

typedef struct usbd_endpoint_descriptor {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bEndpointAddress;
uint8_t bmAttributes;
uint16_t wMaxPacketSize;
uint8_t bInterval;

} usbd_endpoint_descriptor_t;

Returns:
A pointer to usbd_endpoint_descriptor_t on success, or NULL on error.

June 13, 2012 Chapter 4 • USB Library Reference 41

usbd_endpoint_descriptor() © 2012, QNX Software Systems Limited

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_args_lookup(), usbd_configuration_descriptor(), usbd_device_lookup(),
usbd_device_extra(), usbd_device_descriptor(), usbd_hcd_info(),
usbd_hub_descriptor(), usbd_interface_descriptor(), usbd_languages_descriptor(),
usbd_parse_descriptors(), usbd_string(), usbd_urb_status()

42 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_feature()
Control a feature for a USB device

Synopsis:
#include <sys/usbdi.h>

int usbd_feature(struct usbd_device *device,
int set,
uint16_t feature,
uint16_t rtype,
uint16_t index);

Arguments:
device An opaque handle used to identify the USB device.

set Set or clear a feature on the USB device.

feature A specific feature on the device.

rtype Type of request (e.g. USB_RECIPIENT_DEVICE,
USB_RECIPIENT_INTERFACE, USB_RECIPIENT_ENDPOINT,
USB_RECIPIENT_OTHER, USB_TYPE_STANDARD, USB_TYPE_CLASS,
USB_TYPE_VENDOR).

index This varies, depending on the request. It’s used for passing a parameter to
the device.

Library:
libusbdi

Description:
The usbd_feature() function lets you control a specific feature on a USB device.

Returns:
EOK Success.

ENOMEM No memory for URB.

ENODEV Device was removed.

EIO I/O error on USB device.

Classification:
QNX Neutrino, QNX 4

June 13, 2012 Chapter 4 • USB Library Reference 43

usbd_feature() © 2012, QNX Software Systems Limited

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_descriptor(), usbd_io(), usbd_setup_bulk(), usbd_setup_control(),
usbd_setup_interrupt(), usbd_setup_isochronous(), usbd_setup_vendor(),
usbd_status()

44 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_free()
Free the memory area allocated by usbd_alloc()

Synopsis:
#include <sys/usbdi.h>

void usbd_free(void* ptr);

Arguments:
ptr A pointer to the memory area to be freed.

Library:
libusbdi

Description:
The usbd_free() function frees the memory allocated by usbd_alloc(). The function
deallocates the memory area specified by ptr, which was previously returned by a call
to usbd_mphys().

It’s safe to call usbd_free() with a NULL ptr.

Returns:
EOK Success.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_alloc(), usbd_alloc_urb(), usbd_free_urb(), usbd_mphys()

June 13, 2012 Chapter 4 • USB Library Reference 45

usbd_free_urb() © 2012, QNX Software Systems Limited

Free the USB Request Block allocated by usbd_alloc_urb()

Synopsis:
#include <sys/usbdi.h>

struct usbd_urb *usbd_free_urb(struct usbd_urb *urb);

Arguments:
urb A pointer to the URB to be freed.

Library:
libusbdi

Description:
The usbd_free_urb() function frees the memory allocated by usbd_alloc_urb().

Returns:
EOK Success.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_alloc(), usbd_alloc_urb(), usbd_free(), usbd_mphys()

46 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_get_frame()
Get the current frame number and frame length for a device

Synopsis:
int usbd_get_frame(struct usdb_device *device,

int32_t *fnum,
int32_t *flen);

Arguments:
device The handle for the device, obtained by calling usbd_attach().

fnum If non-NULL, this is set to the frame number.

flen If non-NULL, this is set to the frame length.

Library:
libusbdi

Description:
This function gets the current frame number and frame length for the specified device.

Returns:
EOK Success.

ENODEV The device has been removed.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_attach()

June 13, 2012 Chapter 4 • USB Library Reference 47

usbd_hcd_ext_info(), usbd_hcd_info() © 2012, QNX Software Systems Limited

Get information on the USB host controller and DDK library

Synopsis:
#include <sys/usbdi.h>

int usbd_hcd_ext_info(struct usbd_connection *connection,
uint32_t cindex,
usbd_hcd_info_t *info);

int usbd_hcd_info(struct usbd_connection *connection,
usbd_hcd_info_t *info);

Arguments:
connection The handle for the connection to the USB stack, obtained by calling

usbd_connect().

cindex (usbd_hcd_ext_info() only) The index of the host controller.

info A pointer to a usbd_hcd_info_t data structure that this function fills
in.

Library:
libusbdi

Description:
You can use the usbd_hcd_ext_info() or usbd_hcd_info() function to obtain
information from the USB host controller and DDK library.

If your system has more than one USB chip, you can call usbd_hcd_ext_info() to get
information about a specific one. The usbd_hcd_info() function gets information
about the first USB chip; calling it is the same as calling usbd_hcd_ext_info() with a
cindex argument of 0.

The usbd_hcd_info_t structure is defined as follows:

typedef struct usbd_hcd_info {
uint16_t vusb;
uint16_t vusbd;
char controller[8];
uint32_t capabilities;
uint8_t ndev;
uint8_t cindex;
uint16_t vhcd;
uint32_t max_td_io;
uint8_t reserved[12];

} usbd_hcd_info_t;

It contains at least the following:

vusb The version number of the USB stack.

48 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_hcd_ext_info(), usbd_hcd_info()

vusbd The version number of the USB DDK.
controller The name of the USB host controller.

capabilities The capabilities of the USB host controller.

ndev The number of devices currently connected.

cindex The index of the host controller.

vhcd The version number of the USB HCD.

max_td_io The maximum number of bytes per HC TD.

Returns:
EOK Success.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_args_lookup(), usbd_configuration_descriptor(), usbd_device_lookup(),
usbd_device_extra(), usbd_device_descriptor(), usbd_endpoint_descriptor(),
usbd_hub_descriptor(), usbd_interface_descriptor(), usbd_languages_descriptor(),
usbd_parse_descriptors(), usbd_string(), usbd_urb_status()

June 13, 2012 Chapter 4 • USB Library Reference 49

usbd_hub_descriptor() © 2012, QNX Software Systems Limited

Get the hub descriptor for a specific (hub) device

Synopsis:
#include <sys/usbdi.h>

usbd_hub_descriptor_t *usbd_hub_descriptor(
struct usbd_device *device,
struct usbd_desc_node **node);

Arguments:
device An opaque handle used to identify the USB device.

node Indicates the descriptor’s location for rooting future requests.

Library:
libusbdi

Description:
The usbd_hub_descriptor() function lets you obtain a hub descriptor.

The usbd_hub_descriptor_t data structure looks like this:

typedef struct usbd_hub_descriptor {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bNbrPorts;
uint16_t wHubCharacteristics;
uint8_t bPwrOn2PwrGood;
uint8_t bHubContrCurrent;
uint8_t DeviceRemovable[1];
uint8_t PortPwrCtrlMask[1];

} usbd_hub_descriptor_t;

Returns:
A pointer to usbd_hub_descriptor_t on success, or NULL on error.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

50 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_hub_descriptor()

See also:
usbd_args_lookup(), usbd_configuration_descriptor(), usbd_device_lookup(),
usbd_device_extra(), usbd_device_descriptor(), usbd_endpoint_descriptor(),
usbd_hcd_info(), usbd_interface_descriptor(), usbd_languages_descriptor(),
usbd_parse_descriptors(), usbd_string(), usbd_urb_status()

June 13, 2012 Chapter 4 • USB Library Reference 51

usbd_interface_descriptor() © 2012, QNX Software Systems Limited

Get the interface descriptor for a specific interface setting

Synopsis:
#include <sys/usbdi.h>

usbd_interface_descriptor_t
*usbd_interface_descriptor(

struct usbd_device *device,
uint8_t cfg,
uint8_t ifc,
uint8_t alt,
struct usbd_desc_node **node);

Arguments:
device An opaque handle used to identify the USB device.

cfg The device’s configuration identifier (bConfigurationValue).

ifc Interface identifier (bInterfaceNumber).

alt Alternate identifier (bAlternateSetting).

node Indicates the descriptor’s location for rooting future requests (e.g.
endpoints of this interface).

Library:
libusbdi

Description:
The usbd_interface_descriptor() function lets you obtain the interface descriptor for a
specific interface setting.

The usbd_interface_descriptor_t structure looks like this:

typedef struct usbd_interface_descriptor {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bInterfaceNumber;
uint8_t bAlternateSetting;
uint8_t bNumEndpoints;
uint8_t bInterfaceClass;
uint8_t bInterfaceSubClass;
uint8_t bInterfaceProtocol;
uint8_t iInterface;

} usbd_interface_descriptor_t;

52 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_interface_descriptor()

Returns:
A pointer to usbd_interface_descriptor_t on success, or NULL on error.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_args_lookup(), usbd_configuration_descriptor(), usbd_device_lookup(),
usbd_device_extra(), usbd_device_descriptor(), usbd_endpoint_descriptor(),
usbd_hcd_info(), usbd_hub_descriptor(), usbd_languages_descriptor(),
usbd_parse_descriptors(), usbd_string(), usbd_urb_status()

June 13, 2012 Chapter 4 • USB Library Reference 53

usbd_io() © 2012, QNX Software Systems Limited

Submit a previously set up URB to the USB stack

Synopsis:
#include <sys/usbdi.h>

int usbd_io(struct usbd_urb *urb,
struct usbd_pipe *pipe,
void (*func)(struct usbd_urb *,

struct usbd_pipe *, void *),
void *handle,
uint32_t timeout);

Arguments:
urb A pointer to a USB Request Block.

pipe An opaque handle returned by usbd_open_pipe().

func Callback at I/O completion, given URB, pipe, plus handle.

handle User data.

timeout A value (in milliseconds) or USBD_TIME_DEFAULT or
USBD_TIME_INFINITY.

Library:
libusbdi

Description:
This routine submits a previously set up URB to the USB stack. The URB would have
been set up from one of these functions:

• usbd_setup_bulk()

• usbd_setup_control()

• usbd_setup_interrupt()

• usbd_setup_isochronous()

• usbd_setup_vendor()

For this release of the USB DDK, vendor requests are synchronous only. Therefore,
the func parameter in usbd_io() must be NULL.

The usbd_io() function is the one that actually makes the data transfer happen; the
setup functions simply set up the URB for the data transfer.

54 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_io()

Returns:
EBADF Improper usbd_connect() call.
EINVAL Improper usbd_connect() call.

ENODEV Device was removed.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_descriptor(), usbd_feature(), usbd_setup_control(), usbd_setup_bulk(),
usbd_setup_interrupt(), usbd_setup_isochronous(), usbd_setup_vendor(),
usbd_status()

June 13, 2012 Chapter 4 • USB Library Reference 55

usbd_languages_descriptor() © 2012, QNX Software Systems Limited

Get the table of supported LANGIDs for the given device

Synopsis:
#include <sys/usbdi.h>

usbd_string_descriptor_t
*usbd_languages_descriptor(

struct usbd_device *device,
struct usbd_desc_node **node);

Arguments:
device An opaque handle used to identify the USB device.

node Indicates the descriptor’s location for rooting future requests.

Library:
libusbdi

Description:
The usbd_languages_descriptor() function lets you obtain the table of supported
language IDs for the device.

The usbd_string_descriptor_t structure looks like this:

typedef struct usbd_string_descriptor {
uint8_t bLength;
uint8_t bDescriptorType;
uint16_t bString[1];

} usbd_string_descriptor_t;

Returns:
A pointer usbd_string_descriptor_t on success, or NULL on error.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

56 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_languages_descriptor()

See also:
usbd_args_lookup(), usbd_configuration_descriptor(), usbd_device_lookup(),
usbd_device_extra(), usbd_device_descriptor(), usbd_endpoint_descriptor(),
usbd_hcd_info(), usbd_hub_descriptor(), usbd_interface_descriptor(),
usbd_parse_descriptors(), usbd_string(), usbd_urb_status()

June 13, 2012 Chapter 4 • USB Library Reference 57

usbd_mphys() © 2012, QNX Software Systems Limited

Get the physical address of memory allocated by usbd_alloc()

Synopsis:
#include <sys/usbdi.h>

paddr_t usbd_mphys(const void *ptr);

Arguments:
ptr A pointer to the block of memory.

Library:
libusbdi

Description:
The usbd_mphys() function obtains the physical address used by usbd_alloc() to
allocate memory for a data transfer.

Returns:
Physical address.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_alloc(), usbd_alloc_urb(), usbd_free(), usbd_free_urb(), usbd_mphys()

58 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_open_pipe()
Initialize the pipe described by the device or endpoint descriptor

Synopsis:
#include <sys/usbdi.h>

int usbd_open_pipe(struct usbd_device *device,
usbd_descriptors_t *desc,
struct usbd_pipe **pipe);

Arguments:
device An opaque handle used to identify the USB device.

desc A pointer to the device or endpoint descriptor that was returned from
usbd_parse_descriptors().

pipe An opaque handle returned by usbd_open_pipe().

Library:
libusbdi

Description:
You use the usbd_open_pipe() function to initialize the pipe described by the endpoint
descriptor.

Returns:
EOK Success.

EINVAL The descriptor isn’t a device or endpoint.

ENOMEM No memory for internal pipe structures.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

June 13, 2012 Chapter 4 • USB Library Reference 59

usbd_open_pipe() © 2012, QNX Software Systems Limited

See also:
usbd_abort_pipe(), usbd_close_pipe(), usbd_pipe_endpoint(), usbd_reset_pipe()

60 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_parse_descriptors()
Parse device descriptors looking for a specific entry

Synopsis:
#include <sys/usbdi.h>

usbd_descriptors_t *usbd_parse_descriptors(
struct usbd_device *device,
struct usbd_desc_node *root,
uint8_t type,
int index,
struct usbd_desc_node **node);

Arguments:
device The opaque handle for the device whose descriptors you want to search.

root Where in the tree to begin parsing (pass NULL to start at the base).

type The type of descriptor to find (USB_DESC_*), or 0 to match any type.

index The occurrence of the descriptor that you want to find.

node A pointer to a location where the function stores a pointer to the descriptor
that it found. You can use this as the root for future requests.

Library:
libusbdi

Description:
When you call it the first time, the usbd_parse_descriptors() function loads all the
descriptors from the USB device:

• device

• configuration

• interface

• endpoint

• hub

• string

The function uses usbd_descriptor() to get each raw USB descriptor. The data is then
endian-ized, made alignment-safe, and built into an in-memory tree structure to
facilitate future parsing requests.

Each node in this tree is a struct usbd_desc_node. The root parameter lets you
say where in the tree to begin parsing (NULL is base). The node parameter tells you
where a descriptor was found to root future requests from.

The tree looks like this:

June 13, 2012 Chapter 4 • USB Library Reference 61

usbd_parse_descriptors() © 2012, QNX Software Systems Limited

(ROOT)

|
(DEVICE) - (HUB) - (LANGUAGE TABLE)
|
(CONFIG) - (CONFIG)

|
(INTERFACE) - (INTERFACE)

|
(ENDPOINT) - (ENDPOINT)

Any vendor-specific or class-specific descriptors that are embedded into the standard
descriptor output are also inserted into this tree at the appropriate point.

Although a descriptor for endpoint 0 (control) isn’t present on the wire, one is
constructed and placed in the tree (to simplify enumeration within the class driver).

You use type for specifying the type of descriptor to find; index is the nth occurrence.
Note that type 0 will match any descriptor type; you can use it to retrieve any
embedded class or vendor-specific descriptors if you don’t know their type.

Here’s an example that will walk all endpoints for an interface:

for (eix = 0; (desc = usbd_parse_descriptors(device, ifc, USB_DESC_ENDPOINT,
eix, &ept)) != NULL; ++eix)

;

where ifc is the appropriate (INTERFACE) node (found by a previous call to
usbd_parse_descriptors() or usbd_interface_descriptor().

Returns:
A pointer to the descriptor on success, or NULL on error.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_args_lookup(), usbd_configuration_descriptor(), usbd_descriptor(),
usbd_device_lookup(), usbd_device_extra(), usbd_device_descriptor(),
usbd_endpoint_descriptor(), usbd_hcd_info(), usbd_hub_descriptor(),
usbd_interface_descriptor(), usbd_languages_descriptor(), usbd_string(),
usbd_urb_status()

62 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_pipe_device()
Retrieve the device associated with the pipe

Synopsis:
#include <sys/usbdi.h>

struct usbd_device*
usbd_pipe_device(struct usbd_pipe *pipe);

Arguments:
pipe An opaque handle returned by usbd_open_pipe().

Library:
libusbdi

Description:
You use the usbd_pipe_device() to retrieve the device associated with pipe.

Returns:
A pointer to a usbd_device structure that describes the device.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_abort_pipe(), usbd_open_pipe(), usbd_close_pipe(), usbd_reset_pipe()

June 13, 2012 Chapter 4 • USB Library Reference 63

usbd_pipe_endpoint() © 2012, QNX Software Systems Limited

Retrieve the endpoint number associated with the pipe

Synopsis:
#include <sys/usbdi.h>

uint32_t usbd_pipe_endpoint(struct usbd_pipe *pipe);

Arguments:
pipe An opaque handle returned by usbd_open_pipe().

Library:
libusbdi

Description:
You use the usbd_pipe_endpoint() to retrieve the endpoint number associated with
pipe.

Returns:
A pipe/endpoint number.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_abort_pipe(), usbd_open_pipe(), usbd_close_pipe(), usbd_reset_pipe()

64 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_reset_device()
Reset a USB device

Synopsis:
#include <sys/usbdi.h>

int usbd_reset_device(struct usbd_device *device);

Arguments:
device The handle of a device.

Library:
libusbdi

Description:
You use the usbd_reset_device() function to reset the specified device.

Returns:
EOK Success.

ENODEV Device was removed.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_attach(), usbd_connect()

June 13, 2012 Chapter 4 • USB Library Reference 65

usbd_reset_pipe() © 2012, QNX Software Systems Limited

Clear a stall condition on an endpoint identified by the pipe handle

Synopsis:
#include <sys/usbdi.h>

int usbd_reset_pipe(struct usbd_pipe *pipe);

Arguments:
pipe An opaque handle returned by usbd_open_pipe().

Library:
libusbdi

Description:
You use the usbd_reset_pipe() function to clear a stall condition on an endpoint
identified by the pipe handle.

Returns:
EOK Success.

ENOMEM No memory for URB.

ENODEV Device was removed.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_abort_pipe() usbd_open_pipe(), usbd_close_pipe(), usbd_pipe_endpoint(),

66 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_select_config()
Select the configuration for a USB device

Synopsis:
#include <sys/usbdi.h>

int usbd_select_config(struct usbd_device *device,
uint8_t cfg);

Arguments:
device An opaque handle used to identify the USB device.

cfg The device’s configuration identifier (bConfigurationValue).

Library:
libusbdi

Description:
You use the usbd_select_config() function to select the configuration for a USB
device.

Returns:
EOK Success.

ENOMEM No memory for URB.

ENODEV Device was removed.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_select_interface()

June 13, 2012 Chapter 4 • USB Library Reference 67

usbd_select_interface() © 2012, QNX Software Systems Limited

Select the interface for a USB device

Synopsis:
#include <sys/usbdi.h>

int usbd_select_interface(struct usbd_device *device,
uint8_t ifc,
uint8_t alt);

Arguments:
device An opaque handle used to identify the USB device.

ifc Interface identifier (bInterfaceNumber).

alt Alternate identifier (bAlternateSetting).

Library:
libusbdi

Description:
You use the usbd_select_interface() function to select the interface for a USB device.

Returns:
EOK Success.

ENOMEM No memory for URB.

ENODEV Device was removed.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

68 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_select_interface()

See also:
usbd_select_config()

June 13, 2012 Chapter 4 • USB Library Reference 69

usbd_setup_bulk() © 2012, QNX Software Systems Limited

Set up a URB for a bulk data transfer

Synopsis:
#include <sys/usbdi.h>

int usbd_setup_bulk(struct usbd_urb *urb,
uint32_t flags,
void *addr,
uint32_t len);

Arguments:
urb An opaque handle (from usbd_alloc_urb()).

flags One of the following:

• URB_DIR_IN—specify incoming (device-to-PC) transfer.

• URB_DIR_OUT—specify outgoing (PC-to-device) transfer.

• URB_DIR_NONE—don’t specify the direction.

You can optionally OR in the following:

• URB_SHORT_XFER_OK—allow short transfers.

addr The address for the start of the transfer. You must use the buffer allocated by
usbd_alloc().

len The length (in bytes) of the data transfer.

Library:
libusbdi

Description:
This routine sets up a URB for a bulk data transfer.

Returns:
EOK Success.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

continued. . .

70 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_setup_bulk()

Safety

Signal handler No

Thread Yes

Caveats:
To ensure that the correct physical address will be used, you must use the buffer
allocated by usbd_alloc() for the addr parameter.

See also:
usbd_descriptor(), usbd_feature(), usbd_io(), usbd_setup_control(),
usbd_setup_interrupt(), usbd_setup_isochronous(), usbd_setup_vendor(),
usbd_status()

June 13, 2012 Chapter 4 • USB Library Reference 71

usbd_setup_control() © 2012, QNX Software Systems Limited

Set up a URB for a control transfer

This function isn’t currently implemented. To set up a URB for a control transfer, use
usbd_setup_vendor() instead.

Synopsis:
#include <sys/usbdi.h>

usbd_setup_control(struct usbd_urb *urb,
uint32_t flags,
uint16_t request,
uint16_t rtype,
uint16_t value,
uint16_t index,
void *addr,
uint32_t len);

Arguments:
urb An opaque handle (from usbd_alloc_urb()).

flags One of the following:

• URB_DIR_IN—specify incoming (device-to-PC) transfer.

• URB_DIR_OUT—specify outgoing (PC-to-device) transfer.

• URB_DIR_NONE—don’t specify the direction.

You can optionally OR in the following:

• URB_SHORT_XFER_OK—allow short transfers.

request A device-specific request.

rtype The type of request; one of the following:

• USB_RECIPIENT_DEVICE

• USB_RECIPIENT_INTERFACE

• USB_RECIPIENT_ENDPOINT

• USB_RECIPIENT_OTHER

ORed with one of the following:

• USB_TYPE_STANDARD

• USB_TYPE_CLASS

• USB_TYPE_VENDOR

value This varies, depending on the request. It’s used for passing a parameter to
the device.

index This varies, depending on the request. It’s used for passing a parameter to
the device.

72 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_setup_control()

addr The address for the start of the transfer. You must use the buffer allocated
by usbd_alloc().

len The length (in bytes) of the data transfer.

Library:
libusbdi

Description:
This routine sets up a URB for a control transfer.

Returns:
EOK Success.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
To ensure that the correct physical address will be used, you must use the buffer
allocated by usbd_alloc() for the addr parameter.

See also:
usbd_descriptor(), usbd_feature(), usbd_io(), usbd_setup_bulk(),
usbd_setup_interrupt(), usbd_setup_isochronous(), usbd_setup_vendor(),
usbd_status()

June 13, 2012 Chapter 4 • USB Library Reference 73

usbd_setup_interrupt() © 2012, QNX Software Systems Limited

Set up a URB for an interrupt transfer

Synopsis:
#include <sys/usbdi.h>

int usbd_setup_interrupt(struct usbd_urb *urb,
uint32_t flags,
void *addr,
uint32_t len);

Arguments:
urb An opaque handle (from usbd_alloc_urb()).

flags One of the following:

• URB_DIR_IN—specify incoming (device-to-PC) transfer.

• URB_DIR_OUT—specify outgoing (PC-to-device) transfer.

• URB_DIR_NONE—don’t specify the direction.

You can optionally OR in the following:

• URB_SHORT_XFER_OK—allow short transfers.

addr The address for the start of the transfer. You must use the buffer allocated by
usbd_alloc().

len The length (in bytes) of the data transfer.

Library:
libusbdi

Description:
This routine sets up a URB for an interrupt transfer.

Returns:
EOK Success.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

continued. . .

74 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_setup_interrupt()

Safety

Signal handler No

Thread Yes

See also:
usbd_setup_bulk(), usbd_setup_control(), usbd_setup_isochronous(),
usbd_setup_vendor()

June 13, 2012 Chapter 4 • USB Library Reference 75

usbd_setup_isochronous() © 2012, QNX Software Systems Limited

Set up a URB for an isochronous transfer

Synopsis:
#include <sys/usbdi.h>

int usbd_setup_isochronous(struct usbd_urb *urb,
uint32_t flags,
int32_t frame,
void *addr,
uint32_t len);

Arguments:
urb An opaque handle (from usbd_alloc_urb()).

flags One of the following:

• URB_DIR_IN—specify incoming (device-to-PC) transfer.

• URB_DIR_OUT—specify outgoing (PC-to-device) transfer.

• URB_DIR_NONE—don’t specify the direction.

You can optionally OR in either or both of the following:

• URB_ISOCH_ASAP—allow transfer as soon as possible (overrides
frame).

• URB_SHORT_XFER_OK—allow short transfers.

frame The device frame number. This is ignored if URB_ISOCH_ASAP is set.

addr The address for the start of the transfer. You must use the buffer allocated
by usbd_alloc().

len The length (in bytes) of the data transfer.

Library:
libusbdi

Description:
This routine sets up a URB for an isochronous transfer.

Returns:
EOK Success.

Classification:
QNX Neutrino, QNX 4

76 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_setup_isochronous()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_descriptor(), usbd_feature(), usbd_io(), usbd_setup_bulk(),
usbd_setup_control(), usbd_setup_interrupt(), usbd_setup_vendor(), usbd_status()

June 13, 2012 Chapter 4 • USB Library Reference 77

usbd_setup_vendor() © 2012, QNX Software Systems Limited

Set up a URB for a vendor-specific transfer

Synopsis:
#include <sys/usbdi.h>

int usbd_setup_vendor(struct usbd_urb *urb,
uint32_t flags,
uint16_t request,
uint16_t rtype,
uint16_t value,
uint16_t index,
void *addr,
uint32_t len);

Arguments:
urb An opaque handle (from usbd_alloc_urb()).

flags One of the following:

• URB_DIR_IN—specify incoming (device-to-PC) transfer.

• URB_DIR_OUT—specify outgoing (PC-to-device) transfer.

• URB_DIR_NONE—don’t specify the direction.

You can optionally OR in the following:

• URB_SHORT_XFER_OK—allow short transfers.

request A device-specific request.

rtype The type of request; one of the following:

• USB_RECIPIENT_DEVICE

• USB_RECIPIENT_INTERFACE

• USB_RECIPIENT_ENDPOINT

• USB_RECIPIENT_OTHER

ORed with one of the following:

• USB_TYPE_STANDARD

• USB_TYPE_CLASS

• USB_TYPE_VENDOR

value This varies, depending on the request. It’s used for passing a parameter to
the device.

index This varies, depending on the request. It’s used for passing a parameter to
the device.

addr The address for the start of the transfer. You must use the buffer allocated
by usbd_alloc().

len The length (in bytes) of the data transfer.

78 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_setup_vendor()

Library:
libusbdi

Description:
This routine sets up a URB for a vendor-specific transfer.

For this release of the USB DDK, vendor requests are synchronous only. Therefore,
the func parameter in usbd_io() must be NULL.

Returns:
EOK Success.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
To ensure that the correct physical address will be used, you must use the buffer
allocated by usbd_alloc() for the addr parameter.

See also:
usbd_descriptor(), usbd_feature(), usbd_io(), usbd_setup_bulk(),
usbd_setup_control(), usbd_setup_interrupt(), usbd_setup_isochronous(),
usbd_status()

June 13, 2012 Chapter 4 • USB Library Reference 79

usbd_status() © 2012, QNX Software Systems Limited

Get specific device status

Synopsis:
#include <sys/usbdi.h>

int usbd_status(struct usbd_device *device,
uint16_t rtype,
uint16_t index,
void *addr,
uint32_t len)

Arguments:
device An opaque handle used to identify the USB device.

rtype Type of request (e.g. USB_RECIPIENT_DEVICE,
USB_RECIPIENT_INTERFACE, USB_RECIPIENT_ENDPOINT,
USB_RECIPIENT_OTHER, USB_TYPE_STANDARD, USB_TYPE_CLASS,
USB_TYPE_VENDOR).

index This varies, depending on the request. It’s used for passing a parameter to
the device.

addr Address for start of transfer — you must use the buffer allocated by
usbd_alloc().

len The length (in bytes) of the data transfer.

Library:
libusbdi

Description:
You use the usbd_status() function to get specific device status.

Returns:
EOK Success.

EMSGSIZE Buffer too small for descriptor.

ENOMEM No memory for URB.

ENODEV Device was removed.

Classification:
QNX Neutrino, QNX 4

80 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_status()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_descriptor(), usbd_feature(), usbd_io(), usbd_setup_bulk(),
usbd_setup_control(), usbd_setup_interrupt(), usbd_setup_isochronous(),
usbd_setup_vendor()

June 13, 2012 Chapter 4 • USB Library Reference 81

usbd_string() © 2012, QNX Software Systems Limited

Get a string descriptor

Synopsis:
#include <sys/usbdi.h>

char *usbd_string(struct usbd_device *device,
uint8_t index,
int langid);

Arguments:
device An opaque handle used to identify the USB device.

index An index into the device’s (optional) string table.

langid The language ID. The usbd_languages_descriptor() function provides the
supported language IDs for the device. If you specify 0, usbd_string()
selects the first or only supported language.

Library:
libusbdi

Description:
The usbd_string() function lets you obtain a string from the USB device’s table of
strings, which typically contains the names of the vendor, the product, etc. The string
table is optional.

The strings are actually in Unicode/wide characters, so usb_string() converts them to
UTF-8 (byte stream) for you and places the resulting string in a static buffer that’s
reused every time the function is called. The returned string includes a terminating
null character.

Returns:
A pointer to the string in an internal static buffer, or NULL on error or if the string
table doesn’t exist.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

continued. . .

82 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_string()

Safety

Signal handler No

Thread No

See also:
usbd_args_lookup(), usbd_configuration_descriptor(), usbd_device_lookup(),
usbd_device_extra(), usbd_device_descriptor(), usbd_endpoint_descriptor(),
usbd_hcd_info(), usbd_hub_descriptor(), usbd_interface_descriptor(),
usbd_languages_descriptor(), usbd_parse_descriptors(), usbd_urb_status()

June 13, 2012 Chapter 4 • USB Library Reference 83

usbd_topology(), usbd_topology_ext() © 2012, QNX Software Systems Limited

Get the USB bus physical topology

Synopsis:
#include <sys/usbdi.h>

int usbd_topology(struct usbd_connection *connection,
usbd_bus_topology_t *tp)

int usbd_topology_ext(struct usbd_connection *connection,
uint8_t busno,
usbd_bus_topology_t *tp)

Arguments:
connection An opaque handle that identifies the USB stack, obtained by calling

usbd_connect().

bus (usbd_topology_ext() only) The index of the bus that you want the
topology for.

tp A pointer to a usbd_bus_topology_t data structure that this
function fills in; see below.

Library:
libusbdi

Description:
You can use the usbd_topology() or usbd_topology_ext() function to get the USB bus
physical topology.

For more information on USB bus topology, see sections 4.1.1 and 5.2.3 in the USB
Specification v1.1.

If your system has more than one bus, you can call usbd_topology_ext() to get
information about a specific one. The usbd_topology() function gets information about
the first bus; calling it is the same as calling usbd_topology() with a bus argument of 0.

The usbd_bus_topology_t structure is defined as follows:

typedef struct usbd_port_attachment {
uint8_t upstream_devno;
uint8_t upstream_port;
uint8_t upstream_port_speed;
uint8_t upstream_hc;
uint8_t _reserved[4];

} usbd_port_attachment_t;

typedef struct usbd_bus_topology {
usbd_port_attachment_t ports[64];

} usbd_bus_topology_t;

84 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_topology(), usbd_topology_ext()

The structure contains an array of usb_port_attachment_t structures, one per
device. The usb_port_attachment_t structure contains at least the following:

upstream_devno The device number of the upstream hub (0 if it’s a root port).

upstream_port The port number the device is connected to.

upstream_port_speed

The port speed that the device is operating at; one of the
following:

• 0 — full

• 1 — low

• 2 — high

upstream_hc The bus or host controller that the device is connected to.

The upstream_devno field will contain a value other than 0xff to indicate a valid
attachment.

Returns:
EOK Success.

ENODEV The device was removed.

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_connect()

June 13, 2012 Chapter 4 • USB Library Reference 85

usbd_urb_status() © 2012, QNX Software Systems Limited

Return status information on a URB

Synopsis:
#include <sys/usbdi.h>

int usbd_urb_status(struct usbd_urb *urb,
uint32_t *status,
uint32_t *len)

Arguments:
urb An opaque handle (from usbd_alloc_urb()).

status Completion status (see below).

len The actual length (in bytes) of the data transfer.

Library:
libusbdi

Description:
You use the usbd_urb_status() function to extract completion status and data-transfer
length from a URB.

Completion status

The status field contains the completion status information, which includes the
following flags:

USBD_STATUS_INPROG

The operation is in progress.

USBD_STATUS_CMP

The operation is complete.

USBD_STATUS_CMP_ERR

The operation is complete, but an error occurred.

USBD_STATUS_TIMEOUT

The operation timed out.

USBD_STATUS_ABORTED

The operation aborted.

USBD_STATUS_CRC_ERR

The last packet from the endpoint contained a CRC error.

86 Chapter 4 • USB Library Reference June 13, 2012

© 2012, QNX Software Systems Limited usbd_urb_status()

USBD_STATUS_BITSTUFFING

The last packet from the endpoint contained a bit-stuffing violation.

USBD_STATUS_TOGGLE_MISMATCH

The last packet from the endpoint had the wrong data-toggle PID.

USBD_STATUS_STALL

The endpoint returned a STALL PID.

USBD_STATUS_DEV_NOANSWER

Device didn’t respond to token (IN) or didn’t provide a handshake (OUT).

USBD_STATUS_PID_FAILURE

Check bits on PID from endpoint failed on data PID (IN) or handshake (OUT).

USBD_STATUS_BAD_PID

Receive PID was invalid or undefined.

USBD_STATUS_DATA_OVERRUN

The endpoint returned more data than the allowable maximum.

USBD_STATUS_DATA_UNDERRUN

The endpoint didn’t return enough data to fill the specified buffer.

USBD_STATUS_BUFFER_OVERRUN

During an IN, the host controller received data from the endpoint faster than it
could be written to system memory.

USBD_STATUS_BUFFER_UNDERRUN

During an OUT, the host controller couldn’t retrieve data fast enough.

USBD_STATUS_NOT_ACCESSED

Controller didn’t execute request.

Returns:
EOK Success.

EBUSY URB I/O still active.

ETIMEDOUT Timeout occurred.

EINTR Operation aborted/interrupted.

ENODEV Device removed.

EIO I/O error.

June 13, 2012 Chapter 4 • USB Library Reference 87

usbd_urb_status() © 2012, QNX Software Systems Limited

Classification:
QNX Neutrino, QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
usbd_args_lookup(), usbd_configuration_descriptor(), usbd_device_lookup(),
usbd_device_extra(), usbd_device_descriptor(), usbd_endpoint_descriptor(),
usbd_hcd_info(), usbd_hub_descriptor(), usbd_interface_descriptor(),
usbd_languages_descriptor(), usbd_parse_descriptors(), usbd_string()

88 Chapter 4 • USB Library Reference June 13, 2012

Index

!

_USBDI_NFUNCS 29

A

arguments, getting command-line 22
assumptions ix

B

bulk data transfers 8, 70
bus topology, getting information about 84

C

callbacks 8, 24, 29
class drivers

hub 7
library for 7
printers 11
shared memory 7
source code for ix
starting 7
supported devices 29
threads, protecting resources in 31
typical operations 8

command-line arguments, getting 22
configuration

descriptor, getting 26

displaying 11
functions 16
selecting 8, 67

connection functions 15
control transfers 8, 72
conventions

typographical xii

D

data buffers 7
data transfers See transfers
DDK library

functions 15
getting information about 48

descriptors
configuration 26
device 36, 61
endpoint 41, 59
getting and setting 8, 32
hub 50
interface 52
language 56
string 82

devi-hirun 4
devices

attaching to 8, 23
configuration

displaying 11
selecting 8, 67

descriptors
getting 36
parsing 61

June 13, 2012 Index 89

Index © 2012, QNX Software Systems Limited

detaching from 8, 34
extra memory, getting a pointer to 38
features, controlling 43
frame number and length, getting 47
handle, mapping instance identifier to 39
hub descriptors, getting 50
interface, selecting 8, 68
pipe, getting for associated 63
resetting 65
status of, getting 80
string descriptors, getting 82
supported 3

devu-ehci.so 7, 11
devu-ohci.so 7, 11
devu-prn 11
devu-uhci.so 7, 11
drivers

command-line arguments, getting 22
language IDs, getting supported 56
USB stack

connecting to 8, 28
disconnecting from 40

E

endpoint_descriptor_t 41
endpoints

clearing a stall condition on 66
descriptors

getting 41
initializing pipe described by 8, 59

number, getting for a pipe 64
Enhanced Host Controller Interface (EHCI) 7
enumerator 7

F

features, controlling 43
frame number and length, getting 47

H

host controllers
getting information about 48
types 7

hubs
class driver for included in stack 7
descriptors, getting 50
supported 3

I

I/O functions 15
Input 4
insertion/removal 8, 24, 29
interfaces

descriptors, getting 52
functions 16
selecting 8, 68

interrupt transfers 8, 74
io-pkt* 7
io-usb 11
isochronous transfers 8, 76

K

keyboards
controller, don’t reset 4
supported 3

L

language IDs, getting supported 56
library

about 7
functions 15
getting information about 48

libusbdi 15
limitations 3
looping, as alternate method of attaching 24

90 Index June 13, 2012

© 2012, QNX Software Systems Limited Index

M

memory
data transfers

allocating 19
freeing 45
getting physical address of 58

management functions 15
mice, supported 3
mutexes 31

O

Open Host Controller Interface (OHCI) 7

P

pathname delimiter in QNX documentation xiii
Photon 4
pipes

closing 25
endpoint number, getting 64
getting associated device 63
initializing 8, 59
management functions 16
not a UNIX term in this doc 8
requests, aborting all 18
resetting 66

printers
class driver for 11
supported 3

R

request blocks See URBs (USB Request
Blocks)

S

server 11

shared memory 7
stack

about 7
drivers

connecting to 8, 28
disconnecting from 40

shared memory 7
URBs (USB Request Blocks),

submitting 8, 54
string descriptors, getting 82
support, technical xiii
system requirements 3

T

technical support xiii
threads, protecting resources in 31
transfers

bulk data 8, 70
control 8, 72
initiating 8, 54
interrupt 8, 74
isochronous 8, 76
vendor-specific 8, 78

typographical conventions xii

U

Universal Host Controller Interface (UHCI) 7
URB_DIR_IN 70, 72, 74, 76, 78
URB_DIR_NONE 70, 72, 74, 76, 78
URB_DIR_OUT 70, 72, 74, 76, 78
URB_ISOCH_ASAP 76
URB_SHORT_XFER_OK 70, 72, 74, 76, 78
URBs (USB Request Blocks)

allocating 21
freeing 46
getting status of 86
setting up

bulk data transfers 8, 70
control transfers 8, 72
interrupt transfers 8, 74
isochronous transfers 8, 76

June 13, 2012 Index 91

Index © 2012, QNX Software Systems Limited

vendor-specific transfers 8, 78
submitting 8, 54

usb 11
USB

descriptors, getting and setting 8, 32
link to www.usb.org ix
server 11
Specification revision 2.0 ix

USB_DESC_CONFIGURATION 32
USB_DESC_DEVICE 32
USB_DESC_HUB 32
USB_DESC_STRING 32
usb_port_attachment_t 85
USB_RECIPIENT_DEVICE 32, 43, 72, 78, 80
USB_RECIPIENT_ENDPOINT 32, 43, 72, 78,

80
USB_RECIPIENT_INTERFACE 32, 43, 72, 78,

80
USB_RECIPIENT_OTHER 32, 43, 72, 78, 80
USB_TYPE_CLASS 32, 43, 72, 78, 80
USB_TYPE_STANDARD 32, 43, 72, 78, 80
USB_TYPE_VENDOR 32, 43, 72, 78, 80
USB_VERSION 28
usbd_abort_pipe() 18
usbd_alloc_urb() 21
usbd_alloc() 19
usbd_args_lookup() 22
usbd_attach() 8, 23
usbd_bus_topology_t 84
usbd_close_pipe() 25
usbd_configuration_descriptor_t 26
usbd_configuration_descriptor() 26
usbd_connect_parm_t 28
USBD_CONNECT_WAIT 29
USBD_CONNECT_WILDCARD 29
usbd_connect() 8, 28
usbd_desc_node 61
usbd_descriptor() 8, 32
usbd_detach() 8, 34
usbd_device 63
usbd_device_descriptor_t 36
usbd_device_descriptor() 36
usbd_device_extra() 38
usbd_device_ident_t 29
usbd_device_instance_t 23
usbd_device_lookup() 39

usbd_disconnect() 40
usbd_endpoint_descriptor() 41
usbd_feature() 43
usbd_free_urb() 46
usbd_free() 45
usbd_funcs_t 29
usbd_get_frame() 47
usbd_hcd_ext_info(),usbd_hcd_info() 48
usbd_hcd_info_t 48
usbd_hub_descriptor_t 50
usbd_hub_descriptor() 50
usbd_interface_descriptor_t 52
usbd_interface_descriptor() 52
usbd_io() 8, 54
usbd_languages_descriptor() 56
usbd_mphys() 58
usbd_open_pipe() 8, 59
usbd_parse_descriptors() 61
usbd_pipe_device() 63
usbd_pipe_endpoint() 64
usbd_reset_device() 65
usbd_reset_pipe() 66
usbd_select_config() 8, 67
usbd_select_interface() 8, 68
usbd_setup_bulk() 8, 70
usbd_setup_control() 8, 72
usbd_setup_interrupt() 8, 74
usbd_setup_isochronous() 8, 76
usbd_setup_vendor() 8, 78
USBD_STATUS_ABORTED 86
USBD_STATUS_BAD_PID 87
USBD_STATUS_BITSTUFFING 87
USBD_STATUS_BUFFER_OVERRUN 87
USBD_STATUS_BUFFER_UNDERRUN 87
USBD_STATUS_CMP 86
USBD_STATUS_CMP_ERR 86
USBD_STATUS_CRC_ERR 86
USBD_STATUS_DATA_OVERRUN 87
USBD_STATUS_DATA_UNDERRUN 87
USBD_STATUS_DEV_NOANSWER 87
USBD_STATUS_INPROG 86
USBD_STATUS_NOT_ACCESSED 87
USBD_STATUS_PID_FAILURE 87
USBD_STATUS_STALL 87
USBD_STATUS_TIMEOUT 86
USBD_STATUS_TOGGLE_MISMATCH 87

92 Index June 13, 2012

© 2012, QNX Software Systems Limited Index

usbd_status() 80
usbd_string_descriptor_t 56
usbd_string() 82
USBD_TIME_DEFAULT 54
USBD_TIME_INFINITY 54
usbd_topology(),usbd_topology_ext() 84
usbd_urb_status() 86
USBD_VERSION 28
utilities 11

V

vendor-specific transfers 8, 78

June 13, 2012 Index 93

