github.com/rohankumardubey/syslog-redirector-golang@v0.0.0-20140320174030-4859f03d829a/src/pkg/net/http/server.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP server.  See RFC 2616.
     6  
     7  package http
     8  
     9  import (
    10  	"bufio"
    11  	"crypto/tls"
    12  	"errors"
    13  	"fmt"
    14  	"io"
    15  	"io/ioutil"
    16  	"log"
    17  	"net"
    18  	"net/url"
    19  	"os"
    20  	"path"
    21  	"runtime"
    22  	"strconv"
    23  	"strings"
    24  	"sync"
    25  	"time"
    26  )
    27  
    28  // Errors introduced by the HTTP server.
    29  var (
    30  	ErrWriteAfterFlush = errors.New("Conn.Write called after Flush")
    31  	ErrBodyNotAllowed  = errors.New("http: request method or response status code does not allow body")
    32  	ErrHijacked        = errors.New("Conn has been hijacked")
    33  	ErrContentLength   = errors.New("Conn.Write wrote more than the declared Content-Length")
    34  )
    35  
    36  // Objects implementing the Handler interface can be
    37  // registered to serve a particular path or subtree
    38  // in the HTTP server.
    39  //
    40  // ServeHTTP should write reply headers and data to the ResponseWriter
    41  // and then return.  Returning signals that the request is finished
    42  // and that the HTTP server can move on to the next request on
    43  // the connection.
    44  type Handler interface {
    45  	ServeHTTP(ResponseWriter, *Request)
    46  }
    47  
    48  // A ResponseWriter interface is used by an HTTP handler to
    49  // construct an HTTP response.
    50  type ResponseWriter interface {
    51  	// Header returns the header map that will be sent by WriteHeader.
    52  	// Changing the header after a call to WriteHeader (or Write) has
    53  	// no effect.
    54  	Header() Header
    55  
    56  	// Write writes the data to the connection as part of an HTTP reply.
    57  	// If WriteHeader has not yet been called, Write calls WriteHeader(http.StatusOK)
    58  	// before writing the data.  If the Header does not contain a
    59  	// Content-Type line, Write adds a Content-Type set to the result of passing
    60  	// the initial 512 bytes of written data to DetectContentType.
    61  	Write([]byte) (int, error)
    62  
    63  	// WriteHeader sends an HTTP response header with status code.
    64  	// If WriteHeader is not called explicitly, the first call to Write
    65  	// will trigger an implicit WriteHeader(http.StatusOK).
    66  	// Thus explicit calls to WriteHeader are mainly used to
    67  	// send error codes.
    68  	WriteHeader(int)
    69  }
    70  
    71  // The Flusher interface is implemented by ResponseWriters that allow
    72  // an HTTP handler to flush buffered data to the client.
    73  //
    74  // Note that even for ResponseWriters that support Flush,
    75  // if the client is connected through an HTTP proxy,
    76  // the buffered data may not reach the client until the response
    77  // completes.
    78  type Flusher interface {
    79  	// Flush sends any buffered data to the client.
    80  	Flush()
    81  }
    82  
    83  // The Hijacker interface is implemented by ResponseWriters that allow
    84  // an HTTP handler to take over the connection.
    85  type Hijacker interface {
    86  	// Hijack lets the caller take over the connection.
    87  	// After a call to Hijack(), the HTTP server library
    88  	// will not do anything else with the connection.
    89  	// It becomes the caller's responsibility to manage
    90  	// and close the connection.
    91  	Hijack() (net.Conn, *bufio.ReadWriter, error)
    92  }
    93  
    94  // The CloseNotifier interface is implemented by ResponseWriters which
    95  // allow detecting when the underlying connection has gone away.
    96  //
    97  // This mechanism can be used to cancel long operations on the server
    98  // if the client has disconnected before the response is ready.
    99  type CloseNotifier interface {
   100  	// CloseNotify returns a channel that receives a single value
   101  	// when the client connection has gone away.
   102  	CloseNotify() <-chan bool
   103  }
   104  
   105  // A conn represents the server side of an HTTP connection.
   106  type conn struct {
   107  	remoteAddr string               // network address of remote side
   108  	server     *Server              // the Server on which the connection arrived
   109  	rwc        net.Conn             // i/o connection
   110  	sr         liveSwitchReader     // where the LimitReader reads from; usually the rwc
   111  	lr         *io.LimitedReader    // io.LimitReader(sr)
   112  	buf        *bufio.ReadWriter    // buffered(lr,rwc), reading from bufio->limitReader->sr->rwc
   113  	tlsState   *tls.ConnectionState // or nil when not using TLS
   114  
   115  	mu           sync.Mutex // guards the following
   116  	clientGone   bool       // if client has disconnected mid-request
   117  	closeNotifyc chan bool  // made lazily
   118  	hijackedv    bool       // connection has been hijacked by handler
   119  }
   120  
   121  func (c *conn) hijacked() bool {
   122  	c.mu.Lock()
   123  	defer c.mu.Unlock()
   124  	return c.hijackedv
   125  }
   126  
   127  func (c *conn) hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   128  	c.mu.Lock()
   129  	defer c.mu.Unlock()
   130  	if c.hijackedv {
   131  		return nil, nil, ErrHijacked
   132  	}
   133  	if c.closeNotifyc != nil {
   134  		return nil, nil, errors.New("http: Hijack is incompatible with use of CloseNotifier")
   135  	}
   136  	c.hijackedv = true
   137  	rwc = c.rwc
   138  	buf = c.buf
   139  	c.rwc = nil
   140  	c.buf = nil
   141  	return
   142  }
   143  
   144  func (c *conn) closeNotify() <-chan bool {
   145  	c.mu.Lock()
   146  	defer c.mu.Unlock()
   147  	if c.closeNotifyc == nil {
   148  		c.closeNotifyc = make(chan bool, 1)
   149  		if c.hijackedv {
   150  			// to obey the function signature, even though
   151  			// it'll never receive a value.
   152  			return c.closeNotifyc
   153  		}
   154  		pr, pw := io.Pipe()
   155  
   156  		readSource := c.sr.r
   157  		c.sr.Lock()
   158  		c.sr.r = pr
   159  		c.sr.Unlock()
   160  		go func() {
   161  			_, err := io.Copy(pw, readSource)
   162  			if err == nil {
   163  				err = io.EOF
   164  			}
   165  			pw.CloseWithError(err)
   166  			c.noteClientGone()
   167  		}()
   168  	}
   169  	return c.closeNotifyc
   170  }
   171  
   172  func (c *conn) noteClientGone() {
   173  	c.mu.Lock()
   174  	defer c.mu.Unlock()
   175  	if c.closeNotifyc != nil && !c.clientGone {
   176  		c.closeNotifyc <- true
   177  	}
   178  	c.clientGone = true
   179  }
   180  
   181  // A switchReader can have its Reader changed at runtime.
   182  // It's not safe for concurrent Reads and switches.
   183  type switchReader struct {
   184  	io.Reader
   185  }
   186  
   187  // A switchWriter can have its Writer changed at runtime.
   188  // It's not safe for concurrent Writes and switches.
   189  type switchWriter struct {
   190  	io.Writer
   191  }
   192  
   193  // A liveSwitchReader is a switchReader that's safe for concurrent
   194  // reads and switches, if its mutex is held.
   195  type liveSwitchReader struct {
   196  	sync.Mutex
   197  	r io.Reader
   198  }
   199  
   200  func (sr *liveSwitchReader) Read(p []byte) (n int, err error) {
   201  	sr.Lock()
   202  	r := sr.r
   203  	sr.Unlock()
   204  	return r.Read(p)
   205  }
   206  
   207  // This should be >= 512 bytes for DetectContentType,
   208  // but otherwise it's somewhat arbitrary.
   209  const bufferBeforeChunkingSize = 2048
   210  
   211  // chunkWriter writes to a response's conn buffer, and is the writer
   212  // wrapped by the response.bufw buffered writer.
   213  //
   214  // chunkWriter also is responsible for finalizing the Header, including
   215  // conditionally setting the Content-Type and setting a Content-Length
   216  // in cases where the handler's final output is smaller than the buffer
   217  // size. It also conditionally adds chunk headers, when in chunking mode.
   218  //
   219  // See the comment above (*response).Write for the entire write flow.
   220  type chunkWriter struct {
   221  	res *response
   222  
   223  	// header is either nil or a deep clone of res.handlerHeader
   224  	// at the time of res.WriteHeader, if res.WriteHeader is
   225  	// called and extra buffering is being done to calculate
   226  	// Content-Type and/or Content-Length.
   227  	header Header
   228  
   229  	// wroteHeader tells whether the header's been written to "the
   230  	// wire" (or rather: w.conn.buf). this is unlike
   231  	// (*response).wroteHeader, which tells only whether it was
   232  	// logically written.
   233  	wroteHeader bool
   234  
   235  	// set by the writeHeader method:
   236  	chunking bool // using chunked transfer encoding for reply body
   237  }
   238  
   239  var (
   240  	crlf       = []byte("\r\n")
   241  	colonSpace = []byte(": ")
   242  )
   243  
   244  func (cw *chunkWriter) Write(p []byte) (n int, err error) {
   245  	if !cw.wroteHeader {
   246  		cw.writeHeader(p)
   247  	}
   248  	if cw.res.req.Method == "HEAD" {
   249  		// Eat writes.
   250  		return len(p), nil
   251  	}
   252  	if cw.chunking {
   253  		_, err = fmt.Fprintf(cw.res.conn.buf, "%x\r\n", len(p))
   254  		if err != nil {
   255  			cw.res.conn.rwc.Close()
   256  			return
   257  		}
   258  	}
   259  	n, err = cw.res.conn.buf.Write(p)
   260  	if cw.chunking && err == nil {
   261  		_, err = cw.res.conn.buf.Write(crlf)
   262  	}
   263  	if err != nil {
   264  		cw.res.conn.rwc.Close()
   265  	}
   266  	return
   267  }
   268  
   269  func (cw *chunkWriter) flush() {
   270  	if !cw.wroteHeader {
   271  		cw.writeHeader(nil)
   272  	}
   273  	cw.res.conn.buf.Flush()
   274  }
   275  
   276  func (cw *chunkWriter) close() {
   277  	if !cw.wroteHeader {
   278  		cw.writeHeader(nil)
   279  	}
   280  	if cw.chunking {
   281  		// zero EOF chunk, trailer key/value pairs (currently
   282  		// unsupported in Go's server), followed by a blank
   283  		// line.
   284  		cw.res.conn.buf.WriteString("0\r\n\r\n")
   285  	}
   286  }
   287  
   288  // A response represents the server side of an HTTP response.
   289  type response struct {
   290  	conn          *conn
   291  	req           *Request // request for this response
   292  	wroteHeader   bool     // reply header has been (logically) written
   293  	wroteContinue bool     // 100 Continue response was written
   294  
   295  	w  *bufio.Writer // buffers output in chunks to chunkWriter
   296  	cw chunkWriter
   297  	sw *switchWriter // of the bufio.Writer, for return to putBufioWriter
   298  
   299  	// handlerHeader is the Header that Handlers get access to,
   300  	// which may be retained and mutated even after WriteHeader.
   301  	// handlerHeader is copied into cw.header at WriteHeader
   302  	// time, and privately mutated thereafter.
   303  	handlerHeader Header
   304  	calledHeader  bool // handler accessed handlerHeader via Header
   305  
   306  	written       int64 // number of bytes written in body
   307  	contentLength int64 // explicitly-declared Content-Length; or -1
   308  	status        int   // status code passed to WriteHeader
   309  
   310  	// close connection after this reply.  set on request and
   311  	// updated after response from handler if there's a
   312  	// "Connection: keep-alive" response header and a
   313  	// Content-Length.
   314  	closeAfterReply bool
   315  
   316  	// requestBodyLimitHit is set by requestTooLarge when
   317  	// maxBytesReader hits its max size. It is checked in
   318  	// WriteHeader, to make sure we don't consume the
   319  	// remaining request body to try to advance to the next HTTP
   320  	// request. Instead, when this is set, we stop reading
   321  	// subsequent requests on this connection and stop reading
   322  	// input from it.
   323  	requestBodyLimitHit bool
   324  
   325  	handlerDone bool // set true when the handler exits
   326  
   327  	// Buffers for Date and Content-Length
   328  	dateBuf [len(TimeFormat)]byte
   329  	clenBuf [10]byte
   330  }
   331  
   332  // requestTooLarge is called by maxBytesReader when too much input has
   333  // been read from the client.
   334  func (w *response) requestTooLarge() {
   335  	w.closeAfterReply = true
   336  	w.requestBodyLimitHit = true
   337  	if !w.wroteHeader {
   338  		w.Header().Set("Connection", "close")
   339  	}
   340  }
   341  
   342  // needsSniff reports whether a Content-Type still needs to be sniffed.
   343  func (w *response) needsSniff() bool {
   344  	_, haveType := w.handlerHeader["Content-Type"]
   345  	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
   346  }
   347  
   348  // writerOnly hides an io.Writer value's optional ReadFrom method
   349  // from io.Copy.
   350  type writerOnly struct {
   351  	io.Writer
   352  }
   353  
   354  func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
   355  	switch v := src.(type) {
   356  	case *os.File:
   357  		fi, err := v.Stat()
   358  		if err != nil {
   359  			return false, err
   360  		}
   361  		return fi.Mode().IsRegular(), nil
   362  	case *io.LimitedReader:
   363  		return srcIsRegularFile(v.R)
   364  	default:
   365  		return
   366  	}
   367  }
   368  
   369  // ReadFrom is here to optimize copying from an *os.File regular file
   370  // to a *net.TCPConn with sendfile.
   371  func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
   372  	// Our underlying w.conn.rwc is usually a *TCPConn (with its
   373  	// own ReadFrom method). If not, or if our src isn't a regular
   374  	// file, just fall back to the normal copy method.
   375  	rf, ok := w.conn.rwc.(io.ReaderFrom)
   376  	regFile, err := srcIsRegularFile(src)
   377  	if err != nil {
   378  		return 0, err
   379  	}
   380  	if !ok || !regFile {
   381  		return io.Copy(writerOnly{w}, src)
   382  	}
   383  
   384  	// sendfile path:
   385  
   386  	if !w.wroteHeader {
   387  		w.WriteHeader(StatusOK)
   388  	}
   389  
   390  	if w.needsSniff() {
   391  		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
   392  		n += n0
   393  		if err != nil {
   394  			return n, err
   395  		}
   396  	}
   397  
   398  	w.w.Flush()  // get rid of any previous writes
   399  	w.cw.flush() // make sure Header is written; flush data to rwc
   400  
   401  	// Now that cw has been flushed, its chunking field is guaranteed initialized.
   402  	if !w.cw.chunking && w.bodyAllowed() {
   403  		n0, err := rf.ReadFrom(src)
   404  		n += n0
   405  		w.written += n0
   406  		return n, err
   407  	}
   408  
   409  	n0, err := io.Copy(writerOnly{w}, src)
   410  	n += n0
   411  	return n, err
   412  }
   413  
   414  // noLimit is an effective infinite upper bound for io.LimitedReader
   415  const noLimit int64 = (1 << 63) - 1
   416  
   417  // debugServerConnections controls whether all server connections are wrapped
   418  // with a verbose logging wrapper.
   419  const debugServerConnections = false
   420  
   421  // Create new connection from rwc.
   422  func (srv *Server) newConn(rwc net.Conn) (c *conn, err error) {
   423  	c = new(conn)
   424  	c.remoteAddr = rwc.RemoteAddr().String()
   425  	c.server = srv
   426  	c.rwc = rwc
   427  	if debugServerConnections {
   428  		c.rwc = newLoggingConn("server", c.rwc)
   429  	}
   430  	c.sr = liveSwitchReader{r: c.rwc}
   431  	c.lr = io.LimitReader(&c.sr, noLimit).(*io.LimitedReader)
   432  	br := newBufioReader(c.lr)
   433  	bw := newBufioWriterSize(c.rwc, 4<<10)
   434  	c.buf = bufio.NewReadWriter(br, bw)
   435  	return c, nil
   436  }
   437  
   438  // TODO: use a sync.Cache instead
   439  var (
   440  	bufioReaderCache   = make(chan *bufio.Reader, 4)
   441  	bufioWriterCache2k = make(chan *bufio.Writer, 4)
   442  	bufioWriterCache4k = make(chan *bufio.Writer, 4)
   443  )
   444  
   445  func bufioWriterCache(size int) chan *bufio.Writer {
   446  	switch size {
   447  	case 2 << 10:
   448  		return bufioWriterCache2k
   449  	case 4 << 10:
   450  		return bufioWriterCache4k
   451  	}
   452  	return nil
   453  }
   454  
   455  func newBufioReader(r io.Reader) *bufio.Reader {
   456  	select {
   457  	case p := <-bufioReaderCache:
   458  		p.Reset(r)
   459  		return p
   460  	default:
   461  		return bufio.NewReader(r)
   462  	}
   463  }
   464  
   465  func putBufioReader(br *bufio.Reader) {
   466  	br.Reset(nil)
   467  	select {
   468  	case bufioReaderCache <- br:
   469  	default:
   470  	}
   471  }
   472  
   473  func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
   474  	select {
   475  	case p := <-bufioWriterCache(size):
   476  		p.Reset(w)
   477  		return p
   478  	default:
   479  		return bufio.NewWriterSize(w, size)
   480  	}
   481  }
   482  
   483  func putBufioWriter(bw *bufio.Writer) {
   484  	bw.Reset(nil)
   485  	select {
   486  	case bufioWriterCache(bw.Available()) <- bw:
   487  	default:
   488  	}
   489  }
   490  
   491  // DefaultMaxHeaderBytes is the maximum permitted size of the headers
   492  // in an HTTP request.
   493  // This can be overridden by setting Server.MaxHeaderBytes.
   494  const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
   495  
   496  func (srv *Server) maxHeaderBytes() int {
   497  	if srv.MaxHeaderBytes > 0 {
   498  		return srv.MaxHeaderBytes
   499  	}
   500  	return DefaultMaxHeaderBytes
   501  }
   502  
   503  // wrapper around io.ReaderCloser which on first read, sends an
   504  // HTTP/1.1 100 Continue header
   505  type expectContinueReader struct {
   506  	resp       *response
   507  	readCloser io.ReadCloser
   508  	closed     bool
   509  }
   510  
   511  func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
   512  	if ecr.closed {
   513  		return 0, ErrBodyReadAfterClose
   514  	}
   515  	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
   516  		ecr.resp.wroteContinue = true
   517  		ecr.resp.conn.buf.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
   518  		ecr.resp.conn.buf.Flush()
   519  	}
   520  	return ecr.readCloser.Read(p)
   521  }
   522  
   523  func (ecr *expectContinueReader) Close() error {
   524  	ecr.closed = true
   525  	return ecr.readCloser.Close()
   526  }
   527  
   528  // TimeFormat is the time format to use with
   529  // time.Parse and time.Time.Format when parsing
   530  // or generating times in HTTP headers.
   531  // It is like time.RFC1123 but hard codes GMT as the time zone.
   532  const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
   533  
   534  // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
   535  func appendTime(b []byte, t time.Time) []byte {
   536  	const days = "SunMonTueWedThuFriSat"
   537  	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
   538  
   539  	t = t.UTC()
   540  	yy, mm, dd := t.Date()
   541  	hh, mn, ss := t.Clock()
   542  	day := days[3*t.Weekday():]
   543  	mon := months[3*(mm-1):]
   544  
   545  	return append(b,
   546  		day[0], day[1], day[2], ',', ' ',
   547  		byte('0'+dd/10), byte('0'+dd%10), ' ',
   548  		mon[0], mon[1], mon[2], ' ',
   549  		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
   550  		byte('0'+hh/10), byte('0'+hh%10), ':',
   551  		byte('0'+mn/10), byte('0'+mn%10), ':',
   552  		byte('0'+ss/10), byte('0'+ss%10), ' ',
   553  		'G', 'M', 'T')
   554  }
   555  
   556  var errTooLarge = errors.New("http: request too large")
   557  
   558  // Read next request from connection.
   559  func (c *conn) readRequest() (w *response, err error) {
   560  	if c.hijacked() {
   561  		return nil, ErrHijacked
   562  	}
   563  
   564  	if d := c.server.ReadTimeout; d != 0 {
   565  		c.rwc.SetReadDeadline(time.Now().Add(d))
   566  	}
   567  	if d := c.server.WriteTimeout; d != 0 {
   568  		defer func() {
   569  			c.rwc.SetWriteDeadline(time.Now().Add(d))
   570  		}()
   571  	}
   572  
   573  	c.lr.N = int64(c.server.maxHeaderBytes()) + 4096 /* bufio slop */
   574  	var req *Request
   575  	if req, err = ReadRequest(c.buf.Reader); err != nil {
   576  		if c.lr.N == 0 {
   577  			return nil, errTooLarge
   578  		}
   579  		return nil, err
   580  	}
   581  	c.lr.N = noLimit
   582  
   583  	req.RemoteAddr = c.remoteAddr
   584  	req.TLS = c.tlsState
   585  
   586  	w = &response{
   587  		conn:          c,
   588  		req:           req,
   589  		handlerHeader: make(Header),
   590  		contentLength: -1,
   591  	}
   592  	w.cw.res = w
   593  	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
   594  	return w, nil
   595  }
   596  
   597  func (w *response) Header() Header {
   598  	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
   599  		// Accessing the header between logically writing it
   600  		// and physically writing it means we need to allocate
   601  		// a clone to snapshot the logically written state.
   602  		w.cw.header = w.handlerHeader.clone()
   603  	}
   604  	w.calledHeader = true
   605  	return w.handlerHeader
   606  }
   607  
   608  // maxPostHandlerReadBytes is the max number of Request.Body bytes not
   609  // consumed by a handler that the server will read from the client
   610  // in order to keep a connection alive.  If there are more bytes than
   611  // this then the server to be paranoid instead sends a "Connection:
   612  // close" response.
   613  //
   614  // This number is approximately what a typical machine's TCP buffer
   615  // size is anyway.  (if we have the bytes on the machine, we might as
   616  // well read them)
   617  const maxPostHandlerReadBytes = 256 << 10
   618  
   619  func (w *response) WriteHeader(code int) {
   620  	if w.conn.hijacked() {
   621  		log.Print("http: response.WriteHeader on hijacked connection")
   622  		return
   623  	}
   624  	if w.wroteHeader {
   625  		log.Print("http: multiple response.WriteHeader calls")
   626  		return
   627  	}
   628  	w.wroteHeader = true
   629  	w.status = code
   630  
   631  	if w.calledHeader && w.cw.header == nil {
   632  		w.cw.header = w.handlerHeader.clone()
   633  	}
   634  
   635  	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
   636  		v, err := strconv.ParseInt(cl, 10, 64)
   637  		if err == nil && v >= 0 {
   638  			w.contentLength = v
   639  		} else {
   640  			log.Printf("http: invalid Content-Length of %q", cl)
   641  			w.handlerHeader.Del("Content-Length")
   642  		}
   643  	}
   644  }
   645  
   646  // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
   647  // This type is used to avoid extra allocations from cloning and/or populating
   648  // the response Header map and all its 1-element slices.
   649  type extraHeader struct {
   650  	contentType      string
   651  	connection       string
   652  	transferEncoding string
   653  	date             []byte // written if not nil
   654  	contentLength    []byte // written if not nil
   655  }
   656  
   657  // Sorted the same as extraHeader.Write's loop.
   658  var extraHeaderKeys = [][]byte{
   659  	[]byte("Content-Type"),
   660  	[]byte("Connection"),
   661  	[]byte("Transfer-Encoding"),
   662  }
   663  
   664  var (
   665  	headerContentLength = []byte("Content-Length: ")
   666  	headerDate          = []byte("Date: ")
   667  )
   668  
   669  // Write writes the headers described in h to w.
   670  //
   671  // This method has a value receiver, despite the somewhat large size
   672  // of h, because it prevents an allocation. The escape analysis isn't
   673  // smart enough to realize this function doesn't mutate h.
   674  func (h extraHeader) Write(w *bufio.Writer) {
   675  	if h.date != nil {
   676  		w.Write(headerDate)
   677  		w.Write(h.date)
   678  		w.Write(crlf)
   679  	}
   680  	if h.contentLength != nil {
   681  		w.Write(headerContentLength)
   682  		w.Write(h.contentLength)
   683  		w.Write(crlf)
   684  	}
   685  	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
   686  		if v != "" {
   687  			w.Write(extraHeaderKeys[i])
   688  			w.Write(colonSpace)
   689  			w.WriteString(v)
   690  			w.Write(crlf)
   691  		}
   692  	}
   693  }
   694  
   695  // writeHeader finalizes the header sent to the client and writes it
   696  // to cw.res.conn.buf.
   697  //
   698  // p is not written by writeHeader, but is the first chunk of the body
   699  // that will be written.  It is sniffed for a Content-Type if none is
   700  // set explicitly.  It's also used to set the Content-Length, if the
   701  // total body size was small and the handler has already finished
   702  // running.
   703  func (cw *chunkWriter) writeHeader(p []byte) {
   704  	if cw.wroteHeader {
   705  		return
   706  	}
   707  	cw.wroteHeader = true
   708  
   709  	w := cw.res
   710  	isHEAD := w.req.Method == "HEAD"
   711  
   712  	// header is written out to w.conn.buf below. Depending on the
   713  	// state of the handler, we either own the map or not. If we
   714  	// don't own it, the exclude map is created lazily for
   715  	// WriteSubset to remove headers. The setHeader struct holds
   716  	// headers we need to add.
   717  	header := cw.header
   718  	owned := header != nil
   719  	if !owned {
   720  		header = w.handlerHeader
   721  	}
   722  	var excludeHeader map[string]bool
   723  	delHeader := func(key string) {
   724  		if owned {
   725  			header.Del(key)
   726  			return
   727  		}
   728  		if _, ok := header[key]; !ok {
   729  			return
   730  		}
   731  		if excludeHeader == nil {
   732  			excludeHeader = make(map[string]bool)
   733  		}
   734  		excludeHeader[key] = true
   735  	}
   736  	var setHeader extraHeader
   737  
   738  	// If the handler is done but never sent a Content-Length
   739  	// response header and this is our first (and last) write, set
   740  	// it, even to zero. This helps HTTP/1.0 clients keep their
   741  	// "keep-alive" connections alive.
   742  	// Exceptions: 304 responses never get Content-Length, and if
   743  	// it was a HEAD request, we don't know the difference between
   744  	// 0 actual bytes and 0 bytes because the handler noticed it
   745  	// was a HEAD request and chose not to write anything.  So for
   746  	// HEAD, the handler should either write the Content-Length or
   747  	// write non-zero bytes.  If it's actually 0 bytes and the
   748  	// handler never looked at the Request.Method, we just don't
   749  	// send a Content-Length header.
   750  	if w.handlerDone && w.status != StatusNotModified && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
   751  		w.contentLength = int64(len(p))
   752  		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
   753  	}
   754  
   755  	// If this was an HTTP/1.0 request with keep-alive and we sent a
   756  	// Content-Length back, we can make this a keep-alive response ...
   757  	if w.req.wantsHttp10KeepAlive() {
   758  		sentLength := header.get("Content-Length") != ""
   759  		if sentLength && header.get("Connection") == "keep-alive" {
   760  			w.closeAfterReply = false
   761  		}
   762  	}
   763  
   764  	// Check for a explicit (and valid) Content-Length header.
   765  	hasCL := w.contentLength != -1
   766  
   767  	if w.req.wantsHttp10KeepAlive() && (isHEAD || hasCL) {
   768  		_, connectionHeaderSet := header["Connection"]
   769  		if !connectionHeaderSet {
   770  			setHeader.connection = "keep-alive"
   771  		}
   772  	} else if !w.req.ProtoAtLeast(1, 1) || w.req.wantsClose() {
   773  		w.closeAfterReply = true
   774  	}
   775  
   776  	if header.get("Connection") == "close" {
   777  		w.closeAfterReply = true
   778  	}
   779  
   780  	// Per RFC 2616, we should consume the request body before
   781  	// replying, if the handler hasn't already done so.  But we
   782  	// don't want to do an unbounded amount of reading here for
   783  	// DoS reasons, so we only try up to a threshold.
   784  	if w.req.ContentLength != 0 && !w.closeAfterReply {
   785  		ecr, isExpecter := w.req.Body.(*expectContinueReader)
   786  		if !isExpecter || ecr.resp.wroteContinue {
   787  			n, _ := io.CopyN(ioutil.Discard, w.req.Body, maxPostHandlerReadBytes+1)
   788  			if n >= maxPostHandlerReadBytes {
   789  				w.requestTooLarge()
   790  				delHeader("Connection")
   791  				setHeader.connection = "close"
   792  			} else {
   793  				w.req.Body.Close()
   794  			}
   795  		}
   796  	}
   797  
   798  	code := w.status
   799  	if code == StatusNotModified {
   800  		// Must not have body.
   801  		// RFC 2616 section 10.3.5: "the response MUST NOT include other entity-headers"
   802  		for _, k := range []string{"Content-Type", "Content-Length", "Transfer-Encoding"} {
   803  			delHeader(k)
   804  		}
   805  	} else {
   806  		// If no content type, apply sniffing algorithm to body.
   807  		_, haveType := header["Content-Type"]
   808  		if !haveType {
   809  			setHeader.contentType = DetectContentType(p)
   810  		}
   811  	}
   812  
   813  	if _, ok := header["Date"]; !ok {
   814  		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
   815  	}
   816  
   817  	te := header.get("Transfer-Encoding")
   818  	hasTE := te != ""
   819  	if hasCL && hasTE && te != "identity" {
   820  		// TODO: return an error if WriteHeader gets a return parameter
   821  		// For now just ignore the Content-Length.
   822  		log.Printf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
   823  			te, w.contentLength)
   824  		delHeader("Content-Length")
   825  		hasCL = false
   826  	}
   827  
   828  	if w.req.Method == "HEAD" || code == StatusNotModified {
   829  		// do nothing
   830  	} else if code == StatusNoContent {
   831  		delHeader("Transfer-Encoding")
   832  	} else if hasCL {
   833  		delHeader("Transfer-Encoding")
   834  	} else if w.req.ProtoAtLeast(1, 1) {
   835  		// HTTP/1.1 or greater: use chunked transfer encoding
   836  		// to avoid closing the connection at EOF.
   837  		// TODO: this blows away any custom or stacked Transfer-Encoding they
   838  		// might have set.  Deal with that as need arises once we have a valid
   839  		// use case.
   840  		cw.chunking = true
   841  		setHeader.transferEncoding = "chunked"
   842  	} else {
   843  		// HTTP version < 1.1: cannot do chunked transfer
   844  		// encoding and we don't know the Content-Length so
   845  		// signal EOF by closing connection.
   846  		w.closeAfterReply = true
   847  		delHeader("Transfer-Encoding") // in case already set
   848  	}
   849  
   850  	// Cannot use Content-Length with non-identity Transfer-Encoding.
   851  	if cw.chunking {
   852  		delHeader("Content-Length")
   853  	}
   854  	if !w.req.ProtoAtLeast(1, 0) {
   855  		return
   856  	}
   857  
   858  	if w.closeAfterReply && !hasToken(cw.header.get("Connection"), "close") {
   859  		delHeader("Connection")
   860  		if w.req.ProtoAtLeast(1, 1) {
   861  			setHeader.connection = "close"
   862  		}
   863  	}
   864  
   865  	w.conn.buf.WriteString(statusLine(w.req, code))
   866  	cw.header.WriteSubset(w.conn.buf, excludeHeader)
   867  	setHeader.Write(w.conn.buf.Writer)
   868  	w.conn.buf.Write(crlf)
   869  }
   870  
   871  // statusLines is a cache of Status-Line strings, keyed by code (for
   872  // HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a
   873  // map keyed by struct of two fields. This map's max size is bounded
   874  // by 2*len(statusText), two protocol types for each known official
   875  // status code in the statusText map.
   876  var (
   877  	statusMu    sync.RWMutex
   878  	statusLines = make(map[int]string)
   879  )
   880  
   881  // statusLine returns a response Status-Line (RFC 2616 Section 6.1)
   882  // for the given request and response status code.
   883  func statusLine(req *Request, code int) string {
   884  	// Fast path:
   885  	key := code
   886  	proto11 := req.ProtoAtLeast(1, 1)
   887  	if !proto11 {
   888  		key = -key
   889  	}
   890  	statusMu.RLock()
   891  	line, ok := statusLines[key]
   892  	statusMu.RUnlock()
   893  	if ok {
   894  		return line
   895  	}
   896  
   897  	// Slow path:
   898  	proto := "HTTP/1.0"
   899  	if proto11 {
   900  		proto = "HTTP/1.1"
   901  	}
   902  	codestring := strconv.Itoa(code)
   903  	text, ok := statusText[code]
   904  	if !ok {
   905  		text = "status code " + codestring
   906  	}
   907  	line = proto + " " + codestring + " " + text + "\r\n"
   908  	if ok {
   909  		statusMu.Lock()
   910  		defer statusMu.Unlock()
   911  		statusLines[key] = line
   912  	}
   913  	return line
   914  }
   915  
   916  // bodyAllowed returns true if a Write is allowed for this response type.
   917  // It's illegal to call this before the header has been flushed.
   918  func (w *response) bodyAllowed() bool {
   919  	if !w.wroteHeader {
   920  		panic("")
   921  	}
   922  	return w.status != StatusNotModified
   923  }
   924  
   925  // The Life Of A Write is like this:
   926  //
   927  // Handler starts. No header has been sent. The handler can either
   928  // write a header, or just start writing.  Writing before sending a header
   929  // sends an implicitly empty 200 OK header.
   930  //
   931  // If the handler didn't declare a Content-Length up front, we either
   932  // go into chunking mode or, if the handler finishes running before
   933  // the chunking buffer size, we compute a Content-Length and send that
   934  // in the header instead.
   935  //
   936  // Likewise, if the handler didn't set a Content-Type, we sniff that
   937  // from the initial chunk of output.
   938  //
   939  // The Writers are wired together like:
   940  //
   941  // 1. *response (the ResponseWriter) ->
   942  // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
   943  // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
   944  //    and which writes the chunk headers, if needed.
   945  // 4. conn.buf, a bufio.Writer of default (4kB) bytes
   946  // 5. the rwc, the net.Conn.
   947  //
   948  // TODO(bradfitz): short-circuit some of the buffering when the
   949  // initial header contains both a Content-Type and Content-Length.
   950  // Also short-circuit in (1) when the header's been sent and not in
   951  // chunking mode, writing directly to (4) instead, if (2) has no
   952  // buffered data.  More generally, we could short-circuit from (1) to
   953  // (3) even in chunking mode if the write size from (1) is over some
   954  // threshold and nothing is in (2).  The answer might be mostly making
   955  // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
   956  // with this instead.
   957  func (w *response) Write(data []byte) (n int, err error) {
   958  	return w.write(len(data), data, "")
   959  }
   960  
   961  func (w *response) WriteString(data string) (n int, err error) {
   962  	return w.write(len(data), nil, data)
   963  }
   964  
   965  // either dataB or dataS is non-zero.
   966  func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
   967  	if w.conn.hijacked() {
   968  		log.Print("http: response.Write on hijacked connection")
   969  		return 0, ErrHijacked
   970  	}
   971  	if !w.wroteHeader {
   972  		w.WriteHeader(StatusOK)
   973  	}
   974  	if lenData == 0 {
   975  		return 0, nil
   976  	}
   977  	if !w.bodyAllowed() {
   978  		return 0, ErrBodyNotAllowed
   979  	}
   980  
   981  	w.written += int64(lenData) // ignoring errors, for errorKludge
   982  	if w.contentLength != -1 && w.written > w.contentLength {
   983  		return 0, ErrContentLength
   984  	}
   985  	if dataB != nil {
   986  		return w.w.Write(dataB)
   987  	} else {
   988  		return w.w.WriteString(dataS)
   989  	}
   990  }
   991  
   992  func (w *response) finishRequest() {
   993  	w.handlerDone = true
   994  
   995  	if !w.wroteHeader {
   996  		w.WriteHeader(StatusOK)
   997  	}
   998  
   999  	w.w.Flush()
  1000  	putBufioWriter(w.w)
  1001  	w.cw.close()
  1002  	w.conn.buf.Flush()
  1003  
  1004  	// Close the body, unless we're about to close the whole TCP connection
  1005  	// anyway.
  1006  	if !w.closeAfterReply {
  1007  		w.req.Body.Close()
  1008  	}
  1009  	if w.req.MultipartForm != nil {
  1010  		w.req.MultipartForm.RemoveAll()
  1011  	}
  1012  
  1013  	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
  1014  		// Did not write enough. Avoid getting out of sync.
  1015  		w.closeAfterReply = true
  1016  	}
  1017  }
  1018  
  1019  func (w *response) Flush() {
  1020  	if !w.wroteHeader {
  1021  		w.WriteHeader(StatusOK)
  1022  	}
  1023  	w.w.Flush()
  1024  	w.cw.flush()
  1025  }
  1026  
  1027  func (c *conn) finalFlush() {
  1028  	if c.buf != nil {
  1029  		c.buf.Flush()
  1030  
  1031  		// Steal the bufio.Reader (~4KB worth of memory) and its associated
  1032  		// reader for a future connection.
  1033  		putBufioReader(c.buf.Reader)
  1034  
  1035  		// Steal the bufio.Writer (~4KB worth of memory) and its associated
  1036  		// writer for a future connection.
  1037  		putBufioWriter(c.buf.Writer)
  1038  
  1039  		c.buf = nil
  1040  	}
  1041  }
  1042  
  1043  // Close the connection.
  1044  func (c *conn) close() {
  1045  	c.finalFlush()
  1046  	if c.rwc != nil {
  1047  		c.rwc.Close()
  1048  		c.rwc = nil
  1049  	}
  1050  }
  1051  
  1052  // rstAvoidanceDelay is the amount of time we sleep after closing the
  1053  // write side of a TCP connection before closing the entire socket.
  1054  // By sleeping, we increase the chances that the client sees our FIN
  1055  // and processes its final data before they process the subsequent RST
  1056  // from closing a connection with known unread data.
  1057  // This RST seems to occur mostly on BSD systems. (And Windows?)
  1058  // This timeout is somewhat arbitrary (~latency around the planet).
  1059  const rstAvoidanceDelay = 500 * time.Millisecond
  1060  
  1061  // closeWrite flushes any outstanding data and sends a FIN packet (if
  1062  // client is connected via TCP), signalling that we're done.  We then
  1063  // pause for a bit, hoping the client processes it before `any
  1064  // subsequent RST.
  1065  //
  1066  // See http://golang.org/issue/3595
  1067  func (c *conn) closeWriteAndWait() {
  1068  	c.finalFlush()
  1069  	if tcp, ok := c.rwc.(*net.TCPConn); ok {
  1070  		tcp.CloseWrite()
  1071  	}
  1072  	time.Sleep(rstAvoidanceDelay)
  1073  }
  1074  
  1075  // validNPN reports whether the proto is not a blacklisted Next
  1076  // Protocol Negotiation protocol.  Empty and built-in protocol types
  1077  // are blacklisted and can't be overridden with alternate
  1078  // implementations.
  1079  func validNPN(proto string) bool {
  1080  	switch proto {
  1081  	case "", "http/1.1", "http/1.0":
  1082  		return false
  1083  	}
  1084  	return true
  1085  }
  1086  
  1087  // Serve a new connection.
  1088  func (c *conn) serve() {
  1089  	defer func() {
  1090  		if err := recover(); err != nil {
  1091  			const size = 4096
  1092  			buf := make([]byte, size)
  1093  			buf = buf[:runtime.Stack(buf, false)]
  1094  			log.Printf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
  1095  		}
  1096  		if !c.hijacked() {
  1097  			c.close()
  1098  		}
  1099  	}()
  1100  
  1101  	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
  1102  		if d := c.server.ReadTimeout; d != 0 {
  1103  			c.rwc.SetReadDeadline(time.Now().Add(d))
  1104  		}
  1105  		if d := c.server.WriteTimeout; d != 0 {
  1106  			c.rwc.SetWriteDeadline(time.Now().Add(d))
  1107  		}
  1108  		if err := tlsConn.Handshake(); err != nil {
  1109  			return
  1110  		}
  1111  		c.tlsState = new(tls.ConnectionState)
  1112  		*c.tlsState = tlsConn.ConnectionState()
  1113  		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
  1114  			if fn := c.server.TLSNextProto[proto]; fn != nil {
  1115  				h := initNPNRequest{tlsConn, serverHandler{c.server}}
  1116  				fn(c.server, tlsConn, h)
  1117  			}
  1118  			return
  1119  		}
  1120  	}
  1121  
  1122  	for {
  1123  		w, err := c.readRequest()
  1124  		if err != nil {
  1125  			if err == errTooLarge {
  1126  				// Their HTTP client may or may not be
  1127  				// able to read this if we're
  1128  				// responding to them and hanging up
  1129  				// while they're still writing their
  1130  				// request.  Undefined behavior.
  1131  				io.WriteString(c.rwc, "HTTP/1.1 413 Request Entity Too Large\r\n\r\n")
  1132  				c.closeWriteAndWait()
  1133  				break
  1134  			} else if err == io.EOF {
  1135  				break // Don't reply
  1136  			} else if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
  1137  				break // Don't reply
  1138  			}
  1139  			io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\n\r\n")
  1140  			break
  1141  		}
  1142  
  1143  		// Expect 100 Continue support
  1144  		req := w.req
  1145  		if req.expectsContinue() {
  1146  			if req.ProtoAtLeast(1, 1) {
  1147  				// Wrap the Body reader with one that replies on the connection
  1148  				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
  1149  			}
  1150  			if req.ContentLength == 0 {
  1151  				w.Header().Set("Connection", "close")
  1152  				w.WriteHeader(StatusBadRequest)
  1153  				w.finishRequest()
  1154  				break
  1155  			}
  1156  			req.Header.Del("Expect")
  1157  		} else if req.Header.get("Expect") != "" {
  1158  			w.sendExpectationFailed()
  1159  			break
  1160  		}
  1161  
  1162  		// HTTP cannot have multiple simultaneous active requests.[*]
  1163  		// Until the server replies to this request, it can't read another,
  1164  		// so we might as well run the handler in this goroutine.
  1165  		// [*] Not strictly true: HTTP pipelining.  We could let them all process
  1166  		// in parallel even if their responses need to be serialized.
  1167  		serverHandler{c.server}.ServeHTTP(w, w.req)
  1168  		if c.hijacked() {
  1169  			return
  1170  		}
  1171  		w.finishRequest()
  1172  		if w.closeAfterReply {
  1173  			if w.requestBodyLimitHit {
  1174  				c.closeWriteAndWait()
  1175  			}
  1176  			break
  1177  		}
  1178  	}
  1179  }
  1180  
  1181  func (w *response) sendExpectationFailed() {
  1182  	// TODO(bradfitz): let ServeHTTP handlers handle
  1183  	// requests with non-standard expectation[s]? Seems
  1184  	// theoretical at best, and doesn't fit into the
  1185  	// current ServeHTTP model anyway.  We'd need to
  1186  	// make the ResponseWriter an optional
  1187  	// "ExpectReplier" interface or something.
  1188  	//
  1189  	// For now we'll just obey RFC 2616 14.20 which says
  1190  	// "If a server receives a request containing an
  1191  	// Expect field that includes an expectation-
  1192  	// extension that it does not support, it MUST
  1193  	// respond with a 417 (Expectation Failed) status."
  1194  	w.Header().Set("Connection", "close")
  1195  	w.WriteHeader(StatusExpectationFailed)
  1196  	w.finishRequest()
  1197  }
  1198  
  1199  // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
  1200  // and a Hijacker.
  1201  func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
  1202  	if w.wroteHeader {
  1203  		w.cw.flush()
  1204  	}
  1205  	return w.conn.hijack()
  1206  }
  1207  
  1208  func (w *response) CloseNotify() <-chan bool {
  1209  	return w.conn.closeNotify()
  1210  }
  1211  
  1212  // The HandlerFunc type is an adapter to allow the use of
  1213  // ordinary functions as HTTP handlers.  If f is a function
  1214  // with the appropriate signature, HandlerFunc(f) is a
  1215  // Handler object that calls f.
  1216  type HandlerFunc func(ResponseWriter, *Request)
  1217  
  1218  // ServeHTTP calls f(w, r).
  1219  func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
  1220  	f(w, r)
  1221  }
  1222  
  1223  // Helper handlers
  1224  
  1225  // Error replies to the request with the specified error message and HTTP code.
  1226  // The error message should be plain text.
  1227  func Error(w ResponseWriter, error string, code int) {
  1228  	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
  1229  	w.WriteHeader(code)
  1230  	fmt.Fprintln(w, error)
  1231  }
  1232  
  1233  // NotFound replies to the request with an HTTP 404 not found error.
  1234  func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
  1235  
  1236  // NotFoundHandler returns a simple request handler
  1237  // that replies to each request with a ``404 page not found'' reply.
  1238  func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
  1239  
  1240  // StripPrefix returns a handler that serves HTTP requests
  1241  // by removing the given prefix from the request URL's Path
  1242  // and invoking the handler h. StripPrefix handles a
  1243  // request for a path that doesn't begin with prefix by
  1244  // replying with an HTTP 404 not found error.
  1245  func StripPrefix(prefix string, h Handler) Handler {
  1246  	if prefix == "" {
  1247  		return h
  1248  	}
  1249  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  1250  		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
  1251  			r.URL.Path = p
  1252  			h.ServeHTTP(w, r)
  1253  		} else {
  1254  			NotFound(w, r)
  1255  		}
  1256  	})
  1257  }
  1258  
  1259  // Redirect replies to the request with a redirect to url,
  1260  // which may be a path relative to the request path.
  1261  func Redirect(w ResponseWriter, r *Request, urlStr string, code int) {
  1262  	if u, err := url.Parse(urlStr); err == nil {
  1263  		// If url was relative, make absolute by
  1264  		// combining with request path.
  1265  		// The browser would probably do this for us,
  1266  		// but doing it ourselves is more reliable.
  1267  
  1268  		// NOTE(rsc): RFC 2616 says that the Location
  1269  		// line must be an absolute URI, like
  1270  		// "http://www.google.com/redirect/",
  1271  		// not a path like "/redirect/".
  1272  		// Unfortunately, we don't know what to
  1273  		// put in the host name section to get the
  1274  		// client to connect to us again, so we can't
  1275  		// know the right absolute URI to send back.
  1276  		// Because of this problem, no one pays attention
  1277  		// to the RFC; they all send back just a new path.
  1278  		// So do we.
  1279  		oldpath := r.URL.Path
  1280  		if oldpath == "" { // should not happen, but avoid a crash if it does
  1281  			oldpath = "/"
  1282  		}
  1283  		if u.Scheme == "" {
  1284  			// no leading http://server
  1285  			if urlStr == "" || urlStr[0] != '/' {
  1286  				// make relative path absolute
  1287  				olddir, _ := path.Split(oldpath)
  1288  				urlStr = olddir + urlStr
  1289  			}
  1290  
  1291  			var query string
  1292  			if i := strings.Index(urlStr, "?"); i != -1 {
  1293  				urlStr, query = urlStr[:i], urlStr[i:]
  1294  			}
  1295  
  1296  			// clean up but preserve trailing slash
  1297  			trailing := strings.HasSuffix(urlStr, "/")
  1298  			urlStr = path.Clean(urlStr)
  1299  			if trailing && !strings.HasSuffix(urlStr, "/") {
  1300  				urlStr += "/"
  1301  			}
  1302  			urlStr += query
  1303  		}
  1304  	}
  1305  
  1306  	w.Header().Set("Location", urlStr)
  1307  	w.WriteHeader(code)
  1308  
  1309  	// RFC2616 recommends that a short note "SHOULD" be included in the
  1310  	// response because older user agents may not understand 301/307.
  1311  	// Shouldn't send the response for POST or HEAD; that leaves GET.
  1312  	if r.Method == "GET" {
  1313  		note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n"
  1314  		fmt.Fprintln(w, note)
  1315  	}
  1316  }
  1317  
  1318  var htmlReplacer = strings.NewReplacer(
  1319  	"&", "&amp;",
  1320  	"<", "&lt;",
  1321  	">", "&gt;",
  1322  	// "&#34;" is shorter than "&quot;".
  1323  	`"`, "&#34;",
  1324  	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
  1325  	"'", "&#39;",
  1326  )
  1327  
  1328  func htmlEscape(s string) string {
  1329  	return htmlReplacer.Replace(s)
  1330  }
  1331  
  1332  // Redirect to a fixed URL
  1333  type redirectHandler struct {
  1334  	url  string
  1335  	code int
  1336  }
  1337  
  1338  func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1339  	Redirect(w, r, rh.url, rh.code)
  1340  }
  1341  
  1342  // RedirectHandler returns a request handler that redirects
  1343  // each request it receives to the given url using the given
  1344  // status code.
  1345  func RedirectHandler(url string, code int) Handler {
  1346  	return &redirectHandler{url, code}
  1347  }
  1348  
  1349  // ServeMux is an HTTP request multiplexer.
  1350  // It matches the URL of each incoming request against a list of registered
  1351  // patterns and calls the handler for the pattern that
  1352  // most closely matches the URL.
  1353  //
  1354  // Patterns name fixed, rooted paths, like "/favicon.ico",
  1355  // or rooted subtrees, like "/images/" (note the trailing slash).
  1356  // Longer patterns take precedence over shorter ones, so that
  1357  // if there are handlers registered for both "/images/"
  1358  // and "/images/thumbnails/", the latter handler will be
  1359  // called for paths beginning "/images/thumbnails/" and the
  1360  // former will receive requests for any other paths in the
  1361  // "/images/" subtree.
  1362  //
  1363  // Note that since a pattern ending in a slash names a rooted subtree,
  1364  // the pattern "/" matches all paths not matched by other registered
  1365  // patterns, not just the URL with Path == "/".
  1366  //
  1367  // Patterns may optionally begin with a host name, restricting matches to
  1368  // URLs on that host only.  Host-specific patterns take precedence over
  1369  // general patterns, so that a handler might register for the two patterns
  1370  // "/codesearch" and "codesearch.google.com/" without also taking over
  1371  // requests for "http://www.google.com/".
  1372  //
  1373  // ServeMux also takes care of sanitizing the URL request path,
  1374  // redirecting any request containing . or .. elements to an
  1375  // equivalent .- and ..-free URL.
  1376  type ServeMux struct {
  1377  	mu    sync.RWMutex
  1378  	m     map[string]muxEntry
  1379  	hosts bool // whether any patterns contain hostnames
  1380  }
  1381  
  1382  type muxEntry struct {
  1383  	explicit bool
  1384  	h        Handler
  1385  	pattern  string
  1386  }
  1387  
  1388  // NewServeMux allocates and returns a new ServeMux.
  1389  func NewServeMux() *ServeMux { return &ServeMux{m: make(map[string]muxEntry)} }
  1390  
  1391  // DefaultServeMux is the default ServeMux used by Serve.
  1392  var DefaultServeMux = NewServeMux()
  1393  
  1394  // Does path match pattern?
  1395  func pathMatch(pattern, path string) bool {
  1396  	if len(pattern) == 0 {
  1397  		// should not happen
  1398  		return false
  1399  	}
  1400  	n := len(pattern)
  1401  	if pattern[n-1] != '/' {
  1402  		return pattern == path
  1403  	}
  1404  	return len(path) >= n && path[0:n] == pattern
  1405  }
  1406  
  1407  // Return the canonical path for p, eliminating . and .. elements.
  1408  func cleanPath(p string) string {
  1409  	if p == "" {
  1410  		return "/"
  1411  	}
  1412  	if p[0] != '/' {
  1413  		p = "/" + p
  1414  	}
  1415  	np := path.Clean(p)
  1416  	// path.Clean removes trailing slash except for root;
  1417  	// put the trailing slash back if necessary.
  1418  	if p[len(p)-1] == '/' && np != "/" {
  1419  		np += "/"
  1420  	}
  1421  	return np
  1422  }
  1423  
  1424  // Find a handler on a handler map given a path string
  1425  // Most-specific (longest) pattern wins
  1426  func (mux *ServeMux) match(path string) (h Handler, pattern string) {
  1427  	var n = 0
  1428  	for k, v := range mux.m {
  1429  		if !pathMatch(k, path) {
  1430  			continue
  1431  		}
  1432  		if h == nil || len(k) > n {
  1433  			n = len(k)
  1434  			h = v.h
  1435  			pattern = v.pattern
  1436  		}
  1437  	}
  1438  	return
  1439  }
  1440  
  1441  // Handler returns the handler to use for the given request,
  1442  // consulting r.Method, r.Host, and r.URL.Path. It always returns
  1443  // a non-nil handler. If the path is not in its canonical form, the
  1444  // handler will be an internally-generated handler that redirects
  1445  // to the canonical path.
  1446  //
  1447  // Handler also returns the registered pattern that matches the
  1448  // request or, in the case of internally-generated redirects,
  1449  // the pattern that will match after following the redirect.
  1450  //
  1451  // If there is no registered handler that applies to the request,
  1452  // Handler returns a ``page not found'' handler and an empty pattern.
  1453  func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
  1454  	if r.Method != "CONNECT" {
  1455  		if p := cleanPath(r.URL.Path); p != r.URL.Path {
  1456  			_, pattern = mux.handler(r.Host, p)
  1457  			url := *r.URL
  1458  			url.Path = p
  1459  			return RedirectHandler(url.String(), StatusMovedPermanently), pattern
  1460  		}
  1461  	}
  1462  
  1463  	return mux.handler(r.Host, r.URL.Path)
  1464  }
  1465  
  1466  // handler is the main implementation of Handler.
  1467  // The path is known to be in canonical form, except for CONNECT methods.
  1468  func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
  1469  	mux.mu.RLock()
  1470  	defer mux.mu.RUnlock()
  1471  
  1472  	// Host-specific pattern takes precedence over generic ones
  1473  	if mux.hosts {
  1474  		h, pattern = mux.match(host + path)
  1475  	}
  1476  	if h == nil {
  1477  		h, pattern = mux.match(path)
  1478  	}
  1479  	if h == nil {
  1480  		h, pattern = NotFoundHandler(), ""
  1481  	}
  1482  	return
  1483  }
  1484  
  1485  // ServeHTTP dispatches the request to the handler whose
  1486  // pattern most closely matches the request URL.
  1487  func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
  1488  	if r.RequestURI == "*" {
  1489  		if r.ProtoAtLeast(1, 1) {
  1490  			w.Header().Set("Connection", "close")
  1491  		}
  1492  		w.WriteHeader(StatusBadRequest)
  1493  		return
  1494  	}
  1495  	h, _ := mux.Handler(r)
  1496  	h.ServeHTTP(w, r)
  1497  }
  1498  
  1499  // Handle registers the handler for the given pattern.
  1500  // If a handler already exists for pattern, Handle panics.
  1501  func (mux *ServeMux) Handle(pattern string, handler Handler) {
  1502  	mux.mu.Lock()
  1503  	defer mux.mu.Unlock()
  1504  
  1505  	if pattern == "" {
  1506  		panic("http: invalid pattern " + pattern)
  1507  	}
  1508  	if handler == nil {
  1509  		panic("http: nil handler")
  1510  	}
  1511  	if mux.m[pattern].explicit {
  1512  		panic("http: multiple registrations for " + pattern)
  1513  	}
  1514  
  1515  	mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
  1516  
  1517  	if pattern[0] != '/' {
  1518  		mux.hosts = true
  1519  	}
  1520  
  1521  	// Helpful behavior:
  1522  	// If pattern is /tree/, insert an implicit permanent redirect for /tree.
  1523  	// It can be overridden by an explicit registration.
  1524  	n := len(pattern)
  1525  	if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
  1526  		// If pattern contains a host name, strip it and use remaining
  1527  		// path for redirect.
  1528  		path := pattern
  1529  		if pattern[0] != '/' {
  1530  			// In pattern, at least the last character is a '/', so
  1531  			// strings.Index can't be -1.
  1532  			path = pattern[strings.Index(pattern, "/"):]
  1533  		}
  1534  		mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(path, StatusMovedPermanently), pattern: pattern}
  1535  	}
  1536  }
  1537  
  1538  // HandleFunc registers the handler function for the given pattern.
  1539  func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1540  	mux.Handle(pattern, HandlerFunc(handler))
  1541  }
  1542  
  1543  // Handle registers the handler for the given pattern
  1544  // in the DefaultServeMux.
  1545  // The documentation for ServeMux explains how patterns are matched.
  1546  func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
  1547  
  1548  // HandleFunc registers the handler function for the given pattern
  1549  // in the DefaultServeMux.
  1550  // The documentation for ServeMux explains how patterns are matched.
  1551  func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1552  	DefaultServeMux.HandleFunc(pattern, handler)
  1553  }
  1554  
  1555  // Serve accepts incoming HTTP connections on the listener l,
  1556  // creating a new service goroutine for each.  The service goroutines
  1557  // read requests and then call handler to reply to them.
  1558  // Handler is typically nil, in which case the DefaultServeMux is used.
  1559  func Serve(l net.Listener, handler Handler) error {
  1560  	srv := &Server{Handler: handler}
  1561  	return srv.Serve(l)
  1562  }
  1563  
  1564  // A Server defines parameters for running an HTTP server.
  1565  type Server struct {
  1566  	Addr           string        // TCP address to listen on, ":http" if empty
  1567  	Handler        Handler       // handler to invoke, http.DefaultServeMux if nil
  1568  	ReadTimeout    time.Duration // maximum duration before timing out read of the request
  1569  	WriteTimeout   time.Duration // maximum duration before timing out write of the response
  1570  	MaxHeaderBytes int           // maximum size of request headers, DefaultMaxHeaderBytes if 0
  1571  	TLSConfig      *tls.Config   // optional TLS config, used by ListenAndServeTLS
  1572  
  1573  	// TLSNextProto optionally specifies a function to take over
  1574  	// ownership of the provided TLS connection when an NPN
  1575  	// protocol upgrade has occurred.  The map key is the protocol
  1576  	// name negotiated. The Handler argument should be used to
  1577  	// handle HTTP requests and will initialize the Request's TLS
  1578  	// and RemoteAddr if not already set.  The connection is
  1579  	// automatically closed when the function returns.
  1580  	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
  1581  }
  1582  
  1583  // serverHandler delegates to either the server's Handler or
  1584  // DefaultServeMux and also handles "OPTIONS *" requests.
  1585  type serverHandler struct {
  1586  	srv *Server
  1587  }
  1588  
  1589  func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
  1590  	handler := sh.srv.Handler
  1591  	if handler == nil {
  1592  		handler = DefaultServeMux
  1593  	}
  1594  	if req.RequestURI == "*" && req.Method == "OPTIONS" {
  1595  		handler = globalOptionsHandler{}
  1596  	}
  1597  	handler.ServeHTTP(rw, req)
  1598  }
  1599  
  1600  // ListenAndServe listens on the TCP network address srv.Addr and then
  1601  // calls Serve to handle requests on incoming connections.  If
  1602  // srv.Addr is blank, ":http" is used.
  1603  func (srv *Server) ListenAndServe() error {
  1604  	addr := srv.Addr
  1605  	if addr == "" {
  1606  		addr = ":http"
  1607  	}
  1608  	l, e := net.Listen("tcp", addr)
  1609  	if e != nil {
  1610  		return e
  1611  	}
  1612  	return srv.Serve(l)
  1613  }
  1614  
  1615  // Serve accepts incoming connections on the Listener l, creating a
  1616  // new service goroutine for each.  The service goroutines read requests and
  1617  // then call srv.Handler to reply to them.
  1618  func (srv *Server) Serve(l net.Listener) error {
  1619  	defer l.Close()
  1620  	var tempDelay time.Duration // how long to sleep on accept failure
  1621  	for {
  1622  		rw, e := l.Accept()
  1623  		if e != nil {
  1624  			if ne, ok := e.(net.Error); ok && ne.Temporary() {
  1625  				if tempDelay == 0 {
  1626  					tempDelay = 5 * time.Millisecond
  1627  				} else {
  1628  					tempDelay *= 2
  1629  				}
  1630  				if max := 1 * time.Second; tempDelay > max {
  1631  					tempDelay = max
  1632  				}
  1633  				log.Printf("http: Accept error: %v; retrying in %v", e, tempDelay)
  1634  				time.Sleep(tempDelay)
  1635  				continue
  1636  			}
  1637  			return e
  1638  		}
  1639  		tempDelay = 0
  1640  		c, err := srv.newConn(rw)
  1641  		if err != nil {
  1642  			continue
  1643  		}
  1644  		go c.serve()
  1645  	}
  1646  }
  1647  
  1648  // ListenAndServe listens on the TCP network address addr
  1649  // and then calls Serve with handler to handle requests
  1650  // on incoming connections.  Handler is typically nil,
  1651  // in which case the DefaultServeMux is used.
  1652  //
  1653  // A trivial example server is:
  1654  //
  1655  //	package main
  1656  //
  1657  //	import (
  1658  //		"io"
  1659  //		"net/http"
  1660  //		"log"
  1661  //	)
  1662  //
  1663  //	// hello world, the web server
  1664  //	func HelloServer(w http.ResponseWriter, req *http.Request) {
  1665  //		io.WriteString(w, "hello, world!\n")
  1666  //	}
  1667  //
  1668  //	func main() {
  1669  //		http.HandleFunc("/hello", HelloServer)
  1670  //		err := http.ListenAndServe(":12345", nil)
  1671  //		if err != nil {
  1672  //			log.Fatal("ListenAndServe: ", err)
  1673  //		}
  1674  //	}
  1675  func ListenAndServe(addr string, handler Handler) error {
  1676  	server := &Server{Addr: addr, Handler: handler}
  1677  	return server.ListenAndServe()
  1678  }
  1679  
  1680  // ListenAndServeTLS acts identically to ListenAndServe, except that it
  1681  // expects HTTPS connections. Additionally, files containing a certificate and
  1682  // matching private key for the server must be provided. If the certificate
  1683  // is signed by a certificate authority, the certFile should be the concatenation
  1684  // of the server's certificate followed by the CA's certificate.
  1685  //
  1686  // A trivial example server is:
  1687  //
  1688  //	import (
  1689  //		"log"
  1690  //		"net/http"
  1691  //	)
  1692  //
  1693  //	func handler(w http.ResponseWriter, req *http.Request) {
  1694  //		w.Header().Set("Content-Type", "text/plain")
  1695  //		w.Write([]byte("This is an example server.\n"))
  1696  //	}
  1697  //
  1698  //	func main() {
  1699  //		http.HandleFunc("/", handler)
  1700  //		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
  1701  //		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
  1702  //		if err != nil {
  1703  //			log.Fatal(err)
  1704  //		}
  1705  //	}
  1706  //
  1707  // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
  1708  func ListenAndServeTLS(addr string, certFile string, keyFile string, handler Handler) error {
  1709  	server := &Server{Addr: addr, Handler: handler}
  1710  	return server.ListenAndServeTLS(certFile, keyFile)
  1711  }
  1712  
  1713  // ListenAndServeTLS listens on the TCP network address srv.Addr and
  1714  // then calls Serve to handle requests on incoming TLS connections.
  1715  //
  1716  // Filenames containing a certificate and matching private key for
  1717  // the server must be provided. If the certificate is signed by a
  1718  // certificate authority, the certFile should be the concatenation
  1719  // of the server's certificate followed by the CA's certificate.
  1720  //
  1721  // If srv.Addr is blank, ":https" is used.
  1722  func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
  1723  	addr := srv.Addr
  1724  	if addr == "" {
  1725  		addr = ":https"
  1726  	}
  1727  	config := &tls.Config{}
  1728  	if srv.TLSConfig != nil {
  1729  		*config = *srv.TLSConfig
  1730  	}
  1731  	if config.NextProtos == nil {
  1732  		config.NextProtos = []string{"http/1.1"}
  1733  	}
  1734  
  1735  	var err error
  1736  	config.Certificates = make([]tls.Certificate, 1)
  1737  	config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
  1738  	if err != nil {
  1739  		return err
  1740  	}
  1741  
  1742  	conn, err := net.Listen("tcp", addr)
  1743  	if err != nil {
  1744  		return err
  1745  	}
  1746  
  1747  	tlsListener := tls.NewListener(conn, config)
  1748  	return srv.Serve(tlsListener)
  1749  }
  1750  
  1751  // TimeoutHandler returns a Handler that runs h with the given time limit.
  1752  //
  1753  // The new Handler calls h.ServeHTTP to handle each request, but if a
  1754  // call runs for longer than its time limit, the handler responds with
  1755  // a 503 Service Unavailable error and the given message in its body.
  1756  // (If msg is empty, a suitable default message will be sent.)
  1757  // After such a timeout, writes by h to its ResponseWriter will return
  1758  // ErrHandlerTimeout.
  1759  func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
  1760  	f := func() <-chan time.Time {
  1761  		return time.After(dt)
  1762  	}
  1763  	return &timeoutHandler{h, f, msg}
  1764  }
  1765  
  1766  // ErrHandlerTimeout is returned on ResponseWriter Write calls
  1767  // in handlers which have timed out.
  1768  var ErrHandlerTimeout = errors.New("http: Handler timeout")
  1769  
  1770  type timeoutHandler struct {
  1771  	handler Handler
  1772  	timeout func() <-chan time.Time // returns channel producing a timeout
  1773  	body    string
  1774  }
  1775  
  1776  func (h *timeoutHandler) errorBody() string {
  1777  	if h.body != "" {
  1778  		return h.body
  1779  	}
  1780  	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
  1781  }
  1782  
  1783  func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1784  	done := make(chan bool, 1)
  1785  	tw := &timeoutWriter{w: w}
  1786  	go func() {
  1787  		h.handler.ServeHTTP(tw, r)
  1788  		done <- true
  1789  	}()
  1790  	select {
  1791  	case <-done:
  1792  		return
  1793  	case <-h.timeout():
  1794  		tw.mu.Lock()
  1795  		defer tw.mu.Unlock()
  1796  		if !tw.wroteHeader {
  1797  			tw.w.WriteHeader(StatusServiceUnavailable)
  1798  			tw.w.Write([]byte(h.errorBody()))
  1799  		}
  1800  		tw.timedOut = true
  1801  	}
  1802  }
  1803  
  1804  type timeoutWriter struct {
  1805  	w ResponseWriter
  1806  
  1807  	mu          sync.Mutex
  1808  	timedOut    bool
  1809  	wroteHeader bool
  1810  }
  1811  
  1812  func (tw *timeoutWriter) Header() Header {
  1813  	return tw.w.Header()
  1814  }
  1815  
  1816  func (tw *timeoutWriter) Write(p []byte) (int, error) {
  1817  	tw.mu.Lock()
  1818  	timedOut := tw.timedOut
  1819  	tw.mu.Unlock()
  1820  	if timedOut {
  1821  		return 0, ErrHandlerTimeout
  1822  	}
  1823  	return tw.w.Write(p)
  1824  }
  1825  
  1826  func (tw *timeoutWriter) WriteHeader(code int) {
  1827  	tw.mu.Lock()
  1828  	if tw.timedOut || tw.wroteHeader {
  1829  		tw.mu.Unlock()
  1830  		return
  1831  	}
  1832  	tw.wroteHeader = true
  1833  	tw.mu.Unlock()
  1834  	tw.w.WriteHeader(code)
  1835  }
  1836  
  1837  // globalOptionsHandler responds to "OPTIONS *" requests.
  1838  type globalOptionsHandler struct{}
  1839  
  1840  func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1841  	w.Header().Set("Content-Length", "0")
  1842  	if r.ContentLength != 0 {
  1843  		// Read up to 4KB of OPTIONS body (as mentioned in the
  1844  		// spec as being reserved for future use), but anything
  1845  		// over that is considered a waste of server resources
  1846  		// (or an attack) and we abort and close the connection,
  1847  		// courtesy of MaxBytesReader's EOF behavior.
  1848  		mb := MaxBytesReader(w, r.Body, 4<<10)
  1849  		io.Copy(ioutil.Discard, mb)
  1850  	}
  1851  }
  1852  
  1853  // eofReader is a non-nil io.ReadCloser that always returns EOF.
  1854  // It embeds a *strings.Reader so it still has a WriteTo method
  1855  // and io.Copy won't need a buffer.
  1856  var eofReader = &struct {
  1857  	*strings.Reader
  1858  	io.Closer
  1859  }{
  1860  	strings.NewReader(""),
  1861  	ioutil.NopCloser(nil),
  1862  }
  1863  
  1864  // initNPNRequest is an HTTP handler that initializes certain
  1865  // uninitialized fields in its *Request. Such partially-initialized
  1866  // Requests come from NPN protocol handlers.
  1867  type initNPNRequest struct {
  1868  	c *tls.Conn
  1869  	h serverHandler
  1870  }
  1871  
  1872  func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
  1873  	if req.TLS == nil {
  1874  		req.TLS = &tls.ConnectionState{}
  1875  		*req.TLS = h.c.ConnectionState()
  1876  	}
  1877  	if req.Body == nil {
  1878  		req.Body = eofReader
  1879  	}
  1880  	if req.RemoteAddr == "" {
  1881  		req.RemoteAddr = h.c.RemoteAddr().String()
  1882  	}
  1883  	h.h.ServeHTTP(rw, req)
  1884  }
  1885  
  1886  // loggingConn is used for debugging.
  1887  type loggingConn struct {
  1888  	name string
  1889  	net.Conn
  1890  }
  1891  
  1892  var (
  1893  	uniqNameMu   sync.Mutex
  1894  	uniqNameNext = make(map[string]int)
  1895  )
  1896  
  1897  func newLoggingConn(baseName string, c net.Conn) net.Conn {
  1898  	uniqNameMu.Lock()
  1899  	defer uniqNameMu.Unlock()
  1900  	uniqNameNext[baseName]++
  1901  	return &loggingConn{
  1902  		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
  1903  		Conn: c,
  1904  	}
  1905  }
  1906  
  1907  func (c *loggingConn) Write(p []byte) (n int, err error) {
  1908  	log.Printf("%s.Write(%d) = ....", c.name, len(p))
  1909  	n, err = c.Conn.Write(p)
  1910  	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
  1911  	return
  1912  }
  1913  
  1914  func (c *loggingConn) Read(p []byte) (n int, err error) {
  1915  	log.Printf("%s.Read(%d) = ....", c.name, len(p))
  1916  	n, err = c.Conn.Read(p)
  1917  	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
  1918  	return
  1919  }
  1920  
  1921  func (c *loggingConn) Close() (err error) {
  1922  	log.Printf("%s.Close() = ...", c.name)
  1923  	err = c.Conn.Close()
  1924  	log.Printf("%s.Close() = %v", c.name, err)
  1925  	return
  1926  }