github.com/ronhuafeng/gofrontend@v0.0.0-20220715151246-ff23266b8bc5/go/gogo.h (about)

     1  // gogo.h -- Go frontend parsed representation.     -*- C++ -*-
     2  
     3  // Copyright 2009 The Go Authors. All rights reserved.
     4  // Use of this source code is governed by a BSD-style
     5  // license that can be found in the LICENSE file.
     6  
     7  #ifndef GO_GOGO_H
     8  #define GO_GOGO_H
     9  
    10  #include "go-linemap.h"
    11  
    12  class Traverse;
    13  class Statement_inserter;
    14  class Type;
    15  class Type_equal;
    16  class Typed_identifier;
    17  class Typed_identifier_list;
    18  class Function_type;
    19  class Expression;
    20  class Expression_list;
    21  class Statement;
    22  class Temporary_statement;
    23  class Block;
    24  class Function;
    25  class Bindings;
    26  class Bindings_snapshot;
    27  class Package;
    28  class Variable;
    29  class Pointer_type;
    30  class Struct_type;
    31  class Struct_field;
    32  class Struct_field_list;
    33  class Array_type;
    34  class Map_type;
    35  class Channel_type;
    36  class Interface_type;
    37  class Named_type;
    38  class Forward_declaration_type;
    39  class Named_object;
    40  class Label;
    41  class Translate_context;
    42  class Backend;
    43  class Export;
    44  class Export_function_body;
    45  class Import;
    46  class Import_function_body;
    47  class Bexpression;
    48  class Btype;
    49  class Bstatement;
    50  class Bblock;
    51  class Bvariable;
    52  class Blabel;
    53  class Bfunction;
    54  class Escape_context;
    55  class Node;
    56  
    57  // This file declares the basic classes used to hold the internal
    58  // representation of Go which is built by the parser.
    59  
    60  // The name of some backend object.  Backend objects have a
    61  // user-visible name and an assembler name.  The user visible name
    62  // might include arbitrary Unicode characters.  The assembler name
    63  // will not.
    64  
    65  class Backend_name
    66  {
    67   public:
    68    Backend_name()
    69      : prefix_(NULL), components_(), count_(0), suffix_(),
    70        is_asm_name_(false), is_non_identifier_(false)
    71    {}
    72  
    73    // Set the prefix.  Prefixes are always constant strings.
    74    void
    75    set_prefix(const char* p)
    76    {
    77      go_assert(this->prefix_ == NULL && !this->is_asm_name_);
    78      this->prefix_ = p;
    79    }
    80  
    81    // Set the suffix.
    82    void
    83    set_suffix(const std::string& s)
    84    {
    85      go_assert(this->suffix_.empty() && !this->is_asm_name_);
    86      this->suffix_ = s;
    87    }
    88  
    89    // Append to the suffix.
    90    void
    91    append_suffix(const std::string& s)
    92    {
    93      if (this->is_asm_name_)
    94        this->components_[0].append(s);
    95      else
    96        this->suffix_.append(s);
    97    }
    98  
    99    // Add a component.
   100    void
   101    add(const std::string& c)
   102    {
   103      go_assert(this->count_ < Backend_name::max_components
   104  	      && !this->is_asm_name_);
   105      this->components_[this->count_] = c;
   106      ++this->count_;
   107    }
   108  
   109    // Set an assembler name specified by the user.  This overrides both
   110    // the user-visible name and the assembler name.  No further
   111    // encoding is applied.
   112    void
   113    set_asm_name(const std::string& n)
   114    {
   115      go_assert(this->prefix_ == NULL
   116  	      && this->count_ == 0
   117  	      && this->suffix_.empty()
   118  	      && !this->is_asm_name_);
   119      this->components_[0] = n;
   120      this->is_asm_name_ = true;
   121    }
   122  
   123    // Whether some component includes some characters that can't appear
   124    // in an identifier.
   125    bool
   126    is_non_identifier() const
   127    { return this->is_non_identifier_; }
   128  
   129    // Record that some component includes some character that can't
   130    // appear in an identifier.
   131    void
   132    set_is_non_identifier()
   133    { this->is_non_identifier_ = true; }
   134  
   135    // Get the user visible name.
   136    std::string
   137    name() const;
   138  
   139    // Get the assembler name.  This may be the same as the user visible
   140    // name.
   141    std::string
   142    asm_name() const;
   143  
   144    // Get an optional assembler name: if it would be the same as the
   145    // user visible name, this returns the empty string.
   146    std::string
   147    optional_asm_name() const;
   148  
   149   private:
   150    // The maximum number of components.
   151    static const int max_components = 4;
   152  
   153    // An optional prefix that does not require encoding.
   154    const char *prefix_;
   155    // Up to four components.  The name will include these components
   156    // separated by dots.  Each component will be underscore-encoded
   157    // (see the long comment near the top of names.cc).
   158    std::string components_[Backend_name::max_components];
   159    // Number of components.
   160    int count_;
   161    // An optional suffix that does not require encoding.
   162    std::string suffix_;
   163    // True if components_[0] is an assembler name specified by the user.
   164    bool is_asm_name_;
   165    // True if some component includes some character that can't
   166    // normally appear in an identifier.
   167    bool is_non_identifier_;
   168  };
   169  
   170  // An initialization function for an imported package.  This is a
   171  // magic function which initializes variables and runs the "init"
   172  // function.
   173  
   174  class Import_init
   175  {
   176   public:
   177    Import_init(const std::string& package_name, const std::string& init_name,
   178  	      int priority)
   179      : package_name_(package_name), init_name_(init_name), priority_(priority)
   180    { }
   181  
   182    // The name of the package being imported.
   183    const std::string&
   184    package_name() const
   185    { return this->package_name_; }
   186  
   187    // The name of the package's init function.
   188    const std::string&
   189    init_name() const
   190    { return this->init_name_; }
   191  
   192    // Older V1 export data uses a priority scheme to order
   193    // initialization functions; functions with a lower priority number
   194    // must be run first. This value will be set to -1 for current
   195    // generation objects, and will take on a non-negative value only
   196    // when importing a V1-vintage object.
   197    int
   198    priority() const
   199    { return this->priority_; }
   200  
   201    // Reset priority.
   202    void
   203    set_priority(int new_priority)
   204    { this->priority_ = new_priority; }
   205  
   206    // Record the fact that some other init fcn must be run before this init fcn.
   207    void
   208    record_precursor_fcn(std::string init_fcn_name)
   209    { this->precursor_functions_.insert(init_fcn_name); }
   210  
   211    // Return the list of precursor fcns for this fcn (must be run before it).
   212    const std::set<std::string>&
   213    precursors() const
   214    { return this->precursor_functions_; }
   215  
   216    // Whether this is a dummy init, which is used only to record transitive import.
   217    bool
   218    is_dummy() const
   219    { return this->init_name_[0] == '~'; }
   220  
   221   private:
   222    // The name of the package being imported.
   223    std::string package_name_;
   224    // The name of the package's init function.
   225    std::string init_name_;
   226    // Names of init functions that must be run before this fcn.
   227    std::set<std::string> precursor_functions_;
   228    // Priority for this function. See note above on obsolescence.
   229    int priority_;
   230  };
   231  
   232  // For sorting purposes.
   233  
   234  struct Import_init_lt {
   235    bool operator()(const Import_init* i1, const Import_init* i2) const
   236    {
   237      return i1->init_name() < i2->init_name();
   238    }
   239  };
   240  
   241  // Set of import init objects.
   242  class Import_init_set : public std::set<Import_init*, Import_init_lt> {
   243  };
   244  
   245  inline bool
   246  priority_compare(const Import_init* i1, const Import_init* i2)
   247  {
   248    if (i1->priority() < i2->priority())
   249      return true;
   250    if (i1->priority() > i2->priority())
   251      return false;
   252    if (i1->package_name() != i2->package_name())
   253      return i1->package_name() < i2->package_name();
   254    return i1->init_name() < i2->init_name();
   255  }
   256  
   257  // The holder for the internal representation of the entire
   258  // compilation unit.
   259  
   260  class Gogo
   261  {
   262   public:
   263    // Create the IR, passing in the sizes of the types "int" and
   264    // "uintptr" in bits.
   265    Gogo(Backend* backend, Linemap *linemap, int int_type_size, int pointer_size);
   266  
   267    // Get the backend generator.
   268    Backend*
   269    backend()
   270    { return this->backend_; }
   271  
   272    // Get the Location generator.
   273    Linemap*
   274    linemap()
   275    { return this->linemap_; }
   276  
   277    // Get the package name.
   278    const std::string&
   279    package_name() const;
   280  
   281    // Set the package name.
   282    void
   283    set_package_name(const std::string&, Location);
   284  
   285    // Return whether this is the "main" package.
   286    bool
   287    is_main_package() const;
   288  
   289    // If necessary, adjust the name to use for a hidden symbol.  We add
   290    // the package name, so that hidden symbols in different packages do
   291    // not collide.
   292    std::string
   293    pack_hidden_name(const std::string& name, bool is_exported) const
   294    {
   295      return (is_exported
   296  	    ? name
   297  	    : '.' + this->pkgpath() + '.' + name);
   298    }
   299  
   300    // Unpack a name which may have been hidden.  Returns the
   301    // user-visible name of the object.
   302    static std::string
   303    unpack_hidden_name(const std::string& name)
   304    { return name[0] != '.' ? name : name.substr(name.rfind('.') + 1); }
   305  
   306    // Return whether a possibly packed name is hidden.
   307    static bool
   308    is_hidden_name(const std::string& name)
   309    { return name[0] == '.'; }
   310  
   311    // Return the package path of a hidden name.
   312    static std::string
   313    hidden_name_pkgpath(const std::string& name)
   314    {
   315      go_assert(Gogo::is_hidden_name(name));
   316      return name.substr(1, name.rfind('.') - 1);
   317    }
   318  
   319    // Given a name which may or may not have been hidden, append the
   320    // appropriate version of the name to the result string.
   321    static void
   322    append_possibly_hidden_name(std::string *result, const std::string& name);
   323  
   324    // Given a name which may or may not have been hidden, return the
   325    // name to use in an error message.
   326    static std::string
   327    message_name(const std::string& name);
   328  
   329    // Return whether a name is the blank identifier _.
   330    static bool
   331    is_sink_name(const std::string& name)
   332    {
   333      return (name[0] == '.'
   334  	    && name[name.length() - 1] == '_'
   335  	    && name[name.length() - 2] == '.')
   336          || (name[0] == '_'
   337              && name.length() == 1);
   338    }
   339  
   340    // Helper used when adding parameters (including receiver param) to the
   341    // bindings of a function. If the specified parameter name is empty or
   342    // corresponds to the sink name, param name is replaced with a new unique
   343    // name. PNAME is the address of a string containing the parameter variable
   344    // name to be checked/updated; TAG is a descriptive tag to be used in
   345    // manufacturing the new unique name, and COUNT is the address of a counter
   346    // holding the number of params renamed so far with the tag in question.
   347    static void
   348    rename_if_empty(std::string* pname, const char* tag, unsigned* count);
   349  
   350    // Convert a pkgpath into a string suitable for a symbol
   351    static std::string
   352    pkgpath_for_symbol(const std::string& pkgpath);
   353  
   354    // Compute a hash code for a string, given a seed.
   355    static unsigned int
   356    hash_string(const std::string&, unsigned int);
   357  
   358    // Return the package path to use for reflect.Type.PkgPath.
   359    const std::string&
   360    pkgpath() const;
   361  
   362    // Return the package path to use for a symbol name.
   363    const std::string&
   364    pkgpath_symbol() const;
   365  
   366    // Set the package path from a command line option.
   367    void
   368    set_pkgpath(const std::string&);
   369  
   370    // Set the prefix from a command line option.
   371    void
   372    set_prefix(const std::string&);
   373  
   374    // Return whether pkgpath was set from a command line option.
   375    bool
   376    pkgpath_from_option() const
   377    { return this->pkgpath_from_option_; }
   378  
   379    // Return the relative import path as set from the command line.
   380    // Returns an empty string if it was not set.
   381    const std::string&
   382    relative_import_path() const
   383    { return this->relative_import_path_; }
   384  
   385    // Set the relative import path from a command line option.
   386    void
   387    set_relative_import_path(const std::string& s)
   388    { this->relative_import_path_ = s; }
   389  
   390    // Set the C header file to write.  This is used for the runtime
   391    // package.
   392    void
   393    set_c_header(const std::string& s)
   394    { this->c_header_ = s; }
   395  
   396    // Read an embedcfg file.
   397    void
   398    read_embedcfg(const char* filename);
   399  
   400    // Build an initializer for a variable with a go:embed directive.
   401    Expression*
   402    initializer_for_embeds(Type*, const std::vector<std::string>*, Location);
   403  
   404    // Return whether to check for division by zero in binary operations.
   405    bool
   406    check_divide_by_zero() const
   407    { return this->check_divide_by_zero_; }
   408  
   409    // Set the option to check division by zero from a command line option.
   410    void
   411    set_check_divide_by_zero(bool b)
   412    { this->check_divide_by_zero_ = b; }
   413  
   414    // Return whether to check for division overflow in binary operations.
   415    bool
   416    check_divide_overflow() const
   417    { return this->check_divide_overflow_; }
   418  
   419    // Set the option to check division overflow from a command line option.
   420    void
   421    set_check_divide_overflow(bool b)
   422    { this->check_divide_overflow_ = b; }
   423  
   424    // Return whether we are compiling the runtime package.
   425    bool
   426    compiling_runtime() const
   427    { return this->compiling_runtime_; }
   428  
   429    // Set whether we are compiling the runtime package.
   430    void
   431    set_compiling_runtime(bool b)
   432    { this->compiling_runtime_ = b; }
   433  
   434    // Return the level of escape analysis debug information to emit.
   435    int
   436    debug_escape_level() const
   437    { return this->debug_escape_level_; }
   438  
   439    // Set the level of escape analysis debugging from a command line option.
   440    void
   441    set_debug_escape_level(int level)
   442    { this->debug_escape_level_ = level; }
   443  
   444    // Return the hash for debug escape analysis.
   445    std::string
   446    debug_escape_hash() const
   447    { return this->debug_escape_hash_; }
   448  
   449    // Set the hash value for debug escape analysis.
   450    void
   451    set_debug_escape_hash(const std::string& s)
   452    { this->debug_escape_hash_ = s; }
   453  
   454    // Return whether to output optimization diagnostics.
   455    bool
   456    debug_optimization() const
   457    { return this->debug_optimization_; }
   458  
   459    // Set the option to output optimization diagnostics.
   460    void
   461    set_debug_optimization(bool b)
   462    { this->debug_optimization_ = b; }
   463  
   464    // Dump to stderr for debugging
   465    void debug_dump();
   466  
   467    // Return the size threshold used to determine whether to issue
   468    // a nil-check for a given pointer dereference. A threshold of -1
   469    // implies that all potentially faulting dereference ops should
   470    // be nil-checked. A positive threshold of N implies that a deref
   471    // of *P where P has size less than N doesn't need a nil check.
   472    int64_t
   473    nil_check_size_threshold() const
   474    { return this->nil_check_size_threshold_; }
   475  
   476    // Set the nil-check size threshold, as described above.
   477    void
   478    set_nil_check_size_threshold(int64_t bytes)
   479    { this->nil_check_size_threshold_ = bytes; }
   480  
   481    // Return whether runtime.eqtype calls are needed when comparing
   482    // type descriptors.
   483    bool
   484    need_eqtype() const
   485    { return this->need_eqtype_; }
   486  
   487    // Set if calls to runtime.eqtype are needed.
   488    void
   489    set_need_eqtype(bool b)
   490    { this->need_eqtype_ = b; }
   491  
   492    // Import a package.  FILENAME is the file name argument, LOCAL_NAME
   493    // is the local name to give to the package.  If LOCAL_NAME is empty
   494    // the declarations are added to the global scope.
   495    void
   496    import_package(const std::string& filename, const std::string& local_name,
   497  		 bool is_local_name_exported, bool must_exist, Location);
   498  
   499    // Whether we are the global binding level.
   500    bool
   501    in_global_scope() const;
   502  
   503    // Look up a name in the current binding contours.
   504    Named_object*
   505    lookup(const std::string&, Named_object** pfunction) const;
   506  
   507    // Look up a name in the current block.
   508    Named_object*
   509    lookup_in_block(const std::string&) const;
   510  
   511    // Look up a name in the global namespace--the universal scope.
   512    Named_object*
   513    lookup_global(const char*) const;
   514  
   515    // Add a new imported package.  REAL_NAME is the real name of the
   516    // package.  ALIAS is the alias of the package; this may be the same
   517    // as REAL_NAME.  This sets *PADD_TO_GLOBALS if symbols added to
   518    // this package should be added to the global namespace; this is
   519    // true if the alias is ".".  LOCATION is the location of the import
   520    // statement.  This returns the new package, or NULL on error.
   521    Package*
   522    add_imported_package(const std::string& real_name, const std::string& alias,
   523  		       bool is_alias_exported,
   524  		       const std::string& pkgpath,
   525  		       const std::string& pkgpath_symbol,
   526  		       Location location,
   527  		       bool* padd_to_globals);
   528  
   529    // Register a package.  This package may or may not be imported.
   530    // This returns the Package structure for the package, creating if
   531    // it necessary.
   532    Package*
   533    register_package(const std::string& pkgpath,
   534  		   const std::string& pkgpath_symbol, Location);
   535  
   536    // Add the unsafe bindings to the unsafe package.
   537    void
   538    add_unsafe_bindings(Package*);
   539  
   540    // Look up a package by pkgpath, and return its pkgpath_symbol.
   541    std::string
   542    pkgpath_symbol_for_package(const std::string&);
   543  
   544    // Start compiling a function.  ADD_METHOD_TO_TYPE is true if a
   545    // method function should be added to the type of its receiver.
   546    Named_object*
   547    start_function(const std::string& name, Function_type* type,
   548  		 bool add_method_to_type, Location);
   549  
   550    // Finish compiling a function.
   551    void
   552    finish_function(Location);
   553  
   554    // Return the current function.
   555    Named_object*
   556    current_function() const;
   557  
   558    // Return the current block.
   559    Block*
   560    current_block();
   561  
   562    // Start a new block.  This is not initially associated with a
   563    // function.
   564    void
   565    start_block(Location);
   566  
   567    // Finish the current block and return it.
   568    Block*
   569    finish_block(Location);
   570  
   571    // Declare an erroneous name.  This is used to avoid knock-on errors
   572    // after a parsing error.
   573    Named_object*
   574    add_erroneous_name(const std::string& name);
   575  
   576    // Declare an unknown name.  This is used while parsing.  The name
   577    // must be resolved by the end of the parse.  Unknown names are
   578    // always added at the package level.
   579    Named_object*
   580    add_unknown_name(const std::string& name, Location);
   581  
   582    // Declare a function.
   583    Named_object*
   584    declare_function(const std::string&, Function_type*, Location);
   585  
   586    // Declare a function at the package level.  This is used for
   587    // functions generated for a type.
   588    Named_object*
   589    declare_package_function(const std::string&, Function_type*, Location);
   590  
   591    // Add a function declaration to the list of functions we may want
   592    // to inline.
   593    void
   594    add_imported_inlinable_function(Named_object*);
   595  
   596    // Add a function to the list of functions that we do want to
   597    // inline.
   598    void
   599    add_imported_inline_function(Named_object* no)
   600    { this->imported_inline_functions_.push_back(no); }
   601  
   602    // Add a label.
   603    Label*
   604    add_label_definition(const std::string&, Location);
   605  
   606    // Add a label reference.  ISSUE_GOTO_ERRORS is true if we should
   607    // report errors for a goto from the current location to the label
   608    // location.
   609    Label*
   610    add_label_reference(const std::string&, Location,
   611  		      bool issue_goto_errors);
   612  
   613    // An analysis set is a list of functions paired with a boolean that indicates
   614    // whether the list of functions are recursive.
   615    typedef std::pair<std::vector<Named_object*>, bool> Analysis_set;
   616  
   617    // Add a GROUP of possibly RECURSIVE functions to the Analysis_set for this
   618    // package.
   619    void
   620    add_analysis_set(const std::vector<Named_object*>& group, bool recursive)
   621    { this->analysis_sets_.push_back(std::make_pair(group, recursive)); }
   622  
   623    // Return a snapshot of the current binding state.
   624    Bindings_snapshot*
   625    bindings_snapshot(Location);
   626  
   627    // Add a statement to the current block.
   628    void
   629    add_statement(Statement*);
   630  
   631    // Add a block to the current block.
   632    void
   633    add_block(Block*, Location);
   634  
   635    // Add a constant.
   636    Named_object*
   637    add_constant(const Typed_identifier&, Expression*, int iota_value);
   638  
   639    // Add a type.
   640    void
   641    add_type(const std::string&, Type*, Location);
   642  
   643    // Add a named type.  This is used for builtin types, and to add an
   644    // imported type to the global scope.
   645    void
   646    add_named_type(Named_type*);
   647  
   648    // Declare a type.
   649    Named_object*
   650    declare_type(const std::string&, Location);
   651  
   652    // Declare a type at the package level.  This is used when the
   653    // parser sees an unknown name where a type name is required.
   654    Named_object*
   655    declare_package_type(const std::string&, Location);
   656  
   657    // Define a type which was already declared.
   658    void
   659    define_type(Named_object*, Named_type*);
   660  
   661    // Add a variable.
   662    Named_object*
   663    add_variable(const std::string&, Variable*);
   664  
   665    // Add a sink--a reference to the blank identifier _.
   666    Named_object*
   667    add_sink();
   668  
   669    // Add a type which needs to be verified.  This is used for sink
   670    // types, just to give appropriate error messages.
   671    void
   672    add_type_to_verify(Type* type);
   673  
   674    // Add a named object to the current namespace.  This is used for
   675    // import . "package".
   676    void
   677    add_dot_import_object(Named_object*);
   678  
   679    // Add an identifier to the list of names seen in the file block.
   680    void
   681    add_file_block_name(const std::string& name, Location location)
   682    { this->file_block_names_[name] = location; }
   683  
   684    // Add a linkname, from the go:linkname compiler directive.  This
   685    // changes the externally visible name of GO_NAME to be EXT_NAME.
   686    // If EXT_NAME is the empty string, GO_NAME is unchanged, but the
   687    // symbol is made publicly visible.
   688    void
   689    add_linkname(const std::string& go_name, bool is_exported,
   690  	       const std::string& ext_name, Location location);
   691  
   692    // Mark all local variables in current bindings as used.  This is
   693    // used when there is a parse error to avoid useless errors.
   694    void
   695    mark_locals_used();
   696  
   697    // Note that we've seen an interface type.  This is used to build
   698    // all required interface method tables.
   699    void
   700    record_interface_type(Interface_type*);
   701  
   702    // Note that we need an initialization function.
   703    void
   704    set_need_init_fn()
   705    { this->need_init_fn_ = true; }
   706  
   707    // Return whether the current file imported the unsafe package.
   708    bool
   709    current_file_imported_unsafe() const
   710    { return this->current_file_imported_unsafe_; }
   711  
   712    // Return whether the current file imported the embed package.
   713    bool
   714    current_file_imported_embed() const
   715    { return this->current_file_imported_embed_; }
   716  
   717    // Clear out all names in file scope.  This is called when we start
   718    // parsing a new file.
   719    void
   720    clear_file_scope();
   721  
   722    // Record that VAR1 must be initialized after VAR2.  This is used
   723    // when VAR2 does not appear in VAR1's INIT or PREINIT.
   724    void
   725    record_var_depends_on(Variable* var1, Named_object* var2)
   726    {
   727      go_assert(this->var_deps_.find(var1) == this->var_deps_.end());
   728      this->var_deps_[var1] = var2;
   729    }
   730  
   731    // Return the variable that VAR depends on, or NULL if none.
   732    Named_object*
   733    var_depends_on(Variable* var) const
   734    {
   735      Var_deps::const_iterator p = this->var_deps_.find(var);
   736      return p != this->var_deps_.end() ? p->second : NULL;
   737    }
   738  
   739    // Queue up a type-specific hash function to be written out.  This
   740    // is used when a type-specific hash function is needed when not at
   741    // top level.
   742    void
   743    queue_hash_function(Type* type, int64_t size, Backend_name*,
   744  		      Function_type* hash_fntype);
   745  
   746    // Queue up a type-specific equal function to be written out.  This
   747    // is used when a type-specific equal function is needed when not at
   748    // top level.
   749    void
   750    queue_equal_function(Type* type, Named_type* name, int64_t size,
   751  		       Backend_name*, Function_type* equal_fntype);
   752  
   753    // Write out queued specific type functions.
   754    void
   755    write_specific_type_functions();
   756  
   757    // Whether we are done writing out specific type functions.
   758    bool
   759    specific_type_functions_are_written() const
   760    { return this->specific_type_functions_are_written_; }
   761  
   762    // Add a pointer that needs to be added to the list of objects
   763    // traversed by the garbage collector.  This should be an expression
   764    // of pointer type that points to static storage.  It's not
   765    // necessary to add global variables to this list, just global
   766    // variable initializers that would otherwise not be seen.
   767    void
   768    add_gc_root(Expression* expr)
   769    {
   770      this->set_need_init_fn();
   771      this->gc_roots_.push_back(expr);
   772    }
   773  
   774    // Add a type to the descriptor list.
   775    void
   776    add_type_descriptor(Type* type)
   777    { this->type_descriptors_.push_back(type); }
   778  
   779    // Traverse the tree.  See the Traverse class.
   780    void
   781    traverse(Traverse*);
   782  
   783    // Define the predeclared global names.
   784    void
   785    define_global_names();
   786  
   787    // Verify and complete all types.
   788    void
   789    verify_types();
   790  
   791    // Lower the parse tree.
   792    void
   793    lower_parse_tree();
   794  
   795    // Lower all the statements in a block.
   796    void
   797    lower_block(Named_object* function, Block*);
   798  
   799    // Lower an expression.
   800    void
   801    lower_expression(Named_object* function, Statement_inserter*, Expression**);
   802  
   803    // Lower a constant.
   804    void
   805    lower_constant(Named_object*);
   806  
   807    // Flatten all the statements in a block.
   808    void
   809    flatten_block(Named_object* function, Block*);
   810  
   811    // Flatten an expression.
   812    void
   813    flatten_expression(Named_object* function, Statement_inserter*, Expression**);
   814  
   815    // Create all necessary function descriptors.
   816    void
   817    create_function_descriptors();
   818  
   819    // Finalize the method lists and build stub methods for named types.
   820    void
   821    finalize_methods();
   822  
   823    // Finalize the method list for one type.
   824    void
   825    finalize_methods_for_type(Type*);
   826  
   827    // Work out the types to use for unspecified variables and
   828    // constants.
   829    void
   830    determine_types();
   831  
   832    // Type check the program.
   833    void
   834    check_types();
   835  
   836    // Check the types in a single block.  This is used for complicated
   837    // go statements.
   838    void
   839    check_types_in_block(Block*);
   840  
   841    // Check for return statements.
   842    void
   843    check_return_statements();
   844  
   845    // Gather references from global variables initializers to other
   846    // variables.
   847    void
   848    record_global_init_refs();
   849  
   850    // Remove deadcode.
   851    void
   852    remove_deadcode();
   853  
   854    // Make implicit type conversions explicit.
   855    void
   856    add_conversions();
   857  
   858    // Make implicit type conversions explicit in a block.
   859    void
   860    add_conversions_in_block(Block*);
   861  
   862    // Analyze the program flow for escape information.
   863    void
   864    analyze_escape();
   865  
   866    // Discover the groups of possibly recursive functions in this package.
   867    void
   868    discover_analysis_sets();
   869  
   870    // Build a connectivity graph between the objects in each analyzed function.
   871    void
   872    assign_connectivity(Escape_context*, Named_object*);
   873  
   874    // Traverse the objects in the connecitivty graph from the sink, adjusting the
   875    // escape levels of each object.
   876    void
   877    propagate_escape(Escape_context*, Node*);
   878  
   879    // Add notes about the escape level of a function's input and output
   880    // parameters for exporting and importing top level functions.
   881    void
   882    tag_function(Escape_context*, Named_object*);
   883  
   884    // Reclaim memory of escape analysis Nodes.
   885    void
   886    reclaim_escape_nodes();
   887  
   888    // Do all exports.
   889    void
   890    do_exports();
   891  
   892    // Add an import control function for an imported package to the
   893    // list.
   894    void
   895    add_import_init_fn(const std::string& package_name,
   896  		     const std::string& init_name, int prio);
   897  
   898    // Return the Import_init for a given init name.
   899    Import_init*
   900    lookup_init(const std::string& init_name);
   901  
   902    // Turn short-cut operators (&&, ||) into explicit if statements.
   903    void
   904    remove_shortcuts();
   905  
   906    // Turn short-cut operators into explicit if statements in a block.
   907    void
   908    remove_shortcuts_in_block(Block*);
   909  
   910    // Use temporary variables to force order of evaluation.
   911    void
   912    order_evaluations();
   913  
   914    // Order evaluations in a block.
   915    void
   916    order_block(Block*);
   917  
   918    // Add write barriers as needed.
   919    void
   920    add_write_barriers();
   921  
   922    // Return whether an assignment that sets LHS to RHS needs a write
   923    // barrier.
   924    bool
   925    assign_needs_write_barrier(Expression* lhs,
   926                               Unordered_set(const Named_object*)*);
   927  
   928    // Return whether EXPR is the address of a variable that can be set
   929    // without a write barrier.  That is, if this returns true, then an
   930    // assignment to *EXPR does not require a write barrier.
   931    bool
   932    is_nonwb_pointer(Expression* expr, Unordered_set(const Named_object*)*);
   933  
   934    // Return an assignment that sets LHS to RHS using a write barrier.
   935    // This returns an if statement that checks whether write barriers
   936    // are enabled.  If not, it does LHS = RHS, otherwise it calls the
   937    // appropriate write barrier function.
   938    Statement*
   939    assign_with_write_barrier(Function*, Block*, Statement_inserter*,
   940  			    Expression* lhs, Expression* rhs, Location);
   941  
   942    // Return a statement that tests whether write barriers are enabled
   943    // and executes either the efficient code (WITHOUT) or the write
   944    // barrier function call (WITH), depending.
   945    Statement*
   946    check_write_barrier(Block*, Statement* without, Statement* with);
   947  
   948    // Flatten parse tree.
   949    void
   950    flatten();
   951  
   952    // Build thunks for functions which call recover.
   953    void
   954    build_recover_thunks();
   955  
   956    // Simplify statements which might use thunks: go and defer
   957    // statements.
   958    void
   959    simplify_thunk_statements();
   960  
   961    // Dump AST if -fgo-dump-ast is set.
   962    void
   963    dump_ast(const char* basename);
   964  
   965    // Dump Call Graph if -fgo-dump-calls is set.
   966    void
   967    dump_call_graph(const char* basename);
   968  
   969    // Dump Connection Graphs if -fgo-dump-connections is set.
   970    void
   971    dump_connection_graphs(const char* basename);
   972  
   973    // Convert named types to the backend representation.
   974    void
   975    convert_named_types();
   976  
   977    // Convert named types in a list of bindings.
   978    void
   979    convert_named_types_in_bindings(Bindings*);
   980  
   981    // True if named types have been converted to the backend
   982    // representation.
   983    bool
   984    named_types_are_converted() const
   985    { return this->named_types_are_converted_; }
   986  
   987    // Give an error if the initialization of VAR depends on itself.
   988    void
   989    check_self_dep(Named_object*);
   990  
   991    // Write out the global values.
   992    void
   993    write_globals();
   994  
   995    // Build required interface method tables.
   996    void
   997    build_interface_method_tables();
   998  
   999    // Return an expression which allocates memory to hold values of type TYPE.
  1000    Expression*
  1001    allocate_memory(Type *type, Location);
  1002  
  1003    // Get the backend name to use for an exported function, a method,
  1004    // or a function/method declaration.
  1005    void
  1006    function_backend_name(const std::string& go_name, const Package*,
  1007  			const Type* receiver, Backend_name*);
  1008  
  1009    // Return the name to use for a function descriptor.
  1010    void
  1011    function_descriptor_backend_name(Named_object*, Backend_name*);
  1012  
  1013    // Return the name to use for a generated stub method.
  1014    std::string
  1015    stub_method_name(const Package*, const std::string& method_name);
  1016  
  1017    // Get the backend name of the hash function for TYPE.
  1018    void
  1019    hash_function_name(const Type*, Backend_name*);
  1020  
  1021    // Get the backend name of the equal function for TYPE.
  1022    void
  1023    equal_function_name(const Type*, const Named_type*, Backend_name*);
  1024  
  1025    // Get the backend name to use for a global variable.
  1026    void
  1027    global_var_backend_name(const std::string& go_name, const Package*,
  1028  			  Backend_name*);
  1029  
  1030    // Return a name to use for an error case.  This should only be used
  1031    // after reporting an error, and is used to avoid useless knockon
  1032    // errors.
  1033    static std::string
  1034    erroneous_name();
  1035  
  1036    // Return whether the name indicates an error.
  1037    static bool
  1038    is_erroneous_name(const std::string&);
  1039  
  1040    // Return a name to use for a thunk function.  A thunk function is
  1041    // one we create during the compilation, for a go statement or a
  1042    // defer statement or a method expression.
  1043    std::string
  1044    thunk_name();
  1045  
  1046    // Return whether an object is a thunk.
  1047    static bool
  1048    is_thunk(const Named_object*);
  1049  
  1050    // Return the name to use for an init function.
  1051    std::string
  1052    init_function_name();
  1053  
  1054    // Return the name to use for a nested function.
  1055    std::string
  1056    nested_function_name(Named_object* enclosing);
  1057  
  1058    // Return the name to use for a sink funciton.
  1059    std::string
  1060    sink_function_name();
  1061  
  1062    // Return the name to use for an (erroneous) redefined function.
  1063    std::string
  1064    redefined_function_name();
  1065  
  1066    // Return the name for use for a recover thunk.
  1067    std::string
  1068    recover_thunk_name(const std::string& name, const Type* rtype);
  1069  
  1070    // Return the name to use for the GC root variable.
  1071    std::string
  1072    gc_root_name();
  1073  
  1074    // Return the name to use for a composite literal or string
  1075    // initializer.
  1076    std::string
  1077    initializer_name();
  1078  
  1079    // Return the name of the variable used to represent the zero value
  1080    // of a map.
  1081    std::string
  1082    map_zero_value_name();
  1083  
  1084    // Get the name of the magic initialization function.
  1085    const std::string&
  1086    get_init_fn_name();
  1087  
  1088    // Return the name for a dummy init function, which is not a real
  1089    // function but only for tracking transitive import.
  1090    std::string
  1091    dummy_init_fn_name();
  1092  
  1093    // Return the package path symbol from an init function name, which
  1094    // can be a real init function or a dummy one.
  1095    std::string
  1096    pkgpath_symbol_from_init_fn_name(std::string);
  1097  
  1098    // Get the backend name for a type descriptor symbol.
  1099    void
  1100    type_descriptor_backend_name(const Type*, Named_type*, Backend_name*);
  1101  
  1102    // Return the name of the type descriptor list symbol of a package.
  1103    // The argument is an encoded pkgpath, as with pkgpath_symbol.
  1104    std::string
  1105    type_descriptor_list_symbol(const std::string&);
  1106  
  1107    // Return the name of the list of all type descriptor lists.
  1108    std::string
  1109    typelists_symbol();
  1110  
  1111    // Return the assembler name for the GC symbol for a type.
  1112    std::string
  1113    gc_symbol_name(Type*);
  1114  
  1115    // Return the assembler name for a ptrmask variable.
  1116    std::string
  1117    ptrmask_symbol_name(const std::string& ptrmask_sym_name);
  1118  
  1119    // Return the name to use for an interface method table.
  1120    std::string
  1121    interface_method_table_name(Interface_type*, Type*, bool is_pointer);
  1122  
  1123    // If NAME is a special name used as a Go identifier, return the
  1124    // position within the string where the special part of the name
  1125    // occurs.
  1126    static size_t
  1127    special_name_pos(const std::string& name);
  1128  
  1129   private:
  1130    // During parsing, we keep a stack of functions.  Each function on
  1131    // the stack is one that we are currently parsing.  For each
  1132    // function, we keep track of the current stack of blocks.
  1133    struct Open_function
  1134    {
  1135      // The function.
  1136      Named_object* function;
  1137      // The stack of active blocks in the function.
  1138      std::vector<Block*> blocks;
  1139    };
  1140  
  1141    // The stack of functions.
  1142    typedef std::vector<Open_function> Open_functions;
  1143  
  1144    // Set up the built-in unsafe package.
  1145    void
  1146    import_unsafe(const std::string&, bool is_exported, Location);
  1147  
  1148    // Return the current binding contour.
  1149    Bindings*
  1150    current_bindings();
  1151  
  1152    const Bindings*
  1153    current_bindings() const;
  1154  
  1155    void
  1156    write_c_header();
  1157  
  1158    // Get the decl for the magic initialization function.
  1159    Named_object*
  1160    initialization_function_decl();
  1161  
  1162    // Create the magic initialization function.
  1163    Named_object*
  1164    create_initialization_function(Named_object* fndecl, Bstatement* code_stmt);
  1165  
  1166    // Initialize imported packages. BFUNCTION is the function
  1167    // into which the package init calls will be placed.
  1168    void
  1169    init_imports(std::vector<Bstatement*>&, Bfunction* bfunction);
  1170  
  1171    // Register variables with the garbage collector.
  1172    void
  1173    register_gc_vars(const std::vector<Named_object*>&,
  1174                     std::vector<Bstatement*>&,
  1175                     Bfunction* init_bfunction);
  1176  
  1177    // Build the list of type descriptors.
  1178    void
  1179    build_type_descriptor_list();
  1180  
  1181    // Register the type descriptors with the runtime.
  1182    void
  1183    register_type_descriptors(std::vector<Bstatement*>&,
  1184                              Bfunction* init_bfunction);
  1185  
  1186    void
  1187    propagate_writebarrierrec();
  1188  
  1189    Named_object*
  1190    write_barrier_variable();
  1191  
  1192    static bool
  1193    is_digits(const std::string&);
  1194  
  1195    // Type used to map go:embed patterns to a list of files.
  1196    typedef Unordered_map(std::string, std::vector<std::string>) Embed_patterns;
  1197  
  1198    // Type used to map go:embed file names to their full path.
  1199    typedef Unordered_map(std::string, std::string) Embed_files;
  1200  
  1201    // Type used to map import names to packages.
  1202    typedef std::map<std::string, Package*> Imports;
  1203  
  1204    // Type used to map package names to packages.
  1205    typedef std::map<std::string, Package*> Packages;
  1206  
  1207    // Type used to map variables to the function calls that set them.
  1208    // This is used for initialization dependency analysis.
  1209    typedef std::map<Variable*, Named_object*> Var_deps;
  1210  
  1211    // Type used to map identifiers in the file block to the location
  1212    // where they were defined.
  1213    typedef Unordered_map(std::string, Location) File_block_names;
  1214  
  1215    // Type used to queue writing a type specific function.
  1216    struct Specific_type_function
  1217    {
  1218      enum Specific_type_function_kind { SPECIFIC_HASH, SPECIFIC_EQUAL };
  1219  
  1220      Type* type;
  1221      Named_type* name;
  1222      int64_t size;
  1223      Specific_type_function_kind kind;
  1224      Backend_name bname;
  1225      Function_type* fntype;
  1226  
  1227      Specific_type_function(Type* atype, Named_type* aname, int64_t asize,
  1228  			   Specific_type_function_kind akind,
  1229  			   Backend_name* abname,
  1230  			   Function_type* afntype)
  1231        : type(atype), name(aname), size(asize), kind(akind),
  1232  	bname(*abname), fntype(afntype)
  1233      { }
  1234    };
  1235  
  1236    // Recompute init priorities.
  1237    void
  1238    recompute_init_priorities();
  1239  
  1240    // Recursive helper used by the routine above.
  1241    void
  1242    update_init_priority(Import_init* ii,
  1243                         std::set<const Import_init *>* visited);
  1244  
  1245    // The backend generator.
  1246    Backend* backend_;
  1247    // The object used to keep track of file names and line numbers.
  1248    Linemap* linemap_;
  1249    // The package we are compiling.
  1250    Package* package_;
  1251    // The list of currently open functions during parsing.
  1252    Open_functions functions_;
  1253    // The global binding contour.  This includes the builtin functions
  1254    // and the package we are compiling.
  1255    Bindings* globals_;
  1256    // The list of names we have seen in the file block.
  1257    File_block_names file_block_names_;
  1258    // Mapping from import file names to packages.
  1259    Imports imports_;
  1260    // Whether the magic unsafe package was imported.
  1261    bool imported_unsafe_;
  1262    // Whether the magic unsafe package was imported by the current file.
  1263    bool current_file_imported_unsafe_;
  1264    // Whether the embed package was imported by the current file.
  1265    bool current_file_imported_embed_;
  1266    // Mapping from package names we have seen to packages.  This does
  1267    // not include the package we are compiling.
  1268    Packages packages_;
  1269    // The functions named "init", if there are any.
  1270    std::vector<Named_object*> init_functions_;
  1271    // A mapping from variables to the function calls that initialize
  1272    // them, if it is not stored in the variable's init or preinit.
  1273    // This is used for dependency analysis.
  1274    Var_deps var_deps_;
  1275    // Whether we need a magic initialization function.
  1276    bool need_init_fn_;
  1277    // The name of the magic initialization function.
  1278    std::string init_fn_name_;
  1279    // A list of import control variables for packages that we import.
  1280    Import_init_set imported_init_fns_;
  1281    // The package path used for reflection data.
  1282    std::string pkgpath_;
  1283    // The package path to use for a symbol name.
  1284    std::string pkgpath_symbol_;
  1285    // The prefix to use for symbols, from the -fgo-prefix option.
  1286    std::string prefix_;
  1287    // Whether pkgpath_ has been set.
  1288    bool pkgpath_set_;
  1289    // Whether an explicit package path was set by -fgo-pkgpath.
  1290    bool pkgpath_from_option_;
  1291    // Whether an explicit prefix was set by -fgo-prefix.
  1292    bool prefix_from_option_;
  1293    // The relative import path, from the -fgo-relative-import-path
  1294    // option.
  1295    std::string relative_import_path_;
  1296    // The C header file to write, from the -fgo-c-header option.
  1297    std::string c_header_;
  1298    // Patterns from an embedcfg file.
  1299    Embed_patterns embed_patterns_;
  1300    // Mapping from file to full path from an embedcfg file.
  1301    Embed_files embed_files_;
  1302    // Whether or not to check for division by zero, from the
  1303    // -fgo-check-divide-zero option.
  1304    bool check_divide_by_zero_;
  1305    // Whether or not to check for division overflow, from the
  1306    // -fgo-check-divide-overflow option.
  1307    bool check_divide_overflow_;
  1308    // Whether we are compiling the runtime package, from the
  1309    // -fgo-compiling-runtime option.
  1310    bool compiling_runtime_;
  1311    // The level of escape analysis debug information to emit, from the
  1312    // -fgo-debug-escape option.
  1313    int debug_escape_level_;
  1314    // A hash value for debug escape analysis, from the
  1315    // -fgo-debug-escape-hash option. The analysis is run only on
  1316    // functions with names that hash to the matching value.
  1317    std::string debug_escape_hash_;
  1318    // Whether to output optimization diagnostics, from the
  1319    // -fgo-debug-optimization option.
  1320    bool debug_optimization_;
  1321    // Nil-check size threshhold.
  1322    int64_t nil_check_size_threshold_;
  1323    // Whether runtime.eqtype calls are needed when comparing type
  1324    // descriptors.
  1325    bool need_eqtype_;
  1326    // A list of types to verify.
  1327    std::vector<Type*> verify_types_;
  1328    // A list of interface types defined while parsing.
  1329    std::vector<Interface_type*> interface_types_;
  1330    // Type specific functions to write out.
  1331    std::vector<Specific_type_function*> specific_type_functions_;
  1332    // Whether we are done writing out specific type functions.
  1333    bool specific_type_functions_are_written_;
  1334    // Whether named types have been converted.
  1335    bool named_types_are_converted_;
  1336    // A list containing groups of possibly mutually recursive functions to be
  1337    // considered during escape analysis.
  1338    std::vector<Analysis_set> analysis_sets_;
  1339    // A list of objects to add to the GC roots.
  1340    std::vector<Expression*> gc_roots_;
  1341    // A list of type descriptors that we need to register.
  1342    std::vector<Type*> type_descriptors_;
  1343    // A list of function declarations with imported bodies that we may
  1344    // want to inline.
  1345    std::vector<Named_object*> imported_inlinable_functions_;
  1346    // A list of functions that we want to inline.  These will be sent
  1347    // to the backend.
  1348    std::vector<Named_object*> imported_inline_functions_;
  1349  };
  1350  
  1351  // A block of statements.
  1352  
  1353  class Block
  1354  {
  1355   public:
  1356    Block(Block* enclosing, Location);
  1357  
  1358    // Return the enclosing block.
  1359    const Block*
  1360    enclosing() const
  1361    { return this->enclosing_; }
  1362  
  1363    // Return the bindings of the block.
  1364    Bindings*
  1365    bindings()
  1366    { return this->bindings_; }
  1367  
  1368    const Bindings*
  1369    bindings() const
  1370    { return this->bindings_; }
  1371  
  1372    // Look at the block's statements.
  1373    const std::vector<Statement*>*
  1374    statements() const
  1375    { return &this->statements_; }
  1376  
  1377    // Return the start location.  This is normally the location of the
  1378    // left curly brace which starts the block.
  1379    Location
  1380    start_location() const
  1381    { return this->start_location_; }
  1382  
  1383    // Return the end location.  This is normally the location of the
  1384    // right curly brace which ends the block.
  1385    Location
  1386    end_location() const
  1387    { return this->end_location_; }
  1388  
  1389    // Add a statement to the block.
  1390    void
  1391    add_statement(Statement*);
  1392  
  1393    // Add a statement to the front of the block.
  1394    void
  1395    add_statement_at_front(Statement*);
  1396  
  1397    // Replace a statement in a block.
  1398    void
  1399    replace_statement(size_t index, Statement*);
  1400  
  1401    // Add a Statement before statement number INDEX.
  1402    void
  1403    insert_statement_before(size_t index, Statement*);
  1404  
  1405    // Add a Statement after statement number INDEX.
  1406    void
  1407    insert_statement_after(size_t index, Statement*);
  1408  
  1409    // Set the end location of the block.
  1410    void
  1411    set_end_location(Location location)
  1412    { this->end_location_ = location; }
  1413  
  1414    // Traverse the tree.
  1415    int
  1416    traverse(Traverse*);
  1417  
  1418    // Set final types for unspecified variables and constants.
  1419    void
  1420    determine_types();
  1421  
  1422    // Return true if execution of this block may fall through to the
  1423    // next block.
  1424    bool
  1425    may_fall_through() const;
  1426  
  1427    // Write the export data for the block's statements to the string.
  1428    void
  1429    export_block(Export_function_body*);
  1430  
  1431    // Turn exported block data into a block.
  1432    static bool
  1433    import_block(Block*, Import_function_body*, Location);
  1434  
  1435    // Convert the block to the backend representation.
  1436    Bblock*
  1437    get_backend(Translate_context*);
  1438  
  1439    // Iterate over statements.
  1440  
  1441    typedef std::vector<Statement*>::iterator iterator;
  1442  
  1443    iterator
  1444    begin()
  1445    { return this->statements_.begin(); }
  1446  
  1447    iterator
  1448    end()
  1449    { return this->statements_.end(); }
  1450  
  1451   private:
  1452    // Enclosing block.
  1453    Block* enclosing_;
  1454    // Statements in the block.
  1455    std::vector<Statement*> statements_;
  1456    // Binding contour.
  1457    Bindings* bindings_;
  1458    // Location of start of block.
  1459    Location start_location_;
  1460    // Location of end of block.
  1461    Location end_location_;
  1462  };
  1463  
  1464  // A function.
  1465  
  1466  class Function
  1467  {
  1468   public:
  1469    Function(Function_type* type, Named_object*, Block*, Location);
  1470  
  1471    // Return the function's type.
  1472    Function_type*
  1473    type() const
  1474    { return this->type_; }
  1475  
  1476    // Return the enclosing function if there is one.
  1477    Named_object*
  1478    enclosing() const
  1479    { return this->enclosing_; }
  1480  
  1481    // Set the enclosing function.  This is used when building thunks
  1482    // for functions which call recover.
  1483    void
  1484    set_enclosing(Named_object* enclosing)
  1485    {
  1486      go_assert(this->enclosing_ == NULL);
  1487      this->enclosing_ = enclosing;
  1488    }
  1489  
  1490    // The result variables.
  1491    typedef std::vector<Named_object*> Results;
  1492  
  1493    // Create the result variables in the outer block.
  1494    void
  1495    create_result_variables(Gogo*);
  1496  
  1497    // Update the named result variables when cloning a function which
  1498    // calls recover.
  1499    void
  1500    update_result_variables();
  1501  
  1502    // Return the result variables.
  1503    Results*
  1504    result_variables()
  1505    { return this->results_; }
  1506  
  1507    bool
  1508    is_sink() const
  1509    { return this->is_sink_; }
  1510  
  1511    void
  1512    set_is_sink()
  1513    { this->is_sink_ = true; }
  1514  
  1515    // Whether the result variables have names.
  1516    bool
  1517    results_are_named() const
  1518    { return this->results_are_named_; }
  1519  
  1520    // Return the assembler name.
  1521    const std::string&
  1522    asm_name() const
  1523    { return this->asm_name_; }
  1524  
  1525    // Set the assembler name.
  1526    void
  1527    set_asm_name(const std::string& asm_name)
  1528    { this->asm_name_ = asm_name; }
  1529  
  1530    // Mark this symbol as exported by a linkname directive.
  1531    void
  1532    set_is_exported_by_linkname()
  1533    { this->is_exported_by_linkname_ = true; }
  1534  
  1535    // Return the pragmas for this function.
  1536    unsigned int
  1537    pragmas() const
  1538    { return this->pragmas_; }
  1539  
  1540    // Set the pragmas for this function.
  1541    void
  1542    set_pragmas(unsigned int pragmas)
  1543    {
  1544      this->pragmas_ = pragmas;
  1545    }
  1546  
  1547    // Return the index to use for a nested function.
  1548    unsigned int
  1549    next_nested_function_index()
  1550    {
  1551      ++this->nested_functions_;
  1552      return this->nested_functions_;
  1553    }
  1554  
  1555    // Whether this method should not be included in the type
  1556    // descriptor.
  1557    bool
  1558    nointerface() const;
  1559  
  1560    // Record that this method should not be included in the type
  1561    // descriptor.
  1562    void
  1563    set_nointerface();
  1564  
  1565    // Record that this function is a stub method created for an unnamed
  1566    // type.
  1567    void
  1568    set_is_unnamed_type_stub_method()
  1569    {
  1570      go_assert(this->is_method());
  1571      this->is_unnamed_type_stub_method_ = true;
  1572    }
  1573  
  1574    // Return the amount of enclosed variables in this closure.
  1575    size_t
  1576    closure_field_count() const
  1577    { return this->closure_fields_.size(); }
  1578  
  1579    // Add a new field to the closure variable.
  1580    void
  1581    add_closure_field(Named_object* var, Location loc)
  1582    { this->closure_fields_.push_back(std::make_pair(var, loc)); }
  1583  
  1584    // Whether this function needs a closure.
  1585    bool
  1586    needs_closure() const
  1587    { return !this->closure_fields_.empty(); }
  1588  
  1589    // Return the closure variable, creating it if necessary.  This is
  1590    // passed to the function as a static chain parameter.
  1591    Named_object*
  1592    closure_var();
  1593  
  1594    // Set the closure variable.  This is used when building thunks for
  1595    // functions which call recover.
  1596    void
  1597    set_closure_var(Named_object* v)
  1598    {
  1599      go_assert(this->closure_var_ == NULL);
  1600      this->closure_var_ = v;
  1601    }
  1602  
  1603    // Return the variable for a reference to field INDEX in the closure
  1604    // variable.
  1605    Named_object*
  1606    enclosing_var(unsigned int index)
  1607    {
  1608      go_assert(index < this->closure_fields_.size());
  1609      return closure_fields_[index].first;
  1610    }
  1611  
  1612    // Set the type of the closure variable if there is one.
  1613    void
  1614    set_closure_type();
  1615  
  1616    // Get the block of statements associated with the function.
  1617    Block*
  1618    block() const
  1619    { return this->block_; }
  1620  
  1621    // Get the location of the start of the function.
  1622    Location
  1623    location() const
  1624    { return this->location_; }
  1625  
  1626    // Return whether this function is actually a method.
  1627    bool
  1628    is_method() const;
  1629  
  1630    // Add a label definition to the function.
  1631    Label*
  1632    add_label_definition(Gogo*, const std::string& label_name, Location);
  1633  
  1634    // Add a label reference to a function.  ISSUE_GOTO_ERRORS is true
  1635    // if we should report errors for a goto from the current location
  1636    // to the label location.
  1637    Label*
  1638    add_label_reference(Gogo*, const std::string& label_name,
  1639  		      Location, bool issue_goto_errors);
  1640  
  1641    // Warn about labels that are defined but not used.
  1642    void
  1643    check_labels() const;
  1644  
  1645    // Note that a new local type has been added.  Return its index.
  1646    unsigned int
  1647    new_local_type_index()
  1648    { return this->local_type_count_++; }
  1649  
  1650    // Whether this function calls the predeclared recover function.
  1651    bool
  1652    calls_recover() const
  1653    { return this->calls_recover_; }
  1654  
  1655    // Record that this function calls the predeclared recover function.
  1656    // This is set during the lowering pass.
  1657    void
  1658    set_calls_recover()
  1659    { this->calls_recover_ = true; }
  1660  
  1661    // Whether this is a recover thunk function.
  1662    bool
  1663    is_recover_thunk() const
  1664    { return this->is_recover_thunk_; }
  1665  
  1666    // Record that this is a thunk built for a function which calls
  1667    // recover.
  1668    void
  1669    set_is_recover_thunk()
  1670    { this->is_recover_thunk_ = true; }
  1671  
  1672    // Whether this function already has a recover thunk.
  1673    bool
  1674    has_recover_thunk() const
  1675    { return this->has_recover_thunk_; }
  1676  
  1677    // Record that this function already has a recover thunk.
  1678    void
  1679    set_has_recover_thunk()
  1680    { this->has_recover_thunk_ = true; }
  1681  
  1682    // Record that this function is a thunk created for a defer
  1683    // statement that calls the __go_set_defer_retaddr runtime function.
  1684    void
  1685    set_calls_defer_retaddr()
  1686    { this->calls_defer_retaddr_ = true; }
  1687  
  1688    // Whether this is a type hash or equality function created by the
  1689    // compiler.
  1690    bool
  1691    is_type_specific_function()
  1692    { return this->is_type_specific_function_; }
  1693  
  1694    // Record that this function is a type hash or equality function
  1695    // created by the compiler.
  1696    void
  1697    set_is_type_specific_function()
  1698    { this->is_type_specific_function_ = true; }
  1699  
  1700    // Mark the function as going into a unique section.
  1701    void
  1702    set_in_unique_section()
  1703    { this->in_unique_section_ = true; }
  1704  
  1705    // Return whether this function should be exported for inlining.
  1706    bool
  1707    export_for_inlining() const
  1708    { return this->export_for_inlining_; }
  1709  
  1710    // Mark the function to be exported for inlining.
  1711    void
  1712    set_export_for_inlining()
  1713    { this->export_for_inlining_ = true; }
  1714  
  1715    // Return whether this function is inline only.
  1716    bool
  1717    is_inline_only() const
  1718    { return this->is_inline_only_; }
  1719  
  1720    // Mark the function as inline only: the body should not be emitted
  1721    // if it is not inlined.
  1722    void
  1723    set_is_inline_only()
  1724    { this->is_inline_only_ = true; }
  1725  
  1726    // Report whether the function is referenced by an inline body.
  1727    bool
  1728    is_referenced_by_inline() const
  1729    { return this->is_referenced_by_inline_; }
  1730  
  1731    // Mark the function as referenced by an inline body.
  1732    void
  1733    set_is_referenced_by_inline()
  1734    { this->is_referenced_by_inline_ = true; }
  1735  
  1736    // Set the receiver type.  This is used to remove aliases.
  1737    void
  1738    set_receiver_type(Type* rtype);
  1739  
  1740    // Swap with another function.  Used only for the thunk which calls
  1741    // recover.
  1742    void
  1743    swap_for_recover(Function *);
  1744  
  1745    // Traverse the tree.
  1746    int
  1747    traverse(Traverse*);
  1748  
  1749    // Determine types in the function.
  1750    void
  1751    determine_types();
  1752  
  1753    // Return an expression for the function descriptor, given the named
  1754    // object for this function.  This may only be called for functions
  1755    // without a closure.  This will be an immutable struct with one
  1756    // field that points to the function's code.
  1757    Expression*
  1758    descriptor(Gogo*, Named_object*);
  1759  
  1760    // Set the descriptor for this function.  This is used when a
  1761    // function declaration is followed by a function definition.
  1762    void
  1763    set_descriptor(Expression* descriptor)
  1764    {
  1765      go_assert(this->descriptor_ == NULL);
  1766      this->descriptor_ = descriptor;
  1767    }
  1768  
  1769    // Return the backend representation.
  1770    Bfunction*
  1771    get_or_make_decl(Gogo*, Named_object*);
  1772  
  1773    // Return the function's decl after it has been built.
  1774    Bfunction*
  1775    get_decl() const;
  1776  
  1777    // Set the function decl to hold a backend representation of the function
  1778    // code.
  1779    void
  1780    build(Gogo*, Named_object*);
  1781  
  1782    // Get the statement that assigns values to this function's result struct.
  1783    Bstatement*
  1784    return_value(Gogo*, Named_object*, Location) const;
  1785  
  1786    // Get the backend name of this function.
  1787    void
  1788    backend_name(Gogo*, Named_object*, Backend_name*);
  1789  
  1790    // Get an expression for the variable holding the defer stack.
  1791    Expression*
  1792    defer_stack(Location);
  1793  
  1794    // Export the function.
  1795    void
  1796    export_func(Export*, const Named_object*) const;
  1797  
  1798    // Export a function with a type.
  1799    static void
  1800    export_func_with_type(Export*, const Named_object*,
  1801  			const Function_type*, Results*, bool nointerface,
  1802  			const std::string& asm_name, Block* block, Location);
  1803  
  1804    // Import a function.  Reports whether the import succeeded.
  1805    static bool
  1806    import_func(Import*, std::string* pname, Package** pkg,
  1807  	      bool* is_exported, Typed_identifier** receiver,
  1808  	      Typed_identifier_list** pparameters,
  1809  	      Typed_identifier_list** presults, bool* is_varargs,
  1810  	      bool* nointerface, std::string* asm_name, std::string* body);
  1811  
  1812   private:
  1813    // Type for mapping from label names to Label objects.
  1814    typedef Unordered_map(std::string, Label*) Labels;
  1815  
  1816    void
  1817    build_defer_wrapper(Gogo*, Named_object*, Bstatement**, Bstatement**);
  1818  
  1819    typedef std::vector<std::pair<Named_object*,
  1820  				Location> > Closure_fields;
  1821  
  1822    // The function's type.
  1823    Function_type* type_;
  1824    // The enclosing function.  This is NULL when there isn't one, which
  1825    // is the normal case.
  1826    Named_object* enclosing_;
  1827    // The result variables, if any.
  1828    Results* results_;
  1829    // If there is a closure, this is the list of variables which appear
  1830    // in the closure.  This is created by the parser, and then resolved
  1831    // to a real type when we lower parse trees.
  1832    Closure_fields closure_fields_;
  1833    // The closure variable, passed as a parameter using the static
  1834    // chain parameter.  Normally NULL.
  1835    Named_object* closure_var_;
  1836    // The outer block of statements in the function.
  1837    Block* block_;
  1838    // The source location of the start of the function.
  1839    Location location_;
  1840    // Labels defined or referenced in the function.
  1841    Labels labels_;
  1842    // The number of local types defined in this function.
  1843    unsigned int local_type_count_;
  1844    // The assembler name: this is the name that will be put in the object file.
  1845    // Set by the go:linkname compiler directive.  This is normally empty.
  1846    std::string asm_name_;
  1847    // The function descriptor, if any.
  1848    Expression* descriptor_;
  1849    // The function decl.
  1850    Bfunction* fndecl_;
  1851    // The defer stack variable.  A pointer to this variable is used to
  1852    // distinguish the defer stack for one function from another.  This
  1853    // is NULL unless we actually need a defer stack.
  1854    Temporary_statement* defer_stack_;
  1855    // Pragmas for this function.  This is a set of GOPRAGMA bits.
  1856    unsigned int pragmas_;
  1857    // Number of nested functions defined within this function.
  1858    unsigned int nested_functions_;
  1859    // True if this function is sink-named.  No code is generated.
  1860    bool is_sink_ : 1;
  1861    // True if the result variables are named.
  1862    bool results_are_named_ : 1;
  1863    // True if this function is a stub method created for an unnamed
  1864    // type.
  1865    bool is_unnamed_type_stub_method_ : 1;
  1866    // True if this function calls the predeclared recover function.
  1867    bool calls_recover_ : 1;
  1868    // True if this a thunk built for a function which calls recover.
  1869    bool is_recover_thunk_ : 1;
  1870    // True if this function already has a recover thunk.
  1871    bool has_recover_thunk_ : 1;
  1872    // True if this is a thunk built for a defer statement that calls
  1873    // the __go_set_defer_retaddr runtime function.
  1874    bool calls_defer_retaddr_ : 1;
  1875    // True if this is a function built by the compiler to as a hash or
  1876    // equality function for some type.
  1877    bool is_type_specific_function_ : 1;
  1878    // True if this function should be put in a unique section.  This is
  1879    // turned on for field tracking.
  1880    bool in_unique_section_ : 1;
  1881    // True if we should export the body of this function for
  1882    // cross-package inlining.
  1883    bool export_for_inlining_ : 1;
  1884    // True if this function is inline only: if it should not be emitted
  1885    // if it is not inlined.
  1886    bool is_inline_only_ : 1;
  1887    // True if this function is referenced from an inlined body that
  1888    // will be put into the export data.
  1889    bool is_referenced_by_inline_ : 1;
  1890    // True if we should make this function visible to other packages
  1891    // because of a go:linkname directive.
  1892    bool is_exported_by_linkname_ : 1;
  1893  };
  1894  
  1895  // A snapshot of the current binding state.
  1896  
  1897  class Bindings_snapshot
  1898  {
  1899   public:
  1900    Bindings_snapshot(const Block*, Location);
  1901  
  1902    // Report any errors appropriate for a goto from the current binding
  1903    // state of B to this one.
  1904    void
  1905    check_goto_from(const Block* b, Location);
  1906  
  1907    // Report any errors appropriate for a goto from this binding state
  1908    // to the current state of B.
  1909    void
  1910    check_goto_to(const Block* b);
  1911  
  1912   private:
  1913    bool
  1914    check_goto_block(Location, const Block*, const Block*, size_t*);
  1915  
  1916    void
  1917    check_goto_defs(Location, const Block*, size_t, size_t);
  1918  
  1919    // The current block.
  1920    const Block* block_;
  1921    // The number of names currently defined in each open block.
  1922    // Element 0 is this->block_, element 1 is
  1923    // this->block_->enclosing(), etc.
  1924    std::vector<size_t> counts_;
  1925    // The location where this snapshot was taken.
  1926    Location location_;
  1927  };
  1928  
  1929  // A function declaration.
  1930  
  1931  class Function_declaration
  1932  {
  1933   public:
  1934    Function_declaration(Function_type* fntype, Location location)
  1935      : fntype_(fntype), location_(location), asm_name_(), descriptor_(NULL),
  1936        fndecl_(NULL), pragmas_(0), imported_body_(),
  1937        is_on_inlinable_list_(false)
  1938    { }
  1939  
  1940    Function_type*
  1941    type() const
  1942    { return this->fntype_; }
  1943  
  1944    Location
  1945    location() const
  1946    { return this->location_; }
  1947  
  1948    // Return whether this function declaration is a method.
  1949    bool
  1950    is_method() const;
  1951  
  1952    const std::string&
  1953    asm_name() const
  1954    { return this->asm_name_; }
  1955  
  1956    // Set the assembler name.
  1957    void
  1958    set_asm_name(const std::string& asm_name)
  1959    { this->asm_name_ = asm_name; }
  1960  
  1961    // Return the pragmas for this function.
  1962    unsigned int
  1963    pragmas() const
  1964    { return this->pragmas_; }
  1965  
  1966    // Set the pragmas for this function.
  1967    void
  1968    set_pragmas(unsigned int pragmas)
  1969    {
  1970      this->pragmas_ = pragmas;
  1971    }
  1972  
  1973    // Whether this method should not be included in the type
  1974    // descriptor.
  1975    bool
  1976    nointerface() const;
  1977  
  1978    // Record that this method should not be included in the type
  1979    // descriptor.
  1980    void
  1981    set_nointerface();
  1982  
  1983    // Whether we have an imported function body.
  1984    bool
  1985    has_imported_body() const
  1986    { return !this->imported_body_.empty(); }
  1987  
  1988    // Record the imported body of this function.
  1989    void
  1990    set_imported_body(Import* imp, const std::string& imported_body)
  1991    {
  1992      this->imp_ = imp;
  1993      this->imported_body_ = imported_body;
  1994    }
  1995  
  1996    // Whether this declaration is on the list of inlinable functions.
  1997    bool
  1998    is_on_inlinable_list() const
  1999    { return this->is_on_inlinable_list_; }
  2000  
  2001    // Set that this function is on the list of inlinable functions.
  2002    void
  2003    set_is_on_inlinable_list()
  2004    { this->is_on_inlinable_list_ = true; }
  2005  
  2006    // Set the receiver type.  This is used to remove aliases.
  2007    void
  2008    set_receiver_type(Type* rtype);
  2009  
  2010    // Import the function body, creating a function.
  2011    void
  2012    import_function_body(Gogo*, Named_object*);
  2013  
  2014    // Return an expression for the function descriptor, given the named
  2015    // object for this function.  This may only be called for functions
  2016    // without a closure.  This will be an immutable struct with one
  2017    // field that points to the function's code.
  2018    Expression*
  2019    descriptor(Gogo*, Named_object*);
  2020  
  2021    // Return true if we have created a descriptor for this declaration.
  2022    bool
  2023    has_descriptor() const
  2024    { return this->descriptor_ != NULL; }
  2025  
  2026    // Return a backend representation.
  2027    Bfunction*
  2028    get_or_make_decl(Gogo*, Named_object*);
  2029  
  2030    // If there is a descriptor, build it into the backend
  2031    // representation.
  2032    void
  2033    build_backend_descriptor(Gogo*);
  2034  
  2035    // Get the backend name of this function declaration.
  2036    void
  2037    backend_name(Gogo*, Named_object*, Backend_name*);
  2038  
  2039    // Export a function declaration.
  2040    void
  2041    export_func(Export* exp, const Named_object* no) const
  2042    {
  2043      Function::export_func_with_type(exp, no, this->fntype_, NULL,
  2044  				    this->is_method() && this->nointerface(),
  2045  				    this->asm_name_, NULL, this->location_);
  2046    }
  2047  
  2048    // Check that the types used in this declaration's signature are defined.
  2049    void
  2050    check_types() const;
  2051  
  2052   private:
  2053    // The type of the function.
  2054    Function_type* fntype_;
  2055    // The location of the declaration.
  2056    Location location_;
  2057    // The assembler name: this is the name to use in references to the
  2058    // function.  This is normally empty.
  2059    std::string asm_name_;
  2060    // The function descriptor, if any.
  2061    Expression* descriptor_;
  2062    // The function decl if needed.
  2063    Bfunction* fndecl_;
  2064    // Pragmas for this function.  This is a set of GOPRAGMA bits.
  2065    unsigned int pragmas_;
  2066    // Importer for function body if imported from a different package.
  2067    Import* imp_;
  2068    // Export data for function body if imported from a different package.
  2069    std::string imported_body_;
  2070    // Whether this declaration is already on the list of inlinable functions.
  2071    bool is_on_inlinable_list_;
  2072  };
  2073  
  2074  // A variable.
  2075  
  2076  class Variable
  2077  {
  2078   public:
  2079    Variable(Type*, Expression*, bool is_global, bool is_parameter,
  2080  	   bool is_receiver, Location);
  2081  
  2082    // Get the type of the variable.
  2083    Type*
  2084    type();
  2085  
  2086    Type*
  2087    type() const;
  2088  
  2089    // Return whether the type is defined yet.
  2090    bool
  2091    has_type() const;
  2092  
  2093    // Get the initial value.
  2094    Expression*
  2095    init() const
  2096    { return this->init_; }
  2097  
  2098    // Return whether there are any preinit statements.
  2099    bool
  2100    has_pre_init() const
  2101    { return this->preinit_ != NULL; }
  2102  
  2103    // Return the preinit statements if any.
  2104    Block*
  2105    preinit() const
  2106    { return this->preinit_; }
  2107  
  2108    // Return whether this is a global variable.
  2109    bool
  2110    is_global() const
  2111    { return this->is_global_; }
  2112  
  2113    // Return whether this is a function parameter.
  2114    bool
  2115    is_parameter() const
  2116    { return this->is_parameter_; }
  2117  
  2118    // Return whether this is a closure (static chain) parameter.
  2119    bool
  2120    is_closure() const
  2121    { return this->is_closure_; }
  2122  
  2123    // Change this parameter to be a closure.
  2124    void
  2125    set_is_closure()
  2126    {
  2127      this->is_closure_ = true;
  2128    }
  2129  
  2130    // Return whether this is the receiver parameter of a method.
  2131    bool
  2132    is_receiver() const
  2133    { return this->is_receiver_; }
  2134  
  2135    // Change this parameter to be a receiver.  This is used when
  2136    // creating the thunks created for functions which call recover.
  2137    void
  2138    set_is_receiver()
  2139    {
  2140      go_assert(this->is_parameter_);
  2141      this->is_receiver_ = true;
  2142    }
  2143  
  2144    // Change this parameter to not be a receiver.  This is used when
  2145    // creating the thunks created for functions which call recover.
  2146    void
  2147    set_is_not_receiver()
  2148    {
  2149      go_assert(this->is_parameter_);
  2150      this->is_receiver_ = false;
  2151    }
  2152  
  2153    // Return whether this is the varargs parameter of a function.
  2154    bool
  2155    is_varargs_parameter() const
  2156    { return this->is_varargs_parameter_; }
  2157  
  2158    // Return whether this is a global sink variable, created only to
  2159    // run an initializer.
  2160    bool
  2161    is_global_sink() const
  2162    { return this->is_global_sink_; }
  2163  
  2164    // Record that this is a global sink variable.
  2165    void
  2166    set_is_global_sink()
  2167    {
  2168      go_assert(this->is_global_);
  2169      this->is_global_sink_ = true;
  2170    }
  2171  
  2172    // Whether this variable's address is taken.
  2173    bool
  2174    is_address_taken() const
  2175    { return this->is_address_taken_; }
  2176  
  2177    // Whether this variable should live in the heap.
  2178    bool
  2179    is_in_heap() const
  2180    { return this->is_address_taken_ && !this->is_global_; }
  2181  
  2182    // Note that something takes the address of this variable.
  2183    void
  2184    set_address_taken()
  2185    { this->is_address_taken_ = true; }
  2186  
  2187    // Return whether the address is taken but does not escape.
  2188    bool
  2189    is_non_escaping_address_taken() const
  2190    { return this->is_non_escaping_address_taken_; }
  2191  
  2192    // Note that something takes the address of this variable such that
  2193    // the address does not escape the function.
  2194    void
  2195    set_non_escaping_address_taken()
  2196    { this->is_non_escaping_address_taken_ = true; }
  2197  
  2198    // Get the source location of the variable's declaration.
  2199    Location
  2200    location() const
  2201    { return this->location_; }
  2202  
  2203    // Record that this is the varargs parameter of a function.
  2204    void
  2205    set_is_varargs_parameter()
  2206    {
  2207      go_assert(this->is_parameter_);
  2208      this->is_varargs_parameter_ = true;
  2209    }
  2210  
  2211    // Return whether the variable has been used.
  2212    bool
  2213    is_used() const
  2214    { return this->is_used_; }
  2215  
  2216    // Mark that the variable has been used.
  2217    void
  2218    set_is_used()
  2219    { this->is_used_ = true; }
  2220  
  2221    // Clear the initial value; used for error handling and write barriers.
  2222    void
  2223    clear_init()
  2224    { this->init_ = NULL; }
  2225  
  2226    // Set the initial value; used for converting shortcuts.
  2227    void
  2228    set_init(Expression* init)
  2229    { this->init_ = init; }
  2230  
  2231    // Get the preinit block, a block of statements to be run before the
  2232    // initialization expression.
  2233    Block*
  2234    preinit_block(Gogo*);
  2235  
  2236    // Add a statement to be run before the initialization expression.
  2237    // This is only used for global variables.
  2238    void
  2239    add_preinit_statement(Gogo*, Statement*);
  2240  
  2241    // Lower the initialization expression after parsing is complete.
  2242    void
  2243    lower_init_expression(Gogo*, Named_object*, Statement_inserter*);
  2244  
  2245    // Flatten the initialization expression after ordering evaluations.
  2246    void
  2247    flatten_init_expression(Gogo*, Named_object*, Statement_inserter*);
  2248  
  2249    // A special case: the init value is used only to determine the
  2250    // type.  This is used if the variable is defined using := with the
  2251    // comma-ok form of a map index or a receive expression.  The init
  2252    // value is actually the map index expression or receive expression.
  2253    // We use this because we may not know the right type at parse time.
  2254    void
  2255    set_type_from_init_tuple()
  2256    { this->type_from_init_tuple_ = true; }
  2257  
  2258    // Another special case: the init value is used only to determine
  2259    // the type.  This is used if the variable is defined using := with
  2260    // a range clause.  The init value is the range expression.  The
  2261    // type of the variable is the index type of the range expression
  2262    // (i.e., the first value returned by a range).
  2263    void
  2264    set_type_from_range_index()
  2265    { this->type_from_range_index_ = true; }
  2266  
  2267    // Another special case: like set_type_from_range_index, but the
  2268    // type is the value type of the range expression (i.e., the second
  2269    // value returned by a range).
  2270    void
  2271    set_type_from_range_value()
  2272    { this->type_from_range_value_ = true; }
  2273  
  2274    // Another special case: the init value is used only to determine
  2275    // the type.  This is used if the variable is defined using := with
  2276    // a case in a select statement.  The init value is the channel.
  2277    // The type of the variable is the channel's element type.
  2278    void
  2279    set_type_from_chan_element()
  2280    { this->type_from_chan_element_ = true; }
  2281  
  2282    // After we lower the select statement, we once again set the type
  2283    // from the initialization expression.
  2284    void
  2285    clear_type_from_chan_element()
  2286    {
  2287      go_assert(this->type_from_chan_element_);
  2288      this->type_from_chan_element_ = false;
  2289    }
  2290  
  2291    // TRUE if this variable was created for a type switch clause.
  2292    bool
  2293    is_type_switch_var() const
  2294    { return this->is_type_switch_var_; }
  2295  
  2296    // Note that this variable was created for a type switch clause.
  2297    void
  2298    set_is_type_switch_var()
  2299    { this->is_type_switch_var_ = true; }
  2300  
  2301    // Mark the variable as going into a unique section.
  2302    void
  2303    set_in_unique_section()
  2304    {
  2305      go_assert(this->is_global_);
  2306      this->in_unique_section_ = true;
  2307    }
  2308  
  2309    // Mark the variable as referenced by an inline body.
  2310    void
  2311    set_is_referenced_by_inline()
  2312    {
  2313      go_assert(this->is_global_);
  2314      this->is_referenced_by_inline_ = true;
  2315    }
  2316  
  2317    // Attach any go:embed comments for this variable.
  2318    void
  2319    set_embeds(std::vector<std::string>* embeds)
  2320    {
  2321      go_assert(this->is_global_
  2322  	      && this->init_ == NULL
  2323  	      && this->preinit_ == NULL);
  2324      this->embeds_ = embeds;
  2325    }
  2326  
  2327    // Return the top-level declaration for this variable.
  2328    Statement*
  2329    toplevel_decl()
  2330    { return this->toplevel_decl_; }
  2331  
  2332    // Set the top-level declaration for this variable. Only used for local
  2333    // variables
  2334    void
  2335    set_toplevel_decl(Statement* s)
  2336    {
  2337      go_assert(!this->is_global_ && !this->is_parameter_ && !this->is_receiver_);
  2338      this->toplevel_decl_ = s;
  2339    }
  2340  
  2341    // Note that the initializer of this global variable refers to VAR.
  2342    void
  2343    add_init_ref(Named_object* var);
  2344  
  2345    // The variables that this variable's initializers refer to.
  2346    const std::vector<Named_object*>*
  2347    init_refs() const
  2348    { return this->init_refs_; }
  2349  
  2350    // Traverse the initializer expression.
  2351    int
  2352    traverse_expression(Traverse*, unsigned int traverse_mask);
  2353  
  2354    // Determine the type of the variable if necessary.
  2355    void
  2356    determine_type();
  2357  
  2358    // Get the backend representation of the variable.
  2359    Bvariable*
  2360    get_backend_variable(Gogo*, Named_object*, const Package*,
  2361  		       const std::string&);
  2362  
  2363    // Get the initial value of the variable.  This may only
  2364    // be called if has_pre_init() returns false.
  2365    Bexpression*
  2366    get_init(Gogo*, Named_object* function);
  2367  
  2368    // Return a series of statements which sets the value of the
  2369    // variable in DECL.  This should only be called is has_pre_init()
  2370    // returns true.  DECL may be NULL for a sink variable.
  2371    Bstatement*
  2372    get_init_block(Gogo*, Named_object* function, Bvariable* decl);
  2373  
  2374    // Export the variable.
  2375    void
  2376    export_var(Export*, const Named_object*) const;
  2377  
  2378    // Import a variable.  Reports whether the import succeeded.
  2379    static bool
  2380    import_var(Import*, std::string* pname, Package** pkg, bool* is_exported,
  2381  	     Type** ptype);
  2382  
  2383   private:
  2384    // The type of a tuple.
  2385    Type*
  2386    type_from_tuple(Expression*, bool) const;
  2387  
  2388    // The type of a range.
  2389    Type*
  2390    type_from_range(Expression*, bool, bool) const;
  2391  
  2392    // The element type of a channel.
  2393    Type*
  2394    type_from_chan_element(Expression*, bool) const;
  2395  
  2396    // The variable's type.  This may be NULL if the type is set from
  2397    // the expression.
  2398    Type* type_;
  2399    // The initial value.  This may be NULL if the variable should be
  2400    // initialized to the default value for the type.
  2401    Expression* init_;
  2402    // Statements to run before the init statement.
  2403    Block* preinit_;
  2404    // Location of variable definition.
  2405    Location location_;
  2406    // The top-level declaration for this variable. Only used for local
  2407    // variables. Must be a Temporary_statement if not NULL.
  2408    Statement* toplevel_decl_;
  2409    // Variables that the initializer of a global variable refers to.
  2410    // Used for initializer ordering.
  2411    std::vector<Named_object*>* init_refs_;
  2412    // Any associated go:embed comments.
  2413    std::vector<std::string>* embeds_;
  2414    // Backend representation.
  2415    Bvariable* backend_;
  2416    // Whether this is a global variable.
  2417    bool is_global_ : 1;
  2418    // Whether this is a function parameter.
  2419    bool is_parameter_ : 1;
  2420    // Whether this is a closure parameter.
  2421    bool is_closure_ : 1;
  2422    // Whether this is the receiver parameter of a method.
  2423    bool is_receiver_ : 1;
  2424    // Whether this is the varargs parameter of a function.
  2425    bool is_varargs_parameter_ : 1;
  2426    // Whether this is a global sink variable created to run an
  2427    // initializer.
  2428    bool is_global_sink_ : 1;
  2429    // Whether this variable is ever referenced.
  2430    bool is_used_ : 1;
  2431    // Whether something takes the address of this variable.  For a
  2432    // local variable this implies that the variable has to be on the
  2433    // heap if it escapes from its function.
  2434    bool is_address_taken_ : 1;
  2435    // Whether something takes the address of this variable such that
  2436    // the address does not escape the function.
  2437    bool is_non_escaping_address_taken_ : 1;
  2438    // True if we have seen this variable in a traversal.
  2439    bool seen_ : 1;
  2440    // True if we have lowered the initialization expression.
  2441    bool init_is_lowered_ : 1;
  2442    // True if we have flattened the initialization expression.
  2443    bool init_is_flattened_ : 1;
  2444    // True if init is a tuple used to set the type.
  2445    bool type_from_init_tuple_ : 1;
  2446    // True if init is a range clause and the type is the index type.
  2447    bool type_from_range_index_ : 1;
  2448    // True if init is a range clause and the type is the value type.
  2449    bool type_from_range_value_ : 1;
  2450    // True if init is a channel and the type is the channel's element type.
  2451    bool type_from_chan_element_ : 1;
  2452    // True if this is a variable created for a type switch case.
  2453    bool is_type_switch_var_ : 1;
  2454    // True if we have determined types.
  2455    bool determined_type_ : 1;
  2456    // True if this variable should be put in a unique section.  This is
  2457    // used for field tracking.
  2458    bool in_unique_section_ : 1;
  2459    // True if this variable is referenced from an inlined body that
  2460    // will be put into the export data.
  2461    bool is_referenced_by_inline_ : 1;
  2462  };
  2463  
  2464  // A variable which is really the name for a function return value, or
  2465  // part of one.
  2466  
  2467  class Result_variable
  2468  {
  2469   public:
  2470    Result_variable(Type* type, Function* function, int index,
  2471  		  Location location)
  2472      : type_(type), function_(function), index_(index), location_(location),
  2473        backend_(NULL), is_address_taken_(false),
  2474        is_non_escaping_address_taken_(false)
  2475    { }
  2476  
  2477    // Get the type of the result variable.
  2478    Type*
  2479    type() const
  2480    { return this->type_; }
  2481  
  2482    // Get the function that this is associated with.
  2483    Function*
  2484    function() const
  2485    { return this->function_; }
  2486  
  2487    // Index in the list of function results.
  2488    int
  2489    index() const
  2490    { return this->index_; }
  2491  
  2492    // The location of the variable definition.
  2493    Location
  2494    location() const
  2495    { return this->location_; }
  2496  
  2497    // Whether this variable's address is taken.
  2498    bool
  2499    is_address_taken() const
  2500    { return this->is_address_taken_; }
  2501  
  2502    // Note that something takes the address of this variable.
  2503    void
  2504    set_address_taken()
  2505    { this->is_address_taken_ = true; }
  2506  
  2507    // Return whether the address is taken but does not escape.
  2508    bool
  2509    is_non_escaping_address_taken() const
  2510    { return this->is_non_escaping_address_taken_; }
  2511  
  2512    // Note that something takes the address of this variable such that
  2513    // the address does not escape the function.
  2514    void
  2515    set_non_escaping_address_taken()
  2516    { this->is_non_escaping_address_taken_ = true; }
  2517  
  2518    // Whether this variable should live in the heap.
  2519    bool
  2520    is_in_heap() const
  2521    { return this->is_address_taken_; }
  2522  
  2523    // Set the function.  This is used when cloning functions which call
  2524    // recover.
  2525    void
  2526    set_function(Function* function)
  2527    { this->function_ = function; }
  2528  
  2529    // Get the backend representation of the variable.
  2530    Bvariable*
  2531    get_backend_variable(Gogo*, Named_object*, const std::string&);
  2532  
  2533   private:
  2534    // Type of result variable.
  2535    Type* type_;
  2536    // Function with which this is associated.
  2537    Function* function_;
  2538    // Index in list of results.
  2539    int index_;
  2540    // Where the result variable is defined.
  2541    Location location_;
  2542    // Backend representation.
  2543    Bvariable* backend_;
  2544    // Whether something takes the address of this variable.
  2545    bool is_address_taken_;
  2546    // Whether something takes the address of this variable such that
  2547    // the address does not escape the function.
  2548    bool is_non_escaping_address_taken_;
  2549  };
  2550  
  2551  // The value we keep for a named constant.  This lets us hold a type
  2552  // and an expression.
  2553  
  2554  class Named_constant
  2555  {
  2556   public:
  2557    Named_constant(Type* type, Expression* expr, int iota_value,
  2558  		 Location location)
  2559      : type_(type), expr_(expr), iota_value_(iota_value), location_(location),
  2560        lowering_(false), is_sink_(false), bconst_(NULL)
  2561    { }
  2562  
  2563    Type*
  2564    type() const
  2565    { return this->type_; }
  2566  
  2567    void
  2568    set_type(Type* t);
  2569  
  2570    Expression*
  2571    expr() const
  2572    { return this->expr_; }
  2573  
  2574    int
  2575    iota_value() const
  2576    { return this->iota_value_; }
  2577  
  2578    Location
  2579    location() const
  2580    { return this->location_; }
  2581  
  2582    // Whether we are lowering.
  2583    bool
  2584    lowering() const
  2585    { return this->lowering_; }
  2586  
  2587    // Set that we are lowering.
  2588    void
  2589    set_lowering()
  2590    { this->lowering_ = true; }
  2591  
  2592    // We are no longer lowering.
  2593    void
  2594    clear_lowering()
  2595    { this->lowering_ = false; }
  2596  
  2597    bool
  2598    is_sink() const
  2599    { return this->is_sink_; }
  2600  
  2601    void
  2602    set_is_sink()
  2603    { this->is_sink_ = true; }
  2604  
  2605    // Traverse the expression.
  2606    int
  2607    traverse_expression(Traverse*);
  2608  
  2609    // Determine the type of the constant if necessary.
  2610    void
  2611    determine_type();
  2612  
  2613    // Indicate that we found and reported an error for this constant.
  2614    void
  2615    set_error();
  2616  
  2617    // Export the constant.
  2618    void
  2619    export_const(Export*, const std::string& name) const;
  2620  
  2621    // Import a constant.
  2622    static void
  2623    import_const(Import*, std::string*, Type**, Expression**);
  2624  
  2625    // Get the backend representation of the constant value.
  2626    Bexpression*
  2627    get_backend(Gogo*, Named_object*);
  2628  
  2629   private:
  2630    // The type of the constant.
  2631    Type* type_;
  2632    // The expression for the constant.
  2633    Expression* expr_;
  2634    // If the predeclared constant iota is used in EXPR_, this is the
  2635    // value it will have.  We do this because at parse time we don't
  2636    // know whether the name "iota" will refer to the predeclared
  2637    // constant or to something else.  We put in the right value in when
  2638    // we lower.
  2639    int iota_value_;
  2640    // The location of the definition.
  2641    Location location_;
  2642    // Whether we are currently lowering this constant.
  2643    bool lowering_;
  2644    // Whether this constant is blank named and needs only type checking.
  2645    bool is_sink_;
  2646    // The backend representation of the constant value.
  2647    Bexpression* bconst_;
  2648  };
  2649  
  2650  // A type declaration.
  2651  
  2652  class Type_declaration
  2653  {
  2654   public:
  2655    Type_declaration(Location location)
  2656      : location_(location), in_function_(NULL), in_function_index_(0),
  2657        methods_(), issued_warning_(false)
  2658    { }
  2659  
  2660    // Return the location.
  2661    Location
  2662    location() const
  2663    { return this->location_; }
  2664  
  2665    // Return the function in which this type is declared.  This will
  2666    // return NULL for a type declared in global scope.
  2667    Named_object*
  2668    in_function(unsigned int* pindex)
  2669    {
  2670      *pindex = this->in_function_index_;
  2671      return this->in_function_;
  2672    }
  2673  
  2674    // Set the function in which this type is declared.
  2675    void
  2676    set_in_function(Named_object* f, unsigned int index)
  2677    {
  2678      this->in_function_ = f;
  2679      this->in_function_index_ = index;
  2680    }
  2681  
  2682    // Add a method to this type.  This is used when methods are defined
  2683    // before the type.
  2684    Named_object*
  2685    add_method(const std::string& name, Function* function);
  2686  
  2687    // Add a method declaration to this type.
  2688    Named_object*
  2689    add_method_declaration(const std::string& name, Package*,
  2690  			 Function_type* type, Location location);
  2691  
  2692    // Add an already created object as a method.
  2693    void
  2694    add_existing_method(Named_object* no)
  2695    { this->methods_.push_back(no); }
  2696  
  2697    // Return whether any methods were defined.
  2698    bool
  2699    has_methods() const;
  2700  
  2701    // Return the methods.
  2702    const std::vector<Named_object*>*
  2703    methods() const
  2704    { return &this->methods_; }
  2705  
  2706    // Define methods when the real type is known.
  2707    void
  2708    define_methods(Named_type*);
  2709  
  2710    // This is called if we are trying to use this type.  It returns
  2711    // true if we should issue a warning.
  2712    bool
  2713    using_type();
  2714  
  2715   private:
  2716    // The location of the type declaration.
  2717    Location location_;
  2718    // If this type is declared in a function, a pointer back to the
  2719    // function in which it is defined.
  2720    Named_object* in_function_;
  2721    // The index of this type in IN_FUNCTION_.
  2722    unsigned int in_function_index_;
  2723    // Methods defined before the type is defined.
  2724    std::vector<Named_object*> methods_;
  2725    // True if we have issued a warning about a use of this type
  2726    // declaration when it is undefined.
  2727    bool issued_warning_;
  2728  };
  2729  
  2730  // An unknown object.  These are created by the parser for forward
  2731  // references to names which have not been seen before.  In a correct
  2732  // program, these will always point to a real definition by the end of
  2733  // the parse.  Because they point to another Named_object, these may
  2734  // only be referenced by Unknown_expression objects.
  2735  
  2736  class Unknown_name
  2737  {
  2738   public:
  2739    Unknown_name(Location location)
  2740      : location_(location), real_named_object_(NULL)
  2741    { }
  2742  
  2743    // Return the location where this name was first seen.
  2744    Location
  2745    location() const
  2746    { return this->location_; }
  2747  
  2748    // Return the real named object that this points to, or NULL if it
  2749    // was never resolved.
  2750    Named_object*
  2751    real_named_object() const
  2752    { return this->real_named_object_; }
  2753  
  2754    // Set the real named object that this points to.
  2755    void
  2756    set_real_named_object(Named_object* no);
  2757  
  2758   private:
  2759    // The location where this name was first seen.
  2760    Location location_;
  2761    // The real named object when it is known.
  2762    Named_object*
  2763    real_named_object_;
  2764  };
  2765  
  2766  // A named object named.  This is the result of a declaration.  We
  2767  // don't use a superclass because they all have to be handled
  2768  // differently.
  2769  
  2770  class Named_object
  2771  {
  2772   public:
  2773    enum Classification
  2774    {
  2775      // An uninitialized Named_object.  We should never see this.
  2776      NAMED_OBJECT_UNINITIALIZED,
  2777      // An erroneous name.  This indicates a parse error, to avoid
  2778      // later errors about undefined references.
  2779      NAMED_OBJECT_ERRONEOUS,
  2780      // An unknown name.  This is used for forward references.  In a
  2781      // correct program, these will all be resolved by the end of the
  2782      // parse.
  2783      NAMED_OBJECT_UNKNOWN,
  2784      // A const.
  2785      NAMED_OBJECT_CONST,
  2786      // A type.
  2787      NAMED_OBJECT_TYPE,
  2788      // A forward type declaration.
  2789      NAMED_OBJECT_TYPE_DECLARATION,
  2790      // A var.
  2791      NAMED_OBJECT_VAR,
  2792      // A result variable in a function.
  2793      NAMED_OBJECT_RESULT_VAR,
  2794      // The blank identifier--the special variable named _.
  2795      NAMED_OBJECT_SINK,
  2796      // A func.
  2797      NAMED_OBJECT_FUNC,
  2798      // A forward func declaration.
  2799      NAMED_OBJECT_FUNC_DECLARATION,
  2800      // A package.
  2801      NAMED_OBJECT_PACKAGE
  2802    };
  2803  
  2804    // Return the classification.
  2805    Classification
  2806    classification() const
  2807    { return this->classification_; }
  2808  
  2809    // Classifiers.
  2810  
  2811    bool
  2812    is_erroneous() const
  2813    { return this->classification_ == NAMED_OBJECT_ERRONEOUS; }
  2814  
  2815    bool
  2816    is_unknown() const
  2817    { return this->classification_ == NAMED_OBJECT_UNKNOWN; }
  2818  
  2819    bool
  2820    is_const() const
  2821    { return this->classification_ == NAMED_OBJECT_CONST; }
  2822  
  2823    bool
  2824    is_type() const
  2825    { return this->classification_ == NAMED_OBJECT_TYPE; }
  2826  
  2827    bool
  2828    is_type_declaration() const
  2829    { return this->classification_ == NAMED_OBJECT_TYPE_DECLARATION; }
  2830  
  2831    bool
  2832    is_variable() const
  2833    { return this->classification_ == NAMED_OBJECT_VAR; }
  2834  
  2835    bool
  2836    is_result_variable() const
  2837    { return this->classification_ == NAMED_OBJECT_RESULT_VAR; }
  2838  
  2839    bool
  2840    is_sink() const
  2841    { return this->classification_ == NAMED_OBJECT_SINK; }
  2842  
  2843    bool
  2844    is_function() const
  2845    { return this->classification_ == NAMED_OBJECT_FUNC; }
  2846  
  2847    bool
  2848    is_function_declaration() const
  2849    { return this->classification_ == NAMED_OBJECT_FUNC_DECLARATION; }
  2850  
  2851    bool
  2852    is_package() const
  2853    { return this->classification_ == NAMED_OBJECT_PACKAGE; }
  2854  
  2855    // Creators.
  2856  
  2857    static Named_object*
  2858    make_erroneous_name(const std::string& name)
  2859    { return new Named_object(name, NULL, NAMED_OBJECT_ERRONEOUS); }
  2860  
  2861    static Named_object*
  2862    make_unknown_name(const std::string& name, Location);
  2863  
  2864    static Named_object*
  2865    make_constant(const Typed_identifier&, const Package*, Expression*,
  2866  		int iota_value);
  2867  
  2868    static Named_object*
  2869    make_type(const std::string&, const Package*, Type*, Location);
  2870  
  2871    static Named_object*
  2872    make_type_declaration(const std::string&, const Package*, Location);
  2873  
  2874    static Named_object*
  2875    make_variable(const std::string&, const Package*, Variable*);
  2876  
  2877    static Named_object*
  2878    make_result_variable(const std::string&, Result_variable*);
  2879  
  2880    static Named_object*
  2881    make_sink();
  2882  
  2883    static Named_object*
  2884    make_function(const std::string&, const Package*, Function*);
  2885  
  2886    static Named_object*
  2887    make_function_declaration(const std::string&, const Package*, Function_type*,
  2888  			    Location);
  2889  
  2890    static Named_object*
  2891    make_package(const std::string& alias, Package* package);
  2892  
  2893    // Getters.
  2894  
  2895    Unknown_name*
  2896    unknown_value()
  2897    {
  2898      go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
  2899      return this->u_.unknown_value;
  2900    }
  2901  
  2902    const Unknown_name*
  2903    unknown_value() const
  2904    {
  2905      go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
  2906      return this->u_.unknown_value;
  2907    }
  2908  
  2909    Named_constant*
  2910    const_value()
  2911    {
  2912      go_assert(this->classification_ == NAMED_OBJECT_CONST);
  2913      return this->u_.const_value;
  2914    }
  2915  
  2916    const Named_constant*
  2917    const_value() const
  2918    {
  2919      go_assert(this->classification_ == NAMED_OBJECT_CONST);
  2920      return this->u_.const_value;
  2921    }
  2922  
  2923    Named_type*
  2924    type_value()
  2925    {
  2926      go_assert(this->classification_ == NAMED_OBJECT_TYPE);
  2927      return this->u_.type_value;
  2928    }
  2929  
  2930    const Named_type*
  2931    type_value() const
  2932    {
  2933      go_assert(this->classification_ == NAMED_OBJECT_TYPE);
  2934      return this->u_.type_value;
  2935    }
  2936  
  2937    Type_declaration*
  2938    type_declaration_value()
  2939    {
  2940      go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
  2941      return this->u_.type_declaration;
  2942    }
  2943  
  2944    const Type_declaration*
  2945    type_declaration_value() const
  2946    {
  2947      go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
  2948      return this->u_.type_declaration;
  2949    }
  2950  
  2951    Variable*
  2952    var_value()
  2953    {
  2954      go_assert(this->classification_ == NAMED_OBJECT_VAR);
  2955      return this->u_.var_value;
  2956    }
  2957  
  2958    const Variable*
  2959    var_value() const
  2960    {
  2961      go_assert(this->classification_ == NAMED_OBJECT_VAR);
  2962      return this->u_.var_value;
  2963    }
  2964  
  2965    Result_variable*
  2966    result_var_value()
  2967    {
  2968      go_assert(this->classification_ == NAMED_OBJECT_RESULT_VAR);
  2969      return this->u_.result_var_value;
  2970    }
  2971  
  2972    const Result_variable*
  2973    result_var_value() const
  2974    {
  2975      go_assert(this->classification_ == NAMED_OBJECT_RESULT_VAR);
  2976      return this->u_.result_var_value;
  2977    }
  2978  
  2979    Function*
  2980    func_value()
  2981    {
  2982      go_assert(this->classification_ == NAMED_OBJECT_FUNC);
  2983      return this->u_.func_value;
  2984    }
  2985  
  2986    const Function*
  2987    func_value() const
  2988    {
  2989      go_assert(this->classification_ == NAMED_OBJECT_FUNC);
  2990      return this->u_.func_value;
  2991    }
  2992  
  2993    Function_declaration*
  2994    func_declaration_value()
  2995    {
  2996      go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
  2997      return this->u_.func_declaration_value;
  2998    }
  2999  
  3000    const Function_declaration*
  3001    func_declaration_value() const
  3002    {
  3003      go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
  3004      return this->u_.func_declaration_value;
  3005    }
  3006  
  3007    Package*
  3008    package_value()
  3009    {
  3010      go_assert(this->classification_ == NAMED_OBJECT_PACKAGE);
  3011      return this->u_.package_value;
  3012    }
  3013  
  3014    const Package*
  3015    package_value() const
  3016    {
  3017      go_assert(this->classification_ == NAMED_OBJECT_PACKAGE);
  3018      return this->u_.package_value;
  3019    }
  3020  
  3021    const std::string&
  3022    name() const
  3023    { return this->name_; }
  3024  
  3025    // Return the name to use in an error message.  The difference is
  3026    // that if this Named_object is defined in a different package, this
  3027    // will return PACKAGE.NAME.
  3028    std::string
  3029    message_name() const;
  3030  
  3031    const Package*
  3032    package() const
  3033    { return this->package_; }
  3034  
  3035    // Resolve an unknown value if possible.  This returns the same
  3036    // Named_object or a new one.
  3037    Named_object*
  3038    resolve()
  3039    {
  3040      Named_object* ret = this;
  3041      if (this->is_unknown())
  3042        {
  3043  	Named_object* r = this->unknown_value()->real_named_object();
  3044  	if (r != NULL)
  3045  	  ret = r;
  3046        }
  3047      return ret;
  3048    }
  3049  
  3050    const Named_object*
  3051    resolve() const
  3052    {
  3053      const Named_object* ret = this;
  3054      if (this->is_unknown())
  3055        {
  3056  	const Named_object* r = this->unknown_value()->real_named_object();
  3057  	if (r != NULL)
  3058  	  ret = r;
  3059        }
  3060      return ret;
  3061    }
  3062  
  3063    // The location where this object was defined or referenced.
  3064    Location
  3065    location() const;
  3066  
  3067    // Traverse a Named_object.
  3068    int
  3069    traverse(Traverse*, bool is_global);
  3070  
  3071    // Convert a variable to the backend representation.
  3072    Bvariable*
  3073    get_backend_variable(Gogo*, Named_object* function);
  3074  
  3075    // Get the backend representation of this object.
  3076    void
  3077    get_backend(Gogo*, std::vector<Bexpression*>&, std::vector<Btype*>&,
  3078                std::vector<Bfunction*>&);
  3079  
  3080    // Define a type declaration.
  3081    void
  3082    set_type_value(Named_type*);
  3083  
  3084    // Define a function declaration.
  3085    void
  3086    set_function_value(Function*);
  3087  
  3088    // Declare an unknown name as a type declaration.
  3089    void
  3090    declare_as_type();
  3091  
  3092    // Export this object.
  3093    void
  3094    export_named_object(Export*) const;
  3095  
  3096    // Mark this named object as an invalid redefinition of another object.
  3097    void
  3098    set_is_redefinition()
  3099    { this->is_redefinition_ = true; }
  3100  
  3101    // Return whether or not this object is a invalid redefinition of another
  3102    // object.
  3103    bool
  3104    is_redefinition() const
  3105    { return this->is_redefinition_; }
  3106  
  3107   private:
  3108    Named_object(const std::string&, const Package*, Classification);
  3109  
  3110    // The name of the object.
  3111    std::string name_;
  3112    // The package that this object is in.  This is NULL if it is in the
  3113    // file we are compiling.
  3114    const Package* package_;
  3115    // The type of object this is.
  3116    Classification classification_;
  3117    // The real data.
  3118    union
  3119    {
  3120      Unknown_name* unknown_value;
  3121      Named_constant* const_value;
  3122      Named_type* type_value;
  3123      Type_declaration* type_declaration;
  3124      Variable* var_value;
  3125      Result_variable* result_var_value;
  3126      Function* func_value;
  3127      Function_declaration* func_declaration_value;
  3128      Package* package_value;
  3129    } u_;
  3130    // True if this object is an invalid redefinition of another object.
  3131    bool is_redefinition_;
  3132  };
  3133  
  3134  // A binding contour.  This binds names to objects.
  3135  
  3136  class Bindings
  3137  {
  3138   public:
  3139    // Type for mapping from names to objects.
  3140    typedef Unordered_map(std::string, Named_object*) Contour;
  3141  
  3142    Bindings(Bindings* enclosing);
  3143  
  3144    // Add an erroneous name.
  3145    Named_object*
  3146    add_erroneous_name(const std::string& name)
  3147    { return this->add_named_object(Named_object::make_erroneous_name(name)); }
  3148  
  3149    // Add an unknown name.
  3150    Named_object*
  3151    add_unknown_name(const std::string& name, Location location)
  3152    {
  3153      return this->add_named_object(Named_object::make_unknown_name(name,
  3154  								  location));
  3155    }
  3156  
  3157    // Add a constant.
  3158    Named_object*
  3159    add_constant(const Typed_identifier& tid, const Package* package,
  3160  	       Expression* expr, int iota_value)
  3161    {
  3162      return this->add_named_object(Named_object::make_constant(tid, package,
  3163  							      expr,
  3164  							      iota_value));
  3165    }
  3166  
  3167    // Add a type.
  3168    Named_object*
  3169    add_type(const std::string& name, const Package* package, Type* type,
  3170  	   Location location)
  3171    {
  3172      return this->add_named_object(Named_object::make_type(name, package, type,
  3173  							  location));
  3174    }
  3175  
  3176    // Add a named type.  This is used for builtin types, and to add an
  3177    // imported type to the global scope.
  3178    Named_object*
  3179    add_named_type(Named_type* named_type);
  3180  
  3181    // Add a type declaration.
  3182    Named_object*
  3183    add_type_declaration(const std::string& name, const Package* package,
  3184  		       Location location)
  3185    {
  3186      Named_object* no = Named_object::make_type_declaration(name, package,
  3187  							   location);
  3188      return this->add_named_object(no);
  3189    }
  3190  
  3191    // Add a variable.
  3192    Named_object*
  3193    add_variable(const std::string& name, const Package* package,
  3194  	       Variable* variable)
  3195    {
  3196      return this->add_named_object(Named_object::make_variable(name, package,
  3197  							      variable));
  3198    }
  3199  
  3200    // Add a result variable.
  3201    Named_object*
  3202    add_result_variable(const std::string& name, Result_variable* result)
  3203    {
  3204      return this->add_named_object(Named_object::make_result_variable(name,
  3205  								     result));
  3206    }
  3207  
  3208    // Add a function.
  3209    Named_object*
  3210    add_function(const std::string& name, const Package*, Function* function);
  3211  
  3212    // Add a function declaration.
  3213    Named_object*
  3214    add_function_declaration(const std::string& name, const Package* package,
  3215  			   Function_type* type, Location location);
  3216  
  3217    // Add a package.  The location is the location of the import
  3218    // statement.
  3219    Named_object*
  3220    add_package(const std::string& alias, Package* package)
  3221    {
  3222      Named_object* no = Named_object::make_package(alias, package);
  3223      return this->add_named_object(no);
  3224    }
  3225  
  3226    // Define a type which was already declared.
  3227    void
  3228    define_type(Named_object*, Named_type*);
  3229  
  3230    // Add a method to the list of objects.  This is not added to the
  3231    // lookup table.
  3232    void
  3233    add_method(Named_object*);
  3234  
  3235    // Add a named object to this binding.
  3236    Named_object*
  3237    add_named_object(Named_object* no)
  3238    { return this->add_named_object_to_contour(&this->bindings_, no); }
  3239  
  3240    // Clear all names in file scope from the bindings.
  3241    void
  3242    clear_file_scope(Gogo*);
  3243  
  3244    // Look up a name in this binding contour and in any enclosing
  3245    // binding contours.  This returns NULL if the name is not found.
  3246    Named_object*
  3247    lookup(const std::string&) const;
  3248  
  3249    // Look up a name in this binding contour without looking in any
  3250    // enclosing binding contours.  Returns NULL if the name is not found.
  3251    Named_object*
  3252    lookup_local(const std::string&) const;
  3253  
  3254    // Remove a name.
  3255    void
  3256    remove_binding(Named_object*);
  3257  
  3258    // Mark all variables as used.  This is used for some types of parse
  3259    // error.
  3260    void
  3261    mark_locals_used();
  3262  
  3263    // Traverse the tree.  See the Traverse class.
  3264    int
  3265    traverse(Traverse*, bool is_global);
  3266  
  3267    // Iterate over definitions.  This does not include things which
  3268    // were only declared.
  3269  
  3270    typedef std::vector<Named_object*>::const_iterator
  3271      const_definitions_iterator;
  3272  
  3273    const_definitions_iterator
  3274    begin_definitions() const
  3275    { return this->named_objects_.begin(); }
  3276  
  3277    const_definitions_iterator
  3278    end_definitions() const
  3279    { return this->named_objects_.end(); }
  3280  
  3281    // Return the number of definitions.
  3282    size_t
  3283    size_definitions() const
  3284    { return this->named_objects_.size(); }
  3285  
  3286    // Return whether there are no definitions.
  3287    bool
  3288    empty_definitions() const
  3289    { return this->named_objects_.empty(); }
  3290  
  3291    // Iterate over declarations.  This is everything that has been
  3292    // declared, which includes everything which has been defined.
  3293  
  3294    typedef Contour::const_iterator const_declarations_iterator;
  3295  
  3296    const_declarations_iterator
  3297    begin_declarations() const
  3298    { return this->bindings_.begin(); }
  3299  
  3300    const_declarations_iterator
  3301    end_declarations() const
  3302    { return this->bindings_.end(); }
  3303  
  3304    // Return the number of declarations.
  3305    size_t
  3306    size_declarations() const
  3307    { return this->bindings_.size(); }
  3308  
  3309    // Return whether there are no declarations.
  3310    bool
  3311    empty_declarations() const
  3312    { return this->bindings_.empty(); }
  3313  
  3314    // Return the first declaration.
  3315    Named_object*
  3316    first_declaration()
  3317    { return this->bindings_.empty() ? NULL : this->bindings_.begin()->second; }
  3318  
  3319    // Dump to stderr for debugging
  3320    void debug_dump();
  3321  
  3322   private:
  3323    Named_object*
  3324    add_named_object_to_contour(Contour*, Named_object*);
  3325  
  3326    Named_object*
  3327    new_definition(Named_object*, Named_object*);
  3328  
  3329    // Enclosing bindings.
  3330    Bindings* enclosing_;
  3331    // The list of objects.
  3332    std::vector<Named_object*> named_objects_;
  3333    // The mapping from names to objects.
  3334    Contour bindings_;
  3335  };
  3336  
  3337  // A label.
  3338  
  3339  class Label
  3340  {
  3341   public:
  3342    Label(const std::string& name)
  3343      : name_(name), location_(Linemap::unknown_location()), snapshot_(NULL),
  3344        refs_(), is_used_(false), blabel_(NULL), depth_(DEPTH_UNKNOWN)
  3345    { }
  3346  
  3347    // Return the label's name.
  3348    const std::string&
  3349    name() const
  3350    { return this->name_; }
  3351  
  3352    // Return whether the label has been defined.
  3353    bool
  3354    is_defined() const
  3355    { return !Linemap::is_unknown_location(this->location_); }
  3356  
  3357    // Return whether the label has been used.
  3358    bool
  3359    is_used() const
  3360    { return this->is_used_; }
  3361  
  3362    // Record that the label is used.
  3363    void
  3364    set_is_used()
  3365    { this->is_used_ = true; }
  3366  
  3367    // Return whether this label is looping.
  3368    bool
  3369    looping() const
  3370    { return this->depth_ == DEPTH_LOOPING; }
  3371  
  3372    // Set this label as looping.
  3373    void
  3374    set_looping()
  3375    { this->depth_ = DEPTH_LOOPING; }
  3376  
  3377    // Return whether this label is nonlooping.
  3378    bool
  3379    nonlooping() const
  3380    { return this->depth_ == DEPTH_NONLOOPING; }
  3381  
  3382    // Set this label as nonlooping.
  3383    void
  3384    set_nonlooping()
  3385    { this->depth_ = DEPTH_NONLOOPING; }
  3386  
  3387    // Return the location of the definition.
  3388    Location
  3389    location() const
  3390    { return this->location_; }
  3391  
  3392    // Return the bindings snapshot.
  3393    Bindings_snapshot*
  3394    snapshot() const
  3395    { return this->snapshot_; }
  3396  
  3397    // Add a snapshot of a goto which refers to this label.
  3398    void
  3399    add_snapshot_ref(Bindings_snapshot* snapshot)
  3400    {
  3401      go_assert(Linemap::is_unknown_location(this->location_));
  3402      this->refs_.push_back(snapshot);
  3403    }
  3404  
  3405    // Return the list of snapshots of goto statements which refer to
  3406    // this label.
  3407    const std::vector<Bindings_snapshot*>&
  3408    refs() const
  3409    { return this->refs_; }
  3410  
  3411    // Clear the references.
  3412    void
  3413    clear_refs();
  3414  
  3415    // Define the label at LOCATION with the given bindings snapshot.
  3416    void
  3417    define(Location location, Bindings_snapshot* snapshot)
  3418    {
  3419      if (this->is_dummy_label())
  3420        return;
  3421      go_assert(Linemap::is_unknown_location(this->location_)
  3422                && this->snapshot_ == NULL);
  3423      this->location_ = location;
  3424      this->snapshot_ = snapshot;
  3425    }
  3426  
  3427    // Return the backend representation for this label.
  3428    Blabel*
  3429    get_backend_label(Translate_context*);
  3430  
  3431    // Return an expression for the address of this label.  This is used
  3432    // to get the return address of a deferred function to see whether
  3433    // the function may call recover.
  3434    Bexpression*
  3435    get_addr(Translate_context*, Location location);
  3436  
  3437    // Return a dummy label, representing any instance of the blank label.
  3438    static Label*
  3439    create_dummy_label();
  3440  
  3441    // Return TRUE if this is a dummy label.
  3442    bool
  3443    is_dummy_label() const
  3444    { return this->name_ == "_"; }
  3445  
  3446    // A classification of a label's looping depth.
  3447    enum Loop_depth
  3448    {
  3449      DEPTH_UNKNOWN,
  3450      // A label never jumped to.
  3451      DEPTH_NONLOOPING,
  3452      // A label jumped to.
  3453      DEPTH_LOOPING
  3454    };
  3455  
  3456   private:
  3457    // The name of the label.
  3458    std::string name_;
  3459    // The location of the definition.  This is 0 if the label has not
  3460    // yet been defined.
  3461    Location location_;
  3462    // A snapshot of the set of bindings defined at this label, used to
  3463    // issue errors about invalid goto statements.
  3464    Bindings_snapshot* snapshot_;
  3465    // A list of snapshots of goto statements which refer to this label.
  3466    std::vector<Bindings_snapshot*> refs_;
  3467    // Whether the label has been used.
  3468    bool is_used_;
  3469    // The backend representation.
  3470    Blabel* blabel_;
  3471    // The looping depth of this label, for escape analysis.
  3472    Loop_depth depth_;
  3473  };
  3474  
  3475  // An unnamed label.  These are used when lowering loops.
  3476  
  3477  class Unnamed_label
  3478  {
  3479   public:
  3480    Unnamed_label(Location location)
  3481      : location_(location), derived_from_(NULL), blabel_(NULL)
  3482    { }
  3483  
  3484    // Get the location where the label is defined.
  3485    Location
  3486    location() const
  3487    { return this->location_; }
  3488  
  3489    // Set the location where the label is defined.
  3490    void
  3491    set_location(Location location)
  3492    { this->location_ = location; }
  3493  
  3494    // Get the top level statement this unnamed label is derived from.
  3495    Statement*
  3496    derived_from() const
  3497    { return this->derived_from_; }
  3498  
  3499    // Set the top level statement this unnamed label is derived from.
  3500    void
  3501    set_derived_from(Statement* s)
  3502    { this->derived_from_ = s; }
  3503  
  3504    // Return a statement which defines this label.
  3505    Bstatement*
  3506    get_definition(Translate_context*);
  3507  
  3508    // Return a goto to this label from LOCATION.
  3509    Bstatement*
  3510    get_goto(Translate_context*, Location location);
  3511  
  3512   private:
  3513    // Return the backend representation.
  3514    Blabel*
  3515    get_blabel(Translate_context*);
  3516  
  3517    // The location where the label is defined.
  3518    Location location_;
  3519    // The top-level statement this unnamed label was derived/lowered from.
  3520    // This is NULL is this label is not the top-level of a lowered statement.
  3521    Statement* derived_from_;
  3522    // The backend representation of this label.
  3523    Blabel* blabel_;
  3524  };
  3525  
  3526  // An alias for an imported package.
  3527  
  3528  class Package_alias
  3529  {
  3530   public:
  3531    Package_alias(Location location)
  3532        : location_(location), used_(0)
  3533    { }
  3534  
  3535    // The location of the import statement.
  3536    Location
  3537    location()
  3538    { return this->location_; }
  3539  
  3540    // How many symbols from the package were used under this alias.
  3541    size_t
  3542    used() const
  3543    { return this->used_; }
  3544  
  3545    // Note that some symbol was used under this alias.
  3546    void
  3547    note_usage()
  3548    { this->used_++; }
  3549  
  3550   private:
  3551    // The location of the import statement.
  3552    Location location_;
  3553    // The amount of times some name from this package was used under this alias.
  3554    size_t used_;
  3555  };
  3556  
  3557  // An imported package.
  3558  
  3559  class Package
  3560  {
  3561   public:
  3562    Package(const std::string& pkgpath, const std::string& pkgpath_symbol,
  3563  	  Location location);
  3564  
  3565    // Get the package path used for all symbols exported from this
  3566    // package.
  3567    const std::string&
  3568    pkgpath() const
  3569    { return this->pkgpath_; }
  3570  
  3571    // Return the package path to use for a symbol name.
  3572    std::string
  3573    pkgpath_symbol() const;
  3574  
  3575    // Set the package path symbol.
  3576    void
  3577    set_pkgpath_symbol(const std::string&);
  3578  
  3579    // Return the location of the most recent import statement.
  3580    Location
  3581    location() const
  3582    { return this->location_; }
  3583  
  3584    // Return whether we know the name of this package yet.
  3585    bool
  3586    has_package_name() const
  3587    { return !this->package_name_.empty(); }
  3588  
  3589    // The name that this package uses in its package clause.  This may
  3590    // be different from the name in the associated Named_object if the
  3591    // import statement used an alias.
  3592    const std::string&
  3593    package_name() const
  3594    {
  3595      go_assert(!this->package_name_.empty());
  3596      return this->package_name_;
  3597    }
  3598  
  3599    // Return the bindings.
  3600    Bindings*
  3601    bindings() const
  3602    { return this->bindings_; }
  3603  
  3604    // Type used to map import names to package aliases.
  3605    typedef std::map<std::string, Package_alias*> Aliases;
  3606  
  3607    // Return the set of package aliases.
  3608    const Aliases&
  3609    aliases() const
  3610    { return this->aliases_; }
  3611  
  3612    // Note that some symbol from this package was used and qualified by ALIAS.
  3613    // For dot imports, the ALIAS should be ".PACKAGE_NAME".
  3614    void
  3615    note_usage(const std::string& alias) const;
  3616  
  3617    // Note that USAGE might be a fake usage of this package.
  3618    void
  3619    note_fake_usage(Expression* usage) const
  3620    { this->fake_uses_.insert(usage); }
  3621  
  3622    // Forget a given USAGE of this package.
  3623    void
  3624    forget_usage(Expression* usage) const;
  3625  
  3626    // Clear the used field for the next file.
  3627    void
  3628    clear_used();
  3629  
  3630    // Look up a name in the package.  Returns NULL if the name is not
  3631    // found.
  3632    Named_object*
  3633    lookup(const std::string& name) const
  3634    { return this->bindings_->lookup(name); }
  3635  
  3636    // Set the name of the package.
  3637    void
  3638    set_package_name(const std::string& name, Location);
  3639  
  3640    // Set the location of the package.  This is used to record the most
  3641    // recent import location.
  3642    void
  3643    set_location(Location location)
  3644    { this->location_ = location; }
  3645  
  3646    // Add a package name as an ALIAS for this package.
  3647    Package_alias*
  3648    add_alias(const std::string& alias, Location);
  3649  
  3650    // Add a constant to the package.
  3651    Named_object*
  3652    add_constant(const Typed_identifier& tid, Expression* expr)
  3653    { return this->bindings_->add_constant(tid, this, expr, 0); }
  3654  
  3655    // Add a type to the package.
  3656    Named_object*
  3657    add_type(const std::string& name, Type* type, Location location)
  3658    { return this->bindings_->add_type(name, this, type, location); }
  3659  
  3660    // Add a type declaration to the package.
  3661    Named_object*
  3662    add_type_declaration(const std::string& name, Location location)
  3663    { return this->bindings_->add_type_declaration(name, this, location); }
  3664  
  3665    // Add a variable to the package.
  3666    Named_object*
  3667    add_variable(const std::string& name, Variable* variable)
  3668    { return this->bindings_->add_variable(name, this, variable); }
  3669  
  3670    // Add a function declaration to the package.
  3671    Named_object*
  3672    add_function_declaration(const std::string& name, Function_type* type,
  3673  			   Location loc)
  3674    { return this->bindings_->add_function_declaration(name, this, type, loc); }
  3675  
  3676    // Determine types of constants.
  3677    void
  3678    determine_types();
  3679  
  3680   private:
  3681    // The package path for type reflection data.
  3682    std::string pkgpath_;
  3683    // The package path for symbol names.
  3684    std::string pkgpath_symbol_;
  3685    // The name that this package uses in the package clause.  This may
  3686    // be the empty string if it is not yet known.
  3687    std::string package_name_;
  3688    // The names in this package.
  3689    Bindings* bindings_;
  3690    // The location of the most recent import statement.
  3691    Location location_;
  3692    // The set of aliases associated with this package.
  3693    Aliases aliases_;
  3694    // A set of possibly fake uses of this package. This is mutable because we
  3695    // can track fake uses of a package even if we have a const pointer to it.
  3696    mutable std::set<Expression*> fake_uses_;
  3697  };
  3698  
  3699  // Return codes for the traversal functions.  This is not an enum
  3700  // because we want to be able to declare traversal functions in other
  3701  // header files without including this one.
  3702  
  3703  // Continue traversal as usual.
  3704  const int TRAVERSE_CONTINUE = -1;
  3705  
  3706  // Exit traversal.
  3707  const int TRAVERSE_EXIT = 0;
  3708  
  3709  // Continue traversal, but skip components of the current object.
  3710  // E.g., if this is returned by Traverse::statement, we do not
  3711  // traverse the expressions in the statement even if
  3712  // traverse_expressions is set in the traverse_mask.
  3713  const int TRAVERSE_SKIP_COMPONENTS = 1;
  3714  
  3715  // This class is used when traversing the parse tree.  The caller uses
  3716  // a subclass which overrides functions as desired.
  3717  
  3718  class Traverse
  3719  {
  3720   public:
  3721    // These bitmasks say what to traverse.
  3722    static const unsigned int traverse_variables =          0x1;
  3723    static const unsigned int traverse_constants =          0x2;
  3724    static const unsigned int traverse_functions =          0x4;
  3725    static const unsigned int traverse_blocks =             0x8;
  3726    static const unsigned int traverse_statements =        0x10;
  3727    static const unsigned int traverse_expressions =       0x20;
  3728    static const unsigned int traverse_types =             0x40;
  3729    static const unsigned int traverse_func_declarations = 0x80;
  3730  
  3731    Traverse(unsigned int traverse_mask)
  3732      : traverse_mask_(traverse_mask), types_seen_(NULL), expressions_seen_(NULL)
  3733    { }
  3734  
  3735    virtual ~Traverse();
  3736  
  3737    // The bitmask of what to traverse.
  3738    unsigned int
  3739    traverse_mask() const
  3740    { return this->traverse_mask_; }
  3741  
  3742    // Record that we are going to traverse a type.  This returns true
  3743    // if the type has already been seen in this traversal.  This is
  3744    // required because types, unlike expressions, can form a circular
  3745    // graph.
  3746    bool
  3747    remember_type(const Type*);
  3748  
  3749    // Record that we are going to see an expression.  This returns true
  3750    // if the expression has already been seen in this traversal.  This
  3751    // is only needed for cases where multiple expressions can point to
  3752    // a single one.
  3753    bool
  3754    remember_expression(const Expression*);
  3755  
  3756    // These functions return one of the TRAVERSE codes defined above.
  3757  
  3758    // If traverse_variables is set in the mask, this is called for
  3759    // every variable in the tree.
  3760    virtual int
  3761    variable(Named_object*);
  3762  
  3763    // If traverse_constants is set in the mask, this is called for
  3764    // every named constant in the tree.  The bool parameter is true for
  3765    // a global constant.
  3766    virtual int
  3767    constant(Named_object*, bool);
  3768  
  3769    // If traverse_functions is set in the mask, this is called for
  3770    // every function in the tree.
  3771    virtual int
  3772    function(Named_object*);
  3773  
  3774    // If traverse_blocks is set in the mask, this is called for every
  3775    // block in the tree.
  3776    virtual int
  3777    block(Block*);
  3778  
  3779    // If traverse_statements is set in the mask, this is called for
  3780    // every statement in the tree.
  3781    virtual int
  3782    statement(Block*, size_t* index, Statement*);
  3783  
  3784    // If traverse_expressions is set in the mask, this is called for
  3785    // every expression in the tree.
  3786    virtual int
  3787    expression(Expression**);
  3788  
  3789    // If traverse_types is set in the mask, this is called for every
  3790    // type in the tree.
  3791    virtual int
  3792    type(Type*);
  3793  
  3794    // If traverse_func_declarations is set in the mask, this is called
  3795    // for every function declarations in the tree.
  3796    virtual int
  3797    function_declaration(Named_object*);
  3798  
  3799   private:
  3800    // A hash table for types we have seen during this traversal.  Note
  3801    // that this uses the default hash functions for pointers rather
  3802    // than Type_hash_identical and Type_identical.  This is because for
  3803    // traversal we care about seeing a specific type structure.  If
  3804    // there are two separate instances of identical types, we want to
  3805    // traverse both.
  3806    typedef Unordered_set(const Type*) Types_seen;
  3807  
  3808    typedef Unordered_set(const Expression*) Expressions_seen;
  3809  
  3810    // Bitmask of what sort of objects to traverse.
  3811    unsigned int traverse_mask_;
  3812    // Types which have been seen in this traversal.
  3813    Types_seen* types_seen_;
  3814    // Expressions which have been seen in this traversal.
  3815    Expressions_seen* expressions_seen_;
  3816  };
  3817  
  3818  // This class looks for interface types to finalize methods of inherited
  3819  // interfaces.
  3820  
  3821  class Finalize_methods : public Traverse
  3822  {
  3823   public:
  3824    Finalize_methods(Gogo* gogo)
  3825      : Traverse(traverse_types),
  3826        gogo_(gogo)
  3827    { }
  3828  
  3829    int
  3830    type(Type*);
  3831  
  3832   private:
  3833    Gogo* gogo_;
  3834  };
  3835  
  3836  // A class which makes it easier to insert new statements before the
  3837  // current statement during a traversal.
  3838  
  3839  class Statement_inserter
  3840  {
  3841   public:
  3842    typedef Unordered_set(Statement*) Statements;
  3843  
  3844    // Empty constructor.
  3845    Statement_inserter()
  3846        : block_(NULL), pindex_(NULL), gogo_(NULL), var_(NULL),
  3847          statements_added_(NULL)
  3848    { }
  3849  
  3850    // Constructor for a statement in a block.
  3851    Statement_inserter(Block* block, size_t *pindex, Statements *added = NULL)
  3852        : block_(block), pindex_(pindex), gogo_(NULL), var_(NULL),
  3853          statements_added_(added)
  3854    { }
  3855  
  3856    // Constructor for a global variable.
  3857    Statement_inserter(Gogo* gogo, Variable* var, Statements *added = NULL)
  3858        : block_(NULL), pindex_(NULL), gogo_(gogo), var_(var),
  3859          statements_added_(added)
  3860    { go_assert(var->is_global()); }
  3861  
  3862    // We use the default copy constructor and assignment operator.
  3863  
  3864    // Insert S before the statement we are traversing, or before the
  3865    // initialization expression of a global variable.
  3866    void
  3867    insert(Statement* s);
  3868  
  3869   private:
  3870    // The block that the statement is in.
  3871    Block* block_;
  3872    // The index of the statement that we are traversing.
  3873    size_t* pindex_;
  3874    // The IR, needed when looking at an initializer expression for a
  3875    // global variable.
  3876    Gogo* gogo_;
  3877    // The global variable, when looking at an initializer expression.
  3878    Variable* var_;
  3879    // If non-null, a set to record new statements inserted (non-owned).
  3880    Statements* statements_added_;
  3881  };
  3882  
  3883  // When translating the gogo IR into the backend data structure, this
  3884  // is the context we pass down the blocks and statements.
  3885  
  3886  class Translate_context
  3887  {
  3888   public:
  3889    Translate_context(Gogo* gogo, Named_object* function, Block* block,
  3890  		    Bblock* bblock)
  3891      : gogo_(gogo), backend_(gogo->backend()), function_(function),
  3892        block_(block), bblock_(bblock), is_const_(false)
  3893    { }
  3894  
  3895    // Accessors.
  3896  
  3897    Gogo*
  3898    gogo()
  3899    { return this->gogo_; }
  3900  
  3901    Backend*
  3902    backend()
  3903    { return this->backend_; }
  3904  
  3905    Named_object*
  3906    function()
  3907    { return this->function_; }
  3908  
  3909    Block*
  3910    block()
  3911    { return this->block_; }
  3912  
  3913    Bblock*
  3914    bblock()
  3915    { return this->bblock_; }
  3916  
  3917    bool
  3918    is_const()
  3919    { return this->is_const_; }
  3920  
  3921    // Make a constant context.
  3922    void
  3923    set_is_const()
  3924    { this->is_const_ = true; }
  3925  
  3926   private:
  3927    // The IR for the entire compilation unit.
  3928    Gogo* gogo_;
  3929    // The generator for the backend data structures.
  3930    Backend* backend_;
  3931    // The function we are currently translating.  NULL if not in a
  3932    // function, e.g., the initializer of a global variable.
  3933    Named_object* function_;
  3934    // The block we are currently translating.  NULL if not in a
  3935    // function.
  3936    Block *block_;
  3937    // The backend representation of the current block.  NULL if block_
  3938    // is NULL.
  3939    Bblock* bblock_;
  3940    // Whether this is being evaluated in a constant context.  This is
  3941    // used for type descriptor initializers.
  3942    bool is_const_;
  3943  };
  3944  
  3945  // This is used by some of the langhooks.
  3946  extern Gogo* go_get_gogo();
  3947  
  3948  // Whether we have seen any errors.  FIXME: Replace with a backend
  3949  // interface.
  3950  extern bool saw_errors();
  3951  
  3952  // For use in the debugger
  3953  extern void debug_go_gogo(Gogo*);
  3954  extern void debug_go_named_object(Named_object*);
  3955  extern void debug_go_bindings(Bindings*);
  3956  
  3957  
  3958  #endif // !defined(GO_GOGO_H)