github.com/sanprasirt/go@v0.0.0-20170607001320-a027466e4b6d/src/testing/benchmark.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package testing
     6  
     7  import (
     8  	"flag"
     9  	"fmt"
    10  	"internal/race"
    11  	"os"
    12  	"runtime"
    13  	"sync"
    14  	"sync/atomic"
    15  	"time"
    16  )
    17  
    18  var matchBenchmarks = flag.String("test.bench", "", "run only benchmarks matching `regexp`")
    19  var benchTime = flag.Duration("test.benchtime", 1*time.Second, "run each benchmark for duration `d`")
    20  var benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks")
    21  
    22  // Global lock to ensure only one benchmark runs at a time.
    23  var benchmarkLock sync.Mutex
    24  
    25  // Used for every benchmark for measuring memory.
    26  var memStats runtime.MemStats
    27  
    28  // An internal type but exported because it is cross-package; part of the implementation
    29  // of the "go test" command.
    30  type InternalBenchmark struct {
    31  	Name string
    32  	F    func(b *B)
    33  }
    34  
    35  // B is a type passed to Benchmark functions to manage benchmark
    36  // timing and to specify the number of iterations to run.
    37  //
    38  // A benchmark ends when its Benchmark function returns or calls any of the methods
    39  // FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called
    40  // only from the goroutine running the Benchmark function.
    41  // The other reporting methods, such as the variations of Log and Error,
    42  // may be called simultaneously from multiple goroutines.
    43  //
    44  // Like in tests, benchmark logs are accumulated during execution
    45  // and dumped to standard error when done. Unlike in tests, benchmark logs
    46  // are always printed, so as not to hide output whose existence may be
    47  // affecting benchmark results.
    48  type B struct {
    49  	common
    50  	importPath       string // import path of the package containing the benchmark
    51  	context          *benchContext
    52  	N                int
    53  	previousN        int           // number of iterations in the previous run
    54  	previousDuration time.Duration // total duration of the previous run
    55  	benchFunc        func(b *B)
    56  	benchTime        time.Duration
    57  	bytes            int64
    58  	missingBytes     bool // one of the subbenchmarks does not have bytes set.
    59  	timerOn          bool
    60  	showAllocResult  bool
    61  	result           BenchmarkResult
    62  	parallelism      int // RunParallel creates parallelism*GOMAXPROCS goroutines
    63  	// The initial states of memStats.Mallocs and memStats.TotalAlloc.
    64  	startAllocs uint64
    65  	startBytes  uint64
    66  	// The net total of this test after being run.
    67  	netAllocs uint64
    68  	netBytes  uint64
    69  }
    70  
    71  // StartTimer starts timing a test. This function is called automatically
    72  // before a benchmark starts, but it can also used to resume timing after
    73  // a call to StopTimer.
    74  func (b *B) StartTimer() {
    75  	if !b.timerOn {
    76  		if *benchmarkMemory || b.showAllocResult {
    77  			runtime.ReadMemStats(&memStats)
    78  			b.startAllocs = memStats.Mallocs
    79  			b.startBytes = memStats.TotalAlloc
    80  		}
    81  		b.start = time.Now()
    82  		b.timerOn = true
    83  	}
    84  }
    85  
    86  // StopTimer stops timing a test. This can be used to pause the timer
    87  // while performing complex initialization that you don't
    88  // want to measure.
    89  func (b *B) StopTimer() {
    90  	if b.timerOn {
    91  		b.duration += time.Now().Sub(b.start)
    92  		if *benchmarkMemory || b.showAllocResult {
    93  			runtime.ReadMemStats(&memStats)
    94  			b.netAllocs += memStats.Mallocs - b.startAllocs
    95  			b.netBytes += memStats.TotalAlloc - b.startBytes
    96  		}
    97  		b.timerOn = false
    98  	}
    99  }
   100  
   101  // ResetTimer zeros the elapsed benchmark time and memory allocation counters.
   102  // It does not affect whether the timer is running.
   103  func (b *B) ResetTimer() {
   104  	if b.timerOn {
   105  		if *benchmarkMemory || b.showAllocResult {
   106  			runtime.ReadMemStats(&memStats)
   107  			b.startAllocs = memStats.Mallocs
   108  			b.startBytes = memStats.TotalAlloc
   109  		}
   110  		b.start = time.Now()
   111  	}
   112  	b.duration = 0
   113  	b.netAllocs = 0
   114  	b.netBytes = 0
   115  }
   116  
   117  // SetBytes records the number of bytes processed in a single operation.
   118  // If this is called, the benchmark will report ns/op and MB/s.
   119  func (b *B) SetBytes(n int64) { b.bytes = n }
   120  
   121  // ReportAllocs enables malloc statistics for this benchmark.
   122  // It is equivalent to setting -test.benchmem, but it only affects the
   123  // benchmark function that calls ReportAllocs.
   124  func (b *B) ReportAllocs() {
   125  	b.showAllocResult = true
   126  }
   127  
   128  func (b *B) nsPerOp() int64 {
   129  	if b.N <= 0 {
   130  		return 0
   131  	}
   132  	return b.duration.Nanoseconds() / int64(b.N)
   133  }
   134  
   135  // runN runs a single benchmark for the specified number of iterations.
   136  func (b *B) runN(n int) {
   137  	benchmarkLock.Lock()
   138  	defer benchmarkLock.Unlock()
   139  	// Try to get a comparable environment for each run
   140  	// by clearing garbage from previous runs.
   141  	runtime.GC()
   142  	b.raceErrors = -race.Errors()
   143  	b.N = n
   144  	b.parallelism = 1
   145  	b.ResetTimer()
   146  	b.StartTimer()
   147  	b.benchFunc(b)
   148  	b.StopTimer()
   149  	b.previousN = n
   150  	b.previousDuration = b.duration
   151  	b.raceErrors += race.Errors()
   152  	if b.raceErrors > 0 {
   153  		b.Errorf("race detected during execution of benchmark")
   154  	}
   155  }
   156  
   157  func min(x, y int) int {
   158  	if x > y {
   159  		return y
   160  	}
   161  	return x
   162  }
   163  
   164  func max(x, y int) int {
   165  	if x < y {
   166  		return y
   167  	}
   168  	return x
   169  }
   170  
   171  // roundDown10 rounds a number down to the nearest power of 10.
   172  func roundDown10(n int) int {
   173  	var tens = 0
   174  	// tens = floor(log_10(n))
   175  	for n >= 10 {
   176  		n = n / 10
   177  		tens++
   178  	}
   179  	// result = 10^tens
   180  	result := 1
   181  	for i := 0; i < tens; i++ {
   182  		result *= 10
   183  	}
   184  	return result
   185  }
   186  
   187  // roundUp rounds x up to a number of the form [1eX, 2eX, 3eX, 5eX].
   188  func roundUp(n int) int {
   189  	base := roundDown10(n)
   190  	switch {
   191  	case n <= base:
   192  		return base
   193  	case n <= (2 * base):
   194  		return 2 * base
   195  	case n <= (3 * base):
   196  		return 3 * base
   197  	case n <= (5 * base):
   198  		return 5 * base
   199  	default:
   200  		return 10 * base
   201  	}
   202  }
   203  
   204  // run1 runs the first iteration of benchFunc. It returns whether more
   205  // iterations of this benchmarks should be run.
   206  func (b *B) run1() bool {
   207  	if ctx := b.context; ctx != nil {
   208  		// Extend maxLen, if needed.
   209  		if n := len(b.name) + ctx.extLen + 1; n > ctx.maxLen {
   210  			ctx.maxLen = n + 8 // Add additional slack to avoid too many jumps in size.
   211  		}
   212  	}
   213  	go func() {
   214  		// Signal that we're done whether we return normally
   215  		// or by FailNow's runtime.Goexit.
   216  		defer func() {
   217  			b.signal <- true
   218  		}()
   219  
   220  		b.runN(1)
   221  	}()
   222  	<-b.signal
   223  	if b.failed {
   224  		fmt.Fprintf(b.w, "--- FAIL: %s\n%s", b.name, b.output)
   225  		return false
   226  	}
   227  	// Only print the output if we know we are not going to proceed.
   228  	// Otherwise it is printed in processBench.
   229  	if atomic.LoadInt32(&b.hasSub) != 0 || b.finished {
   230  		tag := "BENCH"
   231  		if b.skipped {
   232  			tag = "SKIP"
   233  		}
   234  		if b.chatty && (len(b.output) > 0 || b.finished) {
   235  			b.trimOutput()
   236  			fmt.Fprintf(b.w, "--- %s: %s\n%s", tag, b.name, b.output)
   237  		}
   238  		return false
   239  	}
   240  	return true
   241  }
   242  
   243  var labelsOnce sync.Once
   244  
   245  // run executes the benchmark in a separate goroutine, including all of its
   246  // subbenchmarks. b must not have subbenchmarks.
   247  func (b *B) run() BenchmarkResult {
   248  	labelsOnce.Do(func() {
   249  		fmt.Fprintf(b.w, "goos: %s\n", runtime.GOOS)
   250  		fmt.Fprintf(b.w, "goarch: %s\n", runtime.GOARCH)
   251  		if b.importPath != "" {
   252  			fmt.Fprintf(b.w, "pkg: %s\n", b.importPath)
   253  		}
   254  	})
   255  	if b.context != nil {
   256  		// Running go test --test.bench
   257  		b.context.processBench(b) // Must call doBench.
   258  	} else {
   259  		// Running func Benchmark.
   260  		b.doBench()
   261  	}
   262  	return b.result
   263  }
   264  
   265  func (b *B) doBench() BenchmarkResult {
   266  	go b.launch()
   267  	<-b.signal
   268  	return b.result
   269  }
   270  
   271  // launch launches the benchmark function. It gradually increases the number
   272  // of benchmark iterations until the benchmark runs for the requested benchtime.
   273  // launch is run by the doBench function as a separate goroutine.
   274  // run1 must have been called on b.
   275  func (b *B) launch() {
   276  	// Signal that we're done whether we return normally
   277  	// or by FailNow's runtime.Goexit.
   278  	defer func() {
   279  		b.signal <- true
   280  	}()
   281  
   282  	// Run the benchmark for at least the specified amount of time.
   283  	d := b.benchTime
   284  	for n := 1; !b.failed && b.duration < d && n < 1e9; {
   285  		last := n
   286  		// Predict required iterations.
   287  		n = int(d.Nanoseconds())
   288  		if nsop := b.nsPerOp(); nsop != 0 {
   289  			n /= int(nsop)
   290  		}
   291  		// Run more iterations than we think we'll need (1.2x).
   292  		// Don't grow too fast in case we had timing errors previously.
   293  		// Be sure to run at least one more than last time.
   294  		n = max(min(n+n/5, 100*last), last+1)
   295  		// Round up to something easy to read.
   296  		n = roundUp(n)
   297  		b.runN(n)
   298  	}
   299  	b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes}
   300  }
   301  
   302  // The results of a benchmark run.
   303  // MemAllocs and MemBytes may be zero if memory benchmarking is not requested
   304  // using B.ReportAllocs or the -benchmem command line flag.
   305  type BenchmarkResult struct {
   306  	N         int           // The number of iterations.
   307  	T         time.Duration // The total time taken.
   308  	Bytes     int64         // Bytes processed in one iteration.
   309  	MemAllocs uint64        // The total number of memory allocations.
   310  	MemBytes  uint64        // The total number of bytes allocated.
   311  }
   312  
   313  func (r BenchmarkResult) NsPerOp() int64 {
   314  	if r.N <= 0 {
   315  		return 0
   316  	}
   317  	return r.T.Nanoseconds() / int64(r.N)
   318  }
   319  
   320  func (r BenchmarkResult) mbPerSec() float64 {
   321  	if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 {
   322  		return 0
   323  	}
   324  	return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds()
   325  }
   326  
   327  // AllocsPerOp returns r.MemAllocs / r.N.
   328  func (r BenchmarkResult) AllocsPerOp() int64 {
   329  	if r.N <= 0 {
   330  		return 0
   331  	}
   332  	return int64(r.MemAllocs) / int64(r.N)
   333  }
   334  
   335  // AllocedBytesPerOp returns r.MemBytes / r.N.
   336  func (r BenchmarkResult) AllocedBytesPerOp() int64 {
   337  	if r.N <= 0 {
   338  		return 0
   339  	}
   340  	return int64(r.MemBytes) / int64(r.N)
   341  }
   342  
   343  func (r BenchmarkResult) String() string {
   344  	mbs := r.mbPerSec()
   345  	mb := ""
   346  	if mbs != 0 {
   347  		mb = fmt.Sprintf("\t%7.2f MB/s", mbs)
   348  	}
   349  	nsop := r.NsPerOp()
   350  	ns := fmt.Sprintf("%10d ns/op", nsop)
   351  	if r.N > 0 && nsop < 100 {
   352  		// The format specifiers here make sure that
   353  		// the ones digits line up for all three possible formats.
   354  		if nsop < 10 {
   355  			ns = fmt.Sprintf("%13.2f ns/op", float64(r.T.Nanoseconds())/float64(r.N))
   356  		} else {
   357  			ns = fmt.Sprintf("%12.1f ns/op", float64(r.T.Nanoseconds())/float64(r.N))
   358  		}
   359  	}
   360  	return fmt.Sprintf("%8d\t%s%s", r.N, ns, mb)
   361  }
   362  
   363  // MemString returns r.AllocedBytesPerOp and r.AllocsPerOp in the same format as 'go test'.
   364  func (r BenchmarkResult) MemString() string {
   365  	return fmt.Sprintf("%8d B/op\t%8d allocs/op",
   366  		r.AllocedBytesPerOp(), r.AllocsPerOp())
   367  }
   368  
   369  // benchmarkName returns full name of benchmark including procs suffix.
   370  func benchmarkName(name string, n int) string {
   371  	if n != 1 {
   372  		return fmt.Sprintf("%s-%d", name, n)
   373  	}
   374  	return name
   375  }
   376  
   377  type benchContext struct {
   378  	match *matcher
   379  
   380  	maxLen int // The largest recorded benchmark name.
   381  	extLen int // Maximum extension length.
   382  }
   383  
   384  // An internal function but exported because it is cross-package; part of the implementation
   385  // of the "go test" command.
   386  func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) {
   387  	runBenchmarks("", matchString, benchmarks)
   388  }
   389  
   390  func runBenchmarks(importPath string, matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) bool {
   391  	// If no flag was specified, don't run benchmarks.
   392  	if len(*matchBenchmarks) == 0 {
   393  		return true
   394  	}
   395  	// Collect matching benchmarks and determine longest name.
   396  	maxprocs := 1
   397  	for _, procs := range cpuList {
   398  		if procs > maxprocs {
   399  			maxprocs = procs
   400  		}
   401  	}
   402  	ctx := &benchContext{
   403  		match:  newMatcher(matchString, *matchBenchmarks, "-test.bench"),
   404  		extLen: len(benchmarkName("", maxprocs)),
   405  	}
   406  	var bs []InternalBenchmark
   407  	for _, Benchmark := range benchmarks {
   408  		if _, matched := ctx.match.fullName(nil, Benchmark.Name); matched {
   409  			bs = append(bs, Benchmark)
   410  			benchName := benchmarkName(Benchmark.Name, maxprocs)
   411  			if l := len(benchName) + ctx.extLen + 1; l > ctx.maxLen {
   412  				ctx.maxLen = l
   413  			}
   414  		}
   415  	}
   416  	main := &B{
   417  		common: common{
   418  			name:   "Main",
   419  			w:      os.Stdout,
   420  			chatty: *chatty,
   421  		},
   422  		importPath: importPath,
   423  		benchFunc: func(b *B) {
   424  			for _, Benchmark := range bs {
   425  				b.Run(Benchmark.Name, Benchmark.F)
   426  			}
   427  		},
   428  		benchTime: *benchTime,
   429  		context:   ctx,
   430  	}
   431  	main.runN(1)
   432  	return !main.failed
   433  }
   434  
   435  // processBench runs bench b for the configured CPU counts and prints the results.
   436  func (ctx *benchContext) processBench(b *B) {
   437  	for i, procs := range cpuList {
   438  		runtime.GOMAXPROCS(procs)
   439  		benchName := benchmarkName(b.name, procs)
   440  		fmt.Fprintf(b.w, "%-*s\t", ctx.maxLen, benchName)
   441  		// Recompute the running time for all but the first iteration.
   442  		if i > 0 {
   443  			b = &B{
   444  				common: common{
   445  					signal: make(chan bool),
   446  					name:   b.name,
   447  					w:      b.w,
   448  					chatty: b.chatty,
   449  				},
   450  				benchFunc: b.benchFunc,
   451  				benchTime: b.benchTime,
   452  			}
   453  			b.run1()
   454  		}
   455  		r := b.doBench()
   456  		if b.failed {
   457  			// The output could be very long here, but probably isn't.
   458  			// We print it all, regardless, because we don't want to trim the reason
   459  			// the benchmark failed.
   460  			fmt.Fprintf(b.w, "--- FAIL: %s\n%s", benchName, b.output)
   461  			continue
   462  		}
   463  		results := r.String()
   464  		if *benchmarkMemory || b.showAllocResult {
   465  			results += "\t" + r.MemString()
   466  		}
   467  		fmt.Fprintln(b.w, results)
   468  		// Unlike with tests, we ignore the -chatty flag and always print output for
   469  		// benchmarks since the output generation time will skew the results.
   470  		if len(b.output) > 0 {
   471  			b.trimOutput()
   472  			fmt.Fprintf(b.w, "--- BENCH: %s\n%s", benchName, b.output)
   473  		}
   474  		if p := runtime.GOMAXPROCS(-1); p != procs {
   475  			fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p)
   476  		}
   477  	}
   478  }
   479  
   480  // Run benchmarks f as a subbenchmark with the given name. It reports
   481  // whether there were any failures.
   482  //
   483  // A subbenchmark is like any other benchmark. A benchmark that calls Run at
   484  // least once will not be measured itself and will be called once with N=1.
   485  //
   486  // Run may be called simultaneously from multiple goroutines, but all such
   487  // calls must happen before the outer benchmark function for b returns.
   488  func (b *B) Run(name string, f func(b *B)) bool {
   489  	// Since b has subbenchmarks, we will no longer run it as a benchmark itself.
   490  	// Release the lock and acquire it on exit to ensure locks stay paired.
   491  	atomic.StoreInt32(&b.hasSub, 1)
   492  	benchmarkLock.Unlock()
   493  	defer benchmarkLock.Lock()
   494  
   495  	benchName, ok := b.name, true
   496  	if b.context != nil {
   497  		benchName, ok = b.context.match.fullName(&b.common, name)
   498  	}
   499  	if !ok {
   500  		return true
   501  	}
   502  	sub := &B{
   503  		common: common{
   504  			signal: make(chan bool),
   505  			name:   benchName,
   506  			parent: &b.common,
   507  			level:  b.level + 1,
   508  			w:      b.w,
   509  			chatty: b.chatty,
   510  		},
   511  		importPath: b.importPath,
   512  		benchFunc:  f,
   513  		benchTime:  b.benchTime,
   514  		context:    b.context,
   515  	}
   516  	if sub.run1() {
   517  		sub.run()
   518  	}
   519  	b.add(sub.result)
   520  	return !sub.failed
   521  }
   522  
   523  // add simulates running benchmarks in sequence in a single iteration. It is
   524  // used to give some meaningful results in case func Benchmark is used in
   525  // combination with Run.
   526  func (b *B) add(other BenchmarkResult) {
   527  	r := &b.result
   528  	// The aggregated BenchmarkResults resemble running all subbenchmarks as
   529  	// in sequence in a single benchmark.
   530  	r.N = 1
   531  	r.T += time.Duration(other.NsPerOp())
   532  	if other.Bytes == 0 {
   533  		// Summing Bytes is meaningless in aggregate if not all subbenchmarks
   534  		// set it.
   535  		b.missingBytes = true
   536  		r.Bytes = 0
   537  	}
   538  	if !b.missingBytes {
   539  		r.Bytes += other.Bytes
   540  	}
   541  	r.MemAllocs += uint64(other.AllocsPerOp())
   542  	r.MemBytes += uint64(other.AllocedBytesPerOp())
   543  }
   544  
   545  // trimOutput shortens the output from a benchmark, which can be very long.
   546  func (b *B) trimOutput() {
   547  	// The output is likely to appear multiple times because the benchmark
   548  	// is run multiple times, but at least it will be seen. This is not a big deal
   549  	// because benchmarks rarely print, but just in case, we trim it if it's too long.
   550  	const maxNewlines = 10
   551  	for nlCount, j := 0, 0; j < len(b.output); j++ {
   552  		if b.output[j] == '\n' {
   553  			nlCount++
   554  			if nlCount >= maxNewlines {
   555  				b.output = append(b.output[:j], "\n\t... [output truncated]\n"...)
   556  				break
   557  			}
   558  		}
   559  	}
   560  }
   561  
   562  // A PB is used by RunParallel for running parallel benchmarks.
   563  type PB struct {
   564  	globalN *uint64 // shared between all worker goroutines iteration counter
   565  	grain   uint64  // acquire that many iterations from globalN at once
   566  	cache   uint64  // local cache of acquired iterations
   567  	bN      uint64  // total number of iterations to execute (b.N)
   568  }
   569  
   570  // Next reports whether there are more iterations to execute.
   571  func (pb *PB) Next() bool {
   572  	if pb.cache == 0 {
   573  		n := atomic.AddUint64(pb.globalN, pb.grain)
   574  		if n <= pb.bN {
   575  			pb.cache = pb.grain
   576  		} else if n < pb.bN+pb.grain {
   577  			pb.cache = pb.bN + pb.grain - n
   578  		} else {
   579  			return false
   580  		}
   581  	}
   582  	pb.cache--
   583  	return true
   584  }
   585  
   586  // RunParallel runs a benchmark in parallel.
   587  // It creates multiple goroutines and distributes b.N iterations among them.
   588  // The number of goroutines defaults to GOMAXPROCS. To increase parallelism for
   589  // non-CPU-bound benchmarks, call SetParallelism before RunParallel.
   590  // RunParallel is usually used with the go test -cpu flag.
   591  //
   592  // The body function will be run in each goroutine. It should set up any
   593  // goroutine-local state and then iterate until pb.Next returns false.
   594  // It should not use the StartTimer, StopTimer, or ResetTimer functions,
   595  // because they have global effect. It should also not call Run.
   596  func (b *B) RunParallel(body func(*PB)) {
   597  	if b.N == 0 {
   598  		return // Nothing to do when probing.
   599  	}
   600  	// Calculate grain size as number of iterations that take ~100µs.
   601  	// 100µs is enough to amortize the overhead and provide sufficient
   602  	// dynamic load balancing.
   603  	grain := uint64(0)
   604  	if b.previousN > 0 && b.previousDuration > 0 {
   605  		grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration)
   606  	}
   607  	if grain < 1 {
   608  		grain = 1
   609  	}
   610  	// We expect the inner loop and function call to take at least 10ns,
   611  	// so do not do more than 100µs/10ns=1e4 iterations.
   612  	if grain > 1e4 {
   613  		grain = 1e4
   614  	}
   615  
   616  	n := uint64(0)
   617  	numProcs := b.parallelism * runtime.GOMAXPROCS(0)
   618  	var wg sync.WaitGroup
   619  	wg.Add(numProcs)
   620  	for p := 0; p < numProcs; p++ {
   621  		go func() {
   622  			defer wg.Done()
   623  			pb := &PB{
   624  				globalN: &n,
   625  				grain:   grain,
   626  				bN:      uint64(b.N),
   627  			}
   628  			body(pb)
   629  		}()
   630  	}
   631  	wg.Wait()
   632  	if n <= uint64(b.N) && !b.Failed() {
   633  		b.Fatal("RunParallel: body exited without pb.Next() == false")
   634  	}
   635  }
   636  
   637  // SetParallelism sets the number of goroutines used by RunParallel to p*GOMAXPROCS.
   638  // There is usually no need to call SetParallelism for CPU-bound benchmarks.
   639  // If p is less than 1, this call will have no effect.
   640  func (b *B) SetParallelism(p int) {
   641  	if p >= 1 {
   642  		b.parallelism = p
   643  	}
   644  }
   645  
   646  // Benchmark benchmarks a single function. Useful for creating
   647  // custom benchmarks that do not use the "go test" command.
   648  //
   649  // If f calls Run, the result will be an estimate of running all its
   650  // subbenchmarks that don't call Run in sequence in a single benchmark.
   651  func Benchmark(f func(b *B)) BenchmarkResult {
   652  	b := &B{
   653  		common: common{
   654  			signal: make(chan bool),
   655  			w:      discard{},
   656  		},
   657  		benchFunc: f,
   658  		benchTime: *benchTime,
   659  	}
   660  	if b.run1() {
   661  		b.run()
   662  	}
   663  	return b.result
   664  }
   665  
   666  type discard struct{}
   667  
   668  func (discard) Write(b []byte) (n int, err error) { return len(b), nil }