github.com/spotify/syslog-redirector-golang@v0.0.0-20140320174030-4859f03d829a/src/pkg/encoding/gob/decode.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gob
     6  
     7  // TODO(rsc): When garbage collector changes, revisit
     8  // the allocations in this file that use unsafe.Pointer.
     9  
    10  import (
    11  	"bytes"
    12  	"encoding"
    13  	"errors"
    14  	"io"
    15  	"math"
    16  	"reflect"
    17  	"unsafe"
    18  )
    19  
    20  var (
    21  	errBadUint = errors.New("gob: encoded unsigned integer out of range")
    22  	errBadType = errors.New("gob: unknown type id or corrupted data")
    23  	errRange   = errors.New("gob: bad data: field numbers out of bounds")
    24  )
    25  
    26  // decoderState is the execution state of an instance of the decoder. A new state
    27  // is created for nested objects.
    28  type decoderState struct {
    29  	dec *Decoder
    30  	// The buffer is stored with an extra indirection because it may be replaced
    31  	// if we load a type during decode (when reading an interface value).
    32  	b        *bytes.Buffer
    33  	fieldnum int // the last field number read.
    34  	buf      []byte
    35  	next     *decoderState // for free list
    36  }
    37  
    38  // We pass the bytes.Buffer separately for easier testing of the infrastructure
    39  // without requiring a full Decoder.
    40  func (dec *Decoder) newDecoderState(buf *bytes.Buffer) *decoderState {
    41  	d := dec.freeList
    42  	if d == nil {
    43  		d = new(decoderState)
    44  		d.dec = dec
    45  		d.buf = make([]byte, uint64Size)
    46  	} else {
    47  		dec.freeList = d.next
    48  	}
    49  	d.b = buf
    50  	return d
    51  }
    52  
    53  func (dec *Decoder) freeDecoderState(d *decoderState) {
    54  	d.next = dec.freeList
    55  	dec.freeList = d
    56  }
    57  
    58  func overflow(name string) error {
    59  	return errors.New(`value for "` + name + `" out of range`)
    60  }
    61  
    62  // decodeUintReader reads an encoded unsigned integer from an io.Reader.
    63  // Used only by the Decoder to read the message length.
    64  func decodeUintReader(r io.Reader, buf []byte) (x uint64, width int, err error) {
    65  	width = 1
    66  	n, err := io.ReadFull(r, buf[0:width])
    67  	if n == 0 {
    68  		return
    69  	}
    70  	b := buf[0]
    71  	if b <= 0x7f {
    72  		return uint64(b), width, nil
    73  	}
    74  	n = -int(int8(b))
    75  	if n > uint64Size {
    76  		err = errBadUint
    77  		return
    78  	}
    79  	width, err = io.ReadFull(r, buf[0:n])
    80  	if err != nil {
    81  		if err == io.EOF {
    82  			err = io.ErrUnexpectedEOF
    83  		}
    84  		return
    85  	}
    86  	// Could check that the high byte is zero but it's not worth it.
    87  	for _, b := range buf[0:width] {
    88  		x = x<<8 | uint64(b)
    89  	}
    90  	width++ // +1 for length byte
    91  	return
    92  }
    93  
    94  // decodeUint reads an encoded unsigned integer from state.r.
    95  // Does not check for overflow.
    96  func (state *decoderState) decodeUint() (x uint64) {
    97  	b, err := state.b.ReadByte()
    98  	if err != nil {
    99  		error_(err)
   100  	}
   101  	if b <= 0x7f {
   102  		return uint64(b)
   103  	}
   104  	n := -int(int8(b))
   105  	if n > uint64Size {
   106  		error_(errBadUint)
   107  	}
   108  	width, err := state.b.Read(state.buf[0:n])
   109  	if err != nil {
   110  		error_(err)
   111  	}
   112  	// Don't need to check error; it's safe to loop regardless.
   113  	// Could check that the high byte is zero but it's not worth it.
   114  	for _, b := range state.buf[0:width] {
   115  		x = x<<8 | uint64(b)
   116  	}
   117  	return x
   118  }
   119  
   120  // decodeInt reads an encoded signed integer from state.r.
   121  // Does not check for overflow.
   122  func (state *decoderState) decodeInt() int64 {
   123  	x := state.decodeUint()
   124  	if x&1 != 0 {
   125  		return ^int64(x >> 1)
   126  	}
   127  	return int64(x >> 1)
   128  }
   129  
   130  // decOp is the signature of a decoding operator for a given type.
   131  type decOp func(i *decInstr, state *decoderState, p unsafe.Pointer)
   132  
   133  // The 'instructions' of the decoding machine
   134  type decInstr struct {
   135  	op     decOp
   136  	field  int     // field number of the wire type
   137  	indir  int     // how many pointer indirections to reach the value in the struct
   138  	offset uintptr // offset in the structure of the field to encode
   139  	ovfl   error   // error message for overflow/underflow (for arrays, of the elements)
   140  }
   141  
   142  // Since the encoder writes no zeros, if we arrive at a decoder we have
   143  // a value to extract and store.  The field number has already been read
   144  // (it's how we knew to call this decoder).
   145  // Each decoder is responsible for handling any indirections associated
   146  // with the data structure.  If any pointer so reached is nil, allocation must
   147  // be done.
   148  
   149  // Walk the pointer hierarchy, allocating if we find a nil.  Stop one before the end.
   150  func decIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {
   151  	for ; indir > 1; indir-- {
   152  		if *(*unsafe.Pointer)(p) == nil {
   153  			// Allocation required
   154  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(unsafe.Pointer))
   155  		}
   156  		p = *(*unsafe.Pointer)(p)
   157  	}
   158  	return p
   159  }
   160  
   161  // ignoreUint discards a uint value with no destination.
   162  func ignoreUint(i *decInstr, state *decoderState, p unsafe.Pointer) {
   163  	state.decodeUint()
   164  }
   165  
   166  // ignoreTwoUints discards a uint value with no destination. It's used to skip
   167  // complex values.
   168  func ignoreTwoUints(i *decInstr, state *decoderState, p unsafe.Pointer) {
   169  	state.decodeUint()
   170  	state.decodeUint()
   171  }
   172  
   173  // decBool decodes a uint and stores it as a boolean through p.
   174  func decBool(i *decInstr, state *decoderState, p unsafe.Pointer) {
   175  	if i.indir > 0 {
   176  		if *(*unsafe.Pointer)(p) == nil {
   177  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(bool))
   178  		}
   179  		p = *(*unsafe.Pointer)(p)
   180  	}
   181  	*(*bool)(p) = state.decodeUint() != 0
   182  }
   183  
   184  // decInt8 decodes an integer and stores it as an int8 through p.
   185  func decInt8(i *decInstr, state *decoderState, p unsafe.Pointer) {
   186  	if i.indir > 0 {
   187  		if *(*unsafe.Pointer)(p) == nil {
   188  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int8))
   189  		}
   190  		p = *(*unsafe.Pointer)(p)
   191  	}
   192  	v := state.decodeInt()
   193  	if v < math.MinInt8 || math.MaxInt8 < v {
   194  		error_(i.ovfl)
   195  	} else {
   196  		*(*int8)(p) = int8(v)
   197  	}
   198  }
   199  
   200  // decUint8 decodes an unsigned integer and stores it as a uint8 through p.
   201  func decUint8(i *decInstr, state *decoderState, p unsafe.Pointer) {
   202  	if i.indir > 0 {
   203  		if *(*unsafe.Pointer)(p) == nil {
   204  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint8))
   205  		}
   206  		p = *(*unsafe.Pointer)(p)
   207  	}
   208  	v := state.decodeUint()
   209  	if math.MaxUint8 < v {
   210  		error_(i.ovfl)
   211  	} else {
   212  		*(*uint8)(p) = uint8(v)
   213  	}
   214  }
   215  
   216  // decInt16 decodes an integer and stores it as an int16 through p.
   217  func decInt16(i *decInstr, state *decoderState, p unsafe.Pointer) {
   218  	if i.indir > 0 {
   219  		if *(*unsafe.Pointer)(p) == nil {
   220  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int16))
   221  		}
   222  		p = *(*unsafe.Pointer)(p)
   223  	}
   224  	v := state.decodeInt()
   225  	if v < math.MinInt16 || math.MaxInt16 < v {
   226  		error_(i.ovfl)
   227  	} else {
   228  		*(*int16)(p) = int16(v)
   229  	}
   230  }
   231  
   232  // decUint16 decodes an unsigned integer and stores it as a uint16 through p.
   233  func decUint16(i *decInstr, state *decoderState, p unsafe.Pointer) {
   234  	if i.indir > 0 {
   235  		if *(*unsafe.Pointer)(p) == nil {
   236  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint16))
   237  		}
   238  		p = *(*unsafe.Pointer)(p)
   239  	}
   240  	v := state.decodeUint()
   241  	if math.MaxUint16 < v {
   242  		error_(i.ovfl)
   243  	} else {
   244  		*(*uint16)(p) = uint16(v)
   245  	}
   246  }
   247  
   248  // decInt32 decodes an integer and stores it as an int32 through p.
   249  func decInt32(i *decInstr, state *decoderState, p unsafe.Pointer) {
   250  	if i.indir > 0 {
   251  		if *(*unsafe.Pointer)(p) == nil {
   252  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int32))
   253  		}
   254  		p = *(*unsafe.Pointer)(p)
   255  	}
   256  	v := state.decodeInt()
   257  	if v < math.MinInt32 || math.MaxInt32 < v {
   258  		error_(i.ovfl)
   259  	} else {
   260  		*(*int32)(p) = int32(v)
   261  	}
   262  }
   263  
   264  // decUint32 decodes an unsigned integer and stores it as a uint32 through p.
   265  func decUint32(i *decInstr, state *decoderState, p unsafe.Pointer) {
   266  	if i.indir > 0 {
   267  		if *(*unsafe.Pointer)(p) == nil {
   268  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint32))
   269  		}
   270  		p = *(*unsafe.Pointer)(p)
   271  	}
   272  	v := state.decodeUint()
   273  	if math.MaxUint32 < v {
   274  		error_(i.ovfl)
   275  	} else {
   276  		*(*uint32)(p) = uint32(v)
   277  	}
   278  }
   279  
   280  // decInt64 decodes an integer and stores it as an int64 through p.
   281  func decInt64(i *decInstr, state *decoderState, p unsafe.Pointer) {
   282  	if i.indir > 0 {
   283  		if *(*unsafe.Pointer)(p) == nil {
   284  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int64))
   285  		}
   286  		p = *(*unsafe.Pointer)(p)
   287  	}
   288  	*(*int64)(p) = int64(state.decodeInt())
   289  }
   290  
   291  // decUint64 decodes an unsigned integer and stores it as a uint64 through p.
   292  func decUint64(i *decInstr, state *decoderState, p unsafe.Pointer) {
   293  	if i.indir > 0 {
   294  		if *(*unsafe.Pointer)(p) == nil {
   295  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint64))
   296  		}
   297  		p = *(*unsafe.Pointer)(p)
   298  	}
   299  	*(*uint64)(p) = uint64(state.decodeUint())
   300  }
   301  
   302  // Floating-point numbers are transmitted as uint64s holding the bits
   303  // of the underlying representation.  They are sent byte-reversed, with
   304  // the exponent end coming out first, so integer floating point numbers
   305  // (for example) transmit more compactly.  This routine does the
   306  // unswizzling.
   307  func floatFromBits(u uint64) float64 {
   308  	var v uint64
   309  	for i := 0; i < 8; i++ {
   310  		v <<= 8
   311  		v |= u & 0xFF
   312  		u >>= 8
   313  	}
   314  	return math.Float64frombits(v)
   315  }
   316  
   317  // storeFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point
   318  // number, and stores it through p. It's a helper function for float32 and complex64.
   319  func storeFloat32(i *decInstr, state *decoderState, p unsafe.Pointer) {
   320  	v := floatFromBits(state.decodeUint())
   321  	av := v
   322  	if av < 0 {
   323  		av = -av
   324  	}
   325  	// +Inf is OK in both 32- and 64-bit floats.  Underflow is always OK.
   326  	if math.MaxFloat32 < av && av <= math.MaxFloat64 {
   327  		error_(i.ovfl)
   328  	} else {
   329  		*(*float32)(p) = float32(v)
   330  	}
   331  }
   332  
   333  // decFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point
   334  // number, and stores it through p.
   335  func decFloat32(i *decInstr, state *decoderState, p unsafe.Pointer) {
   336  	if i.indir > 0 {
   337  		if *(*unsafe.Pointer)(p) == nil {
   338  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(float32))
   339  		}
   340  		p = *(*unsafe.Pointer)(p)
   341  	}
   342  	storeFloat32(i, state, p)
   343  }
   344  
   345  // decFloat64 decodes an unsigned integer, treats it as a 64-bit floating-point
   346  // number, and stores it through p.
   347  func decFloat64(i *decInstr, state *decoderState, p unsafe.Pointer) {
   348  	if i.indir > 0 {
   349  		if *(*unsafe.Pointer)(p) == nil {
   350  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(float64))
   351  		}
   352  		p = *(*unsafe.Pointer)(p)
   353  	}
   354  	*(*float64)(p) = floatFromBits(uint64(state.decodeUint()))
   355  }
   356  
   357  // decComplex64 decodes a pair of unsigned integers, treats them as a
   358  // pair of floating point numbers, and stores them as a complex64 through p.
   359  // The real part comes first.
   360  func decComplex64(i *decInstr, state *decoderState, p unsafe.Pointer) {
   361  	if i.indir > 0 {
   362  		if *(*unsafe.Pointer)(p) == nil {
   363  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex64))
   364  		}
   365  		p = *(*unsafe.Pointer)(p)
   366  	}
   367  	storeFloat32(i, state, p)
   368  	storeFloat32(i, state, unsafe.Pointer(uintptr(p)+unsafe.Sizeof(float32(0))))
   369  }
   370  
   371  // decComplex128 decodes a pair of unsigned integers, treats them as a
   372  // pair of floating point numbers, and stores them as a complex128 through p.
   373  // The real part comes first.
   374  func decComplex128(i *decInstr, state *decoderState, p unsafe.Pointer) {
   375  	if i.indir > 0 {
   376  		if *(*unsafe.Pointer)(p) == nil {
   377  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex128))
   378  		}
   379  		p = *(*unsafe.Pointer)(p)
   380  	}
   381  	real := floatFromBits(uint64(state.decodeUint()))
   382  	imag := floatFromBits(uint64(state.decodeUint()))
   383  	*(*complex128)(p) = complex(real, imag)
   384  }
   385  
   386  // decUint8Slice decodes a byte slice and stores through p a slice header
   387  // describing the data.
   388  // uint8 slices are encoded as an unsigned count followed by the raw bytes.
   389  func decUint8Slice(i *decInstr, state *decoderState, p unsafe.Pointer) {
   390  	if i.indir > 0 {
   391  		if *(*unsafe.Pointer)(p) == nil {
   392  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new([]uint8))
   393  		}
   394  		p = *(*unsafe.Pointer)(p)
   395  	}
   396  	n := state.decodeUint()
   397  	if n > uint64(state.b.Len()) {
   398  		errorf("length of []byte exceeds input size (%d bytes)", n)
   399  	}
   400  	slice := (*[]uint8)(p)
   401  	if uint64(cap(*slice)) < n {
   402  		*slice = make([]uint8, n)
   403  	} else {
   404  		*slice = (*slice)[0:n]
   405  	}
   406  	if _, err := state.b.Read(*slice); err != nil {
   407  		errorf("error decoding []byte: %s", err)
   408  	}
   409  }
   410  
   411  // decString decodes byte array and stores through p a string header
   412  // describing the data.
   413  // Strings are encoded as an unsigned count followed by the raw bytes.
   414  func decString(i *decInstr, state *decoderState, p unsafe.Pointer) {
   415  	if i.indir > 0 {
   416  		if *(*unsafe.Pointer)(p) == nil {
   417  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(string))
   418  		}
   419  		p = *(*unsafe.Pointer)(p)
   420  	}
   421  	n := state.decodeUint()
   422  	if n > uint64(state.b.Len()) {
   423  		errorf("string length exceeds input size (%d bytes)", n)
   424  	}
   425  	b := make([]byte, n)
   426  	state.b.Read(b)
   427  	// It would be a shame to do the obvious thing here,
   428  	//	*(*string)(p) = string(b)
   429  	// because we've already allocated the storage and this would
   430  	// allocate again and copy.  So we do this ugly hack, which is even
   431  	// even more unsafe than it looks as it depends the memory
   432  	// representation of a string matching the beginning of the memory
   433  	// representation of a byte slice (a byte slice is longer).
   434  	*(*string)(p) = *(*string)(unsafe.Pointer(&b))
   435  }
   436  
   437  // ignoreUint8Array skips over the data for a byte slice value with no destination.
   438  func ignoreUint8Array(i *decInstr, state *decoderState, p unsafe.Pointer) {
   439  	b := make([]byte, state.decodeUint())
   440  	state.b.Read(b)
   441  }
   442  
   443  // Execution engine
   444  
   445  // The encoder engine is an array of instructions indexed by field number of the incoming
   446  // decoder.  It is executed with random access according to field number.
   447  type decEngine struct {
   448  	instr    []decInstr
   449  	numInstr int // the number of active instructions
   450  }
   451  
   452  // allocate makes sure storage is available for an object of underlying type rtyp
   453  // that is indir levels of indirection through p.
   454  func allocate(rtyp reflect.Type, p unsafe.Pointer, indir int) unsafe.Pointer {
   455  	if indir == 0 {
   456  		return p
   457  	}
   458  	up := p
   459  	if indir > 1 {
   460  		up = decIndirect(up, indir)
   461  	}
   462  	if *(*unsafe.Pointer)(up) == nil {
   463  		// Allocate object.
   464  		*(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.New(rtyp).Pointer())
   465  	}
   466  	return *(*unsafe.Pointer)(up)
   467  }
   468  
   469  // decodeSingle decodes a top-level value that is not a struct and stores it through p.
   470  // Such values are preceded by a zero, making them have the memory layout of a
   471  // struct field (although with an illegal field number).
   472  func (dec *Decoder) decodeSingle(engine *decEngine, ut *userTypeInfo, basep unsafe.Pointer) {
   473  	state := dec.newDecoderState(&dec.buf)
   474  	state.fieldnum = singletonField
   475  	delta := int(state.decodeUint())
   476  	if delta != 0 {
   477  		errorf("decode: corrupted data: non-zero delta for singleton")
   478  	}
   479  	instr := &engine.instr[singletonField]
   480  	if instr.indir != ut.indir {
   481  		errorf("internal error: inconsistent indirection instr %d ut %d", instr.indir, ut.indir)
   482  	}
   483  	ptr := basep // offset will be zero
   484  	if instr.indir > 1 {
   485  		ptr = decIndirect(ptr, instr.indir)
   486  	}
   487  	instr.op(instr, state, ptr)
   488  	dec.freeDecoderState(state)
   489  }
   490  
   491  // decodeStruct decodes a top-level struct and stores it through p.
   492  // Indir is for the value, not the type.  At the time of the call it may
   493  // differ from ut.indir, which was computed when the engine was built.
   494  // This state cannot arise for decodeSingle, which is called directly
   495  // from the user's value, not from the innards of an engine.
   496  func (dec *Decoder) decodeStruct(engine *decEngine, ut *userTypeInfo, p unsafe.Pointer, indir int) {
   497  	p = allocate(ut.base, p, indir)
   498  	state := dec.newDecoderState(&dec.buf)
   499  	state.fieldnum = -1
   500  	basep := p
   501  	for state.b.Len() > 0 {
   502  		delta := int(state.decodeUint())
   503  		if delta < 0 {
   504  			errorf("decode: corrupted data: negative delta")
   505  		}
   506  		if delta == 0 { // struct terminator is zero delta fieldnum
   507  			break
   508  		}
   509  		fieldnum := state.fieldnum + delta
   510  		if fieldnum >= len(engine.instr) {
   511  			error_(errRange)
   512  			break
   513  		}
   514  		instr := &engine.instr[fieldnum]
   515  		p := unsafe.Pointer(uintptr(basep) + instr.offset)
   516  		if instr.indir > 1 {
   517  			p = decIndirect(p, instr.indir)
   518  		}
   519  		instr.op(instr, state, p)
   520  		state.fieldnum = fieldnum
   521  	}
   522  	dec.freeDecoderState(state)
   523  }
   524  
   525  // ignoreStruct discards the data for a struct with no destination.
   526  func (dec *Decoder) ignoreStruct(engine *decEngine) {
   527  	state := dec.newDecoderState(&dec.buf)
   528  	state.fieldnum = -1
   529  	for state.b.Len() > 0 {
   530  		delta := int(state.decodeUint())
   531  		if delta < 0 {
   532  			errorf("ignore decode: corrupted data: negative delta")
   533  		}
   534  		if delta == 0 { // struct terminator is zero delta fieldnum
   535  			break
   536  		}
   537  		fieldnum := state.fieldnum + delta
   538  		if fieldnum >= len(engine.instr) {
   539  			error_(errRange)
   540  		}
   541  		instr := &engine.instr[fieldnum]
   542  		instr.op(instr, state, unsafe.Pointer(nil))
   543  		state.fieldnum = fieldnum
   544  	}
   545  	dec.freeDecoderState(state)
   546  }
   547  
   548  // ignoreSingle discards the data for a top-level non-struct value with no
   549  // destination. It's used when calling Decode with a nil value.
   550  func (dec *Decoder) ignoreSingle(engine *decEngine) {
   551  	state := dec.newDecoderState(&dec.buf)
   552  	state.fieldnum = singletonField
   553  	delta := int(state.decodeUint())
   554  	if delta != 0 {
   555  		errorf("decode: corrupted data: non-zero delta for singleton")
   556  	}
   557  	instr := &engine.instr[singletonField]
   558  	instr.op(instr, state, unsafe.Pointer(nil))
   559  	dec.freeDecoderState(state)
   560  }
   561  
   562  // decodeArrayHelper does the work for decoding arrays and slices.
   563  func (dec *Decoder) decodeArrayHelper(state *decoderState, p unsafe.Pointer, elemOp decOp, elemWid uintptr, length, elemIndir int, ovfl error) {
   564  	instr := &decInstr{elemOp, 0, elemIndir, 0, ovfl}
   565  	for i := 0; i < length; i++ {
   566  		if state.b.Len() == 0 {
   567  			errorf("decoding array or slice: length exceeds input size (%d elements)", length)
   568  		}
   569  		up := p
   570  		if elemIndir > 1 {
   571  			up = decIndirect(up, elemIndir)
   572  		}
   573  		elemOp(instr, state, up)
   574  		p = unsafe.Pointer(uintptr(p) + elemWid)
   575  	}
   576  }
   577  
   578  // decodeArray decodes an array and stores it through p, that is, p points to the zeroth element.
   579  // The length is an unsigned integer preceding the elements.  Even though the length is redundant
   580  // (it's part of the type), it's a useful check and is included in the encoding.
   581  func (dec *Decoder) decodeArray(atyp reflect.Type, state *decoderState, p unsafe.Pointer, elemOp decOp, elemWid uintptr, length, indir, elemIndir int, ovfl error) {
   582  	if indir > 0 {
   583  		p = allocate(atyp, p, 1) // All but the last level has been allocated by dec.Indirect
   584  	}
   585  	if n := state.decodeUint(); n != uint64(length) {
   586  		errorf("length mismatch in decodeArray")
   587  	}
   588  	dec.decodeArrayHelper(state, p, elemOp, elemWid, length, elemIndir, ovfl)
   589  }
   590  
   591  // decodeIntoValue is a helper for map decoding.  Since maps are decoded using reflection,
   592  // unlike the other items we can't use a pointer directly.
   593  func decodeIntoValue(state *decoderState, op decOp, indir int, v reflect.Value, ovfl error) reflect.Value {
   594  	instr := &decInstr{op, 0, indir, 0, ovfl}
   595  	up := unsafeAddr(v)
   596  	if indir > 1 {
   597  		up = decIndirect(up, indir)
   598  	}
   599  	op(instr, state, up)
   600  	return v
   601  }
   602  
   603  // decodeMap decodes a map and stores its header through p.
   604  // Maps are encoded as a length followed by key:value pairs.
   605  // Because the internals of maps are not visible to us, we must
   606  // use reflection rather than pointer magic.
   607  func (dec *Decoder) decodeMap(mtyp reflect.Type, state *decoderState, p unsafe.Pointer, keyOp, elemOp decOp, indir, keyIndir, elemIndir int, ovfl error) {
   608  	if indir > 0 {
   609  		p = allocate(mtyp, p, 1) // All but the last level has been allocated by dec.Indirect
   610  	}
   611  	up := unsafe.Pointer(p)
   612  	if *(*unsafe.Pointer)(up) == nil { // maps are represented as a pointer in the runtime
   613  		// Allocate map.
   614  		*(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.MakeMap(mtyp).Pointer())
   615  	}
   616  	// Maps cannot be accessed by moving addresses around the way
   617  	// that slices etc. can.  We must recover a full reflection value for
   618  	// the iteration.
   619  	v := reflect.NewAt(mtyp, unsafe.Pointer(p)).Elem()
   620  	n := int(state.decodeUint())
   621  	for i := 0; i < n; i++ {
   622  		key := decodeIntoValue(state, keyOp, keyIndir, allocValue(mtyp.Key()), ovfl)
   623  		elem := decodeIntoValue(state, elemOp, elemIndir, allocValue(mtyp.Elem()), ovfl)
   624  		v.SetMapIndex(key, elem)
   625  	}
   626  }
   627  
   628  // ignoreArrayHelper does the work for discarding arrays and slices.
   629  func (dec *Decoder) ignoreArrayHelper(state *decoderState, elemOp decOp, length int) {
   630  	instr := &decInstr{elemOp, 0, 0, 0, errors.New("no error")}
   631  	for i := 0; i < length; i++ {
   632  		elemOp(instr, state, nil)
   633  	}
   634  }
   635  
   636  // ignoreArray discards the data for an array value with no destination.
   637  func (dec *Decoder) ignoreArray(state *decoderState, elemOp decOp, length int) {
   638  	if n := state.decodeUint(); n != uint64(length) {
   639  		errorf("length mismatch in ignoreArray")
   640  	}
   641  	dec.ignoreArrayHelper(state, elemOp, length)
   642  }
   643  
   644  // ignoreMap discards the data for a map value with no destination.
   645  func (dec *Decoder) ignoreMap(state *decoderState, keyOp, elemOp decOp) {
   646  	n := int(state.decodeUint())
   647  	keyInstr := &decInstr{keyOp, 0, 0, 0, errors.New("no error")}
   648  	elemInstr := &decInstr{elemOp, 0, 0, 0, errors.New("no error")}
   649  	for i := 0; i < n; i++ {
   650  		keyOp(keyInstr, state, nil)
   651  		elemOp(elemInstr, state, nil)
   652  	}
   653  }
   654  
   655  // decodeSlice decodes a slice and stores the slice header through p.
   656  // Slices are encoded as an unsigned length followed by the elements.
   657  func (dec *Decoder) decodeSlice(atyp reflect.Type, state *decoderState, p uintptr, elemOp decOp, elemWid uintptr, indir, elemIndir int, ovfl error) {
   658  	nr := state.decodeUint()
   659  	n := int(nr)
   660  	if indir > 0 {
   661  		up := unsafe.Pointer(p)
   662  		if *(*unsafe.Pointer)(up) == nil {
   663  			// Allocate the slice header.
   664  			*(*unsafe.Pointer)(up) = unsafe.Pointer(new([]unsafe.Pointer))
   665  		}
   666  		p = *(*uintptr)(up)
   667  	}
   668  	// Allocate storage for the slice elements, that is, the underlying array,
   669  	// if the existing slice does not have the capacity.
   670  	// Always write a header at p.
   671  	hdrp := (*reflect.SliceHeader)(unsafe.Pointer(p))
   672  	if hdrp.Cap < n {
   673  		hdrp.Data = reflect.MakeSlice(atyp, n, n).Pointer()
   674  		hdrp.Cap = n
   675  	}
   676  	hdrp.Len = n
   677  	dec.decodeArrayHelper(state, unsafe.Pointer(hdrp.Data), elemOp, elemWid, n, elemIndir, ovfl)
   678  }
   679  
   680  // ignoreSlice skips over the data for a slice value with no destination.
   681  func (dec *Decoder) ignoreSlice(state *decoderState, elemOp decOp) {
   682  	dec.ignoreArrayHelper(state, elemOp, int(state.decodeUint()))
   683  }
   684  
   685  // setInterfaceValue sets an interface value to a concrete value,
   686  // but first it checks that the assignment will succeed.
   687  func setInterfaceValue(ivalue reflect.Value, value reflect.Value) {
   688  	if !value.Type().AssignableTo(ivalue.Type()) {
   689  		errorf("cannot assign value of type %s to %s", value.Type(), ivalue.Type())
   690  	}
   691  	ivalue.Set(value)
   692  }
   693  
   694  // decodeInterface decodes an interface value and stores it through p.
   695  // Interfaces are encoded as the name of a concrete type followed by a value.
   696  // If the name is empty, the value is nil and no value is sent.
   697  func (dec *Decoder) decodeInterface(ityp reflect.Type, state *decoderState, p unsafe.Pointer, indir int) {
   698  	// Create a writable interface reflect.Value.  We need one even for the nil case.
   699  	ivalue := allocValue(ityp)
   700  	// Read the name of the concrete type.
   701  	nr := state.decodeUint()
   702  	if nr < 0 || nr > 1<<31 { // zero is permissible for anonymous types
   703  		errorf("invalid type name length %d", nr)
   704  	}
   705  	b := make([]byte, nr)
   706  	state.b.Read(b)
   707  	name := string(b)
   708  	if name == "" {
   709  		// Copy the representation of the nil interface value to the target.
   710  		// This is horribly unsafe and special.
   711  		if indir > 0 {
   712  			p = allocate(ityp, p, 1) // All but the last level has been allocated by dec.Indirect
   713  		}
   714  		*(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.InterfaceData()
   715  		return
   716  	}
   717  	if len(name) > 1024 {
   718  		errorf("name too long (%d bytes): %.20q...", len(name), name)
   719  	}
   720  	// The concrete type must be registered.
   721  	registerLock.RLock()
   722  	typ, ok := nameToConcreteType[name]
   723  	registerLock.RUnlock()
   724  	if !ok {
   725  		errorf("name not registered for interface: %q", name)
   726  	}
   727  	// Read the type id of the concrete value.
   728  	concreteId := dec.decodeTypeSequence(true)
   729  	if concreteId < 0 {
   730  		error_(dec.err)
   731  	}
   732  	// Byte count of value is next; we don't care what it is (it's there
   733  	// in case we want to ignore the value by skipping it completely).
   734  	state.decodeUint()
   735  	// Read the concrete value.
   736  	value := allocValue(typ)
   737  	dec.decodeValue(concreteId, value)
   738  	if dec.err != nil {
   739  		error_(dec.err)
   740  	}
   741  	// Allocate the destination interface value.
   742  	if indir > 0 {
   743  		p = allocate(ityp, p, 1) // All but the last level has been allocated by dec.Indirect
   744  	}
   745  	// Assign the concrete value to the interface.
   746  	// Tread carefully; it might not satisfy the interface.
   747  	setInterfaceValue(ivalue, value)
   748  	// Copy the representation of the interface value to the target.
   749  	// This is horribly unsafe and special.
   750  	*(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.InterfaceData()
   751  }
   752  
   753  // ignoreInterface discards the data for an interface value with no destination.
   754  func (dec *Decoder) ignoreInterface(state *decoderState) {
   755  	// Read the name of the concrete type.
   756  	b := make([]byte, state.decodeUint())
   757  	_, err := state.b.Read(b)
   758  	if err != nil {
   759  		error_(err)
   760  	}
   761  	id := dec.decodeTypeSequence(true)
   762  	if id < 0 {
   763  		error_(dec.err)
   764  	}
   765  	// At this point, the decoder buffer contains a delimited value. Just toss it.
   766  	state.b.Next(int(state.decodeUint()))
   767  }
   768  
   769  // decodeGobDecoder decodes something implementing the GobDecoder interface.
   770  // The data is encoded as a byte slice.
   771  func (dec *Decoder) decodeGobDecoder(ut *userTypeInfo, state *decoderState, v reflect.Value) {
   772  	// Read the bytes for the value.
   773  	b := make([]byte, state.decodeUint())
   774  	_, err := state.b.Read(b)
   775  	if err != nil {
   776  		error_(err)
   777  	}
   778  	// We know it's one of these.
   779  	switch ut.externalDec {
   780  	case xGob:
   781  		err = v.Interface().(GobDecoder).GobDecode(b)
   782  	case xBinary:
   783  		err = v.Interface().(encoding.BinaryUnmarshaler).UnmarshalBinary(b)
   784  	case xText:
   785  		err = v.Interface().(encoding.TextUnmarshaler).UnmarshalText(b)
   786  	}
   787  	if err != nil {
   788  		error_(err)
   789  	}
   790  }
   791  
   792  // ignoreGobDecoder discards the data for a GobDecoder value with no destination.
   793  func (dec *Decoder) ignoreGobDecoder(state *decoderState) {
   794  	// Read the bytes for the value.
   795  	b := make([]byte, state.decodeUint())
   796  	_, err := state.b.Read(b)
   797  	if err != nil {
   798  		error_(err)
   799  	}
   800  }
   801  
   802  // Index by Go types.
   803  var decOpTable = [...]decOp{
   804  	reflect.Bool:       decBool,
   805  	reflect.Int8:       decInt8,
   806  	reflect.Int16:      decInt16,
   807  	reflect.Int32:      decInt32,
   808  	reflect.Int64:      decInt64,
   809  	reflect.Uint8:      decUint8,
   810  	reflect.Uint16:     decUint16,
   811  	reflect.Uint32:     decUint32,
   812  	reflect.Uint64:     decUint64,
   813  	reflect.Float32:    decFloat32,
   814  	reflect.Float64:    decFloat64,
   815  	reflect.Complex64:  decComplex64,
   816  	reflect.Complex128: decComplex128,
   817  	reflect.String:     decString,
   818  }
   819  
   820  // Indexed by gob types.  tComplex will be added during type.init().
   821  var decIgnoreOpMap = map[typeId]decOp{
   822  	tBool:    ignoreUint,
   823  	tInt:     ignoreUint,
   824  	tUint:    ignoreUint,
   825  	tFloat:   ignoreUint,
   826  	tBytes:   ignoreUint8Array,
   827  	tString:  ignoreUint8Array,
   828  	tComplex: ignoreTwoUints,
   829  }
   830  
   831  // decOpFor returns the decoding op for the base type under rt and
   832  // the indirection count to reach it.
   833  func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string, inProgress map[reflect.Type]*decOp) (*decOp, int) {
   834  	ut := userType(rt)
   835  	// If the type implements GobEncoder, we handle it without further processing.
   836  	if ut.externalDec != 0 {
   837  		return dec.gobDecodeOpFor(ut)
   838  	}
   839  
   840  	// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
   841  	// Return the pointer to the op we're already building.
   842  	if opPtr := inProgress[rt]; opPtr != nil {
   843  		return opPtr, ut.indir
   844  	}
   845  	typ := ut.base
   846  	indir := ut.indir
   847  	var op decOp
   848  	k := typ.Kind()
   849  	if int(k) < len(decOpTable) {
   850  		op = decOpTable[k]
   851  	}
   852  	if op == nil {
   853  		inProgress[rt] = &op
   854  		// Special cases
   855  		switch t := typ; t.Kind() {
   856  		case reflect.Array:
   857  			name = "element of " + name
   858  			elemId := dec.wireType[wireId].ArrayT.Elem
   859  			elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress)
   860  			ovfl := overflow(name)
   861  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   862  				state.dec.decodeArray(t, state, p, *elemOp, t.Elem().Size(), t.Len(), i.indir, elemIndir, ovfl)
   863  			}
   864  
   865  		case reflect.Map:
   866  			keyId := dec.wireType[wireId].MapT.Key
   867  			elemId := dec.wireType[wireId].MapT.Elem
   868  			keyOp, keyIndir := dec.decOpFor(keyId, t.Key(), "key of "+name, inProgress)
   869  			elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), "element of "+name, inProgress)
   870  			ovfl := overflow(name)
   871  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   872  				state.dec.decodeMap(t, state, p, *keyOp, *elemOp, i.indir, keyIndir, elemIndir, ovfl)
   873  			}
   874  
   875  		case reflect.Slice:
   876  			name = "element of " + name
   877  			if t.Elem().Kind() == reflect.Uint8 {
   878  				op = decUint8Slice
   879  				break
   880  			}
   881  			var elemId typeId
   882  			if tt, ok := builtinIdToType[wireId]; ok {
   883  				elemId = tt.(*sliceType).Elem
   884  			} else {
   885  				elemId = dec.wireType[wireId].SliceT.Elem
   886  			}
   887  			elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress)
   888  			ovfl := overflow(name)
   889  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   890  				state.dec.decodeSlice(t, state, uintptr(p), *elemOp, t.Elem().Size(), i.indir, elemIndir, ovfl)
   891  			}
   892  
   893  		case reflect.Struct:
   894  			// Generate a closure that calls out to the engine for the nested type.
   895  			enginePtr, err := dec.getDecEnginePtr(wireId, userType(typ))
   896  			if err != nil {
   897  				error_(err)
   898  			}
   899  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   900  				// indirect through enginePtr to delay evaluation for recursive structs.
   901  				dec.decodeStruct(*enginePtr, userType(typ), p, i.indir)
   902  			}
   903  		case reflect.Interface:
   904  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   905  				state.dec.decodeInterface(t, state, p, i.indir)
   906  			}
   907  		}
   908  	}
   909  	if op == nil {
   910  		errorf("decode can't handle type %s", rt)
   911  	}
   912  	return &op, indir
   913  }
   914  
   915  // decIgnoreOpFor returns the decoding op for a field that has no destination.
   916  func (dec *Decoder) decIgnoreOpFor(wireId typeId) decOp {
   917  	op, ok := decIgnoreOpMap[wireId]
   918  	if !ok {
   919  		if wireId == tInterface {
   920  			// Special case because it's a method: the ignored item might
   921  			// define types and we need to record their state in the decoder.
   922  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   923  				state.dec.ignoreInterface(state)
   924  			}
   925  			return op
   926  		}
   927  		// Special cases
   928  		wire := dec.wireType[wireId]
   929  		switch {
   930  		case wire == nil:
   931  			errorf("bad data: undefined type %s", wireId.string())
   932  		case wire.ArrayT != nil:
   933  			elemId := wire.ArrayT.Elem
   934  			elemOp := dec.decIgnoreOpFor(elemId)
   935  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   936  				state.dec.ignoreArray(state, elemOp, wire.ArrayT.Len)
   937  			}
   938  
   939  		case wire.MapT != nil:
   940  			keyId := dec.wireType[wireId].MapT.Key
   941  			elemId := dec.wireType[wireId].MapT.Elem
   942  			keyOp := dec.decIgnoreOpFor(keyId)
   943  			elemOp := dec.decIgnoreOpFor(elemId)
   944  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   945  				state.dec.ignoreMap(state, keyOp, elemOp)
   946  			}
   947  
   948  		case wire.SliceT != nil:
   949  			elemId := wire.SliceT.Elem
   950  			elemOp := dec.decIgnoreOpFor(elemId)
   951  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   952  				state.dec.ignoreSlice(state, elemOp)
   953  			}
   954  
   955  		case wire.StructT != nil:
   956  			// Generate a closure that calls out to the engine for the nested type.
   957  			enginePtr, err := dec.getIgnoreEnginePtr(wireId)
   958  			if err != nil {
   959  				error_(err)
   960  			}
   961  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   962  				// indirect through enginePtr to delay evaluation for recursive structs
   963  				state.dec.ignoreStruct(*enginePtr)
   964  			}
   965  
   966  		case wire.GobEncoderT != nil, wire.BinaryMarshalerT != nil, wire.TextMarshalerT != nil:
   967  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   968  				state.dec.ignoreGobDecoder(state)
   969  			}
   970  		}
   971  	}
   972  	if op == nil {
   973  		errorf("bad data: ignore can't handle type %s", wireId.string())
   974  	}
   975  	return op
   976  }
   977  
   978  // gobDecodeOpFor returns the op for a type that is known to implement
   979  // GobDecoder.
   980  func (dec *Decoder) gobDecodeOpFor(ut *userTypeInfo) (*decOp, int) {
   981  	rcvrType := ut.user
   982  	if ut.decIndir == -1 {
   983  		rcvrType = reflect.PtrTo(rcvrType)
   984  	} else if ut.decIndir > 0 {
   985  		for i := int8(0); i < ut.decIndir; i++ {
   986  			rcvrType = rcvrType.Elem()
   987  		}
   988  	}
   989  	var op decOp
   990  	op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   991  		// Caller has gotten us to within one indirection of our value.
   992  		if i.indir > 0 {
   993  			if *(*unsafe.Pointer)(p) == nil {
   994  				*(*unsafe.Pointer)(p) = unsafe.Pointer(reflect.New(ut.base).Pointer())
   995  			}
   996  		}
   997  		// Now p is a pointer to the base type.  Do we need to climb out to
   998  		// get to the receiver type?
   999  		var v reflect.Value
  1000  		if ut.decIndir == -1 {
  1001  			v = reflect.NewAt(rcvrType, unsafe.Pointer(&p)).Elem()
  1002  		} else {
  1003  			v = reflect.NewAt(rcvrType, p).Elem()
  1004  		}
  1005  		state.dec.decodeGobDecoder(ut, state, v)
  1006  	}
  1007  	return &op, int(ut.indir)
  1008  
  1009  }
  1010  
  1011  // compatibleType asks: Are these two gob Types compatible?
  1012  // Answers the question for basic types, arrays, maps and slices, plus
  1013  // GobEncoder/Decoder pairs.
  1014  // Structs are considered ok; fields will be checked later.
  1015  func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId, inProgress map[reflect.Type]typeId) bool {
  1016  	if rhs, ok := inProgress[fr]; ok {
  1017  		return rhs == fw
  1018  	}
  1019  	inProgress[fr] = fw
  1020  	ut := userType(fr)
  1021  	wire, ok := dec.wireType[fw]
  1022  	// If wire was encoded with an encoding method, fr must have that method.
  1023  	// And if not, it must not.
  1024  	// At most one of the booleans in ut is set.
  1025  	// We could possibly relax this constraint in the future in order to
  1026  	// choose the decoding method using the data in the wireType.
  1027  	// The parentheses look odd but are correct.
  1028  	if (ut.externalDec == xGob) != (ok && wire.GobEncoderT != nil) ||
  1029  		(ut.externalDec == xBinary) != (ok && wire.BinaryMarshalerT != nil) ||
  1030  		(ut.externalDec == xText) != (ok && wire.TextMarshalerT != nil) {
  1031  		return false
  1032  	}
  1033  	if ut.externalDec != 0 { // This test trumps all others.
  1034  		return true
  1035  	}
  1036  	switch t := ut.base; t.Kind() {
  1037  	default:
  1038  		// chan, etc: cannot handle.
  1039  		return false
  1040  	case reflect.Bool:
  1041  		return fw == tBool
  1042  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
  1043  		return fw == tInt
  1044  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
  1045  		return fw == tUint
  1046  	case reflect.Float32, reflect.Float64:
  1047  		return fw == tFloat
  1048  	case reflect.Complex64, reflect.Complex128:
  1049  		return fw == tComplex
  1050  	case reflect.String:
  1051  		return fw == tString
  1052  	case reflect.Interface:
  1053  		return fw == tInterface
  1054  	case reflect.Array:
  1055  		if !ok || wire.ArrayT == nil {
  1056  			return false
  1057  		}
  1058  		array := wire.ArrayT
  1059  		return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem, inProgress)
  1060  	case reflect.Map:
  1061  		if !ok || wire.MapT == nil {
  1062  			return false
  1063  		}
  1064  		MapType := wire.MapT
  1065  		return dec.compatibleType(t.Key(), MapType.Key, inProgress) && dec.compatibleType(t.Elem(), MapType.Elem, inProgress)
  1066  	case reflect.Slice:
  1067  		// Is it an array of bytes?
  1068  		if t.Elem().Kind() == reflect.Uint8 {
  1069  			return fw == tBytes
  1070  		}
  1071  		// Extract and compare element types.
  1072  		var sw *sliceType
  1073  		if tt, ok := builtinIdToType[fw]; ok {
  1074  			sw, _ = tt.(*sliceType)
  1075  		} else if wire != nil {
  1076  			sw = wire.SliceT
  1077  		}
  1078  		elem := userType(t.Elem()).base
  1079  		return sw != nil && dec.compatibleType(elem, sw.Elem, inProgress)
  1080  	case reflect.Struct:
  1081  		return true
  1082  	}
  1083  }
  1084  
  1085  // typeString returns a human-readable description of the type identified by remoteId.
  1086  func (dec *Decoder) typeString(remoteId typeId) string {
  1087  	if t := idToType[remoteId]; t != nil {
  1088  		// globally known type.
  1089  		return t.string()
  1090  	}
  1091  	return dec.wireType[remoteId].string()
  1092  }
  1093  
  1094  // compileSingle compiles the decoder engine for a non-struct top-level value, including
  1095  // GobDecoders.
  1096  func (dec *Decoder) compileSingle(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) {
  1097  	rt := ut.user
  1098  	engine = new(decEngine)
  1099  	engine.instr = make([]decInstr, 1) // one item
  1100  	name := rt.String()                // best we can do
  1101  	if !dec.compatibleType(rt, remoteId, make(map[reflect.Type]typeId)) {
  1102  		remoteType := dec.typeString(remoteId)
  1103  		// Common confusing case: local interface type, remote concrete type.
  1104  		if ut.base.Kind() == reflect.Interface && remoteId != tInterface {
  1105  			return nil, errors.New("gob: local interface type " + name + " can only be decoded from remote interface type; received concrete type " + remoteType)
  1106  		}
  1107  		return nil, errors.New("gob: decoding into local type " + name + ", received remote type " + remoteType)
  1108  	}
  1109  	op, indir := dec.decOpFor(remoteId, rt, name, make(map[reflect.Type]*decOp))
  1110  	ovfl := errors.New(`value for "` + name + `" out of range`)
  1111  	engine.instr[singletonField] = decInstr{*op, singletonField, indir, 0, ovfl}
  1112  	engine.numInstr = 1
  1113  	return
  1114  }
  1115  
  1116  // compileIgnoreSingle compiles the decoder engine for a non-struct top-level value that will be discarded.
  1117  func (dec *Decoder) compileIgnoreSingle(remoteId typeId) (engine *decEngine, err error) {
  1118  	engine = new(decEngine)
  1119  	engine.instr = make([]decInstr, 1) // one item
  1120  	op := dec.decIgnoreOpFor(remoteId)
  1121  	ovfl := overflow(dec.typeString(remoteId))
  1122  	engine.instr[0] = decInstr{op, 0, 0, 0, ovfl}
  1123  	engine.numInstr = 1
  1124  	return
  1125  }
  1126  
  1127  // compileDec compiles the decoder engine for a value.  If the value is not a struct,
  1128  // it calls out to compileSingle.
  1129  func (dec *Decoder) compileDec(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) {
  1130  	rt := ut.base
  1131  	srt := rt
  1132  	if srt.Kind() != reflect.Struct || ut.externalDec != 0 {
  1133  		return dec.compileSingle(remoteId, ut)
  1134  	}
  1135  	var wireStruct *structType
  1136  	// Builtin types can come from global pool; the rest must be defined by the decoder.
  1137  	// Also we know we're decoding a struct now, so the client must have sent one.
  1138  	if t, ok := builtinIdToType[remoteId]; ok {
  1139  		wireStruct, _ = t.(*structType)
  1140  	} else {
  1141  		wire := dec.wireType[remoteId]
  1142  		if wire == nil {
  1143  			error_(errBadType)
  1144  		}
  1145  		wireStruct = wire.StructT
  1146  	}
  1147  	if wireStruct == nil {
  1148  		errorf("type mismatch in decoder: want struct type %s; got non-struct", rt)
  1149  	}
  1150  	engine = new(decEngine)
  1151  	engine.instr = make([]decInstr, len(wireStruct.Field))
  1152  	seen := make(map[reflect.Type]*decOp)
  1153  	// Loop over the fields of the wire type.
  1154  	for fieldnum := 0; fieldnum < len(wireStruct.Field); fieldnum++ {
  1155  		wireField := wireStruct.Field[fieldnum]
  1156  		if wireField.Name == "" {
  1157  			errorf("empty name for remote field of type %s", wireStruct.Name)
  1158  		}
  1159  		ovfl := overflow(wireField.Name)
  1160  		// Find the field of the local type with the same name.
  1161  		localField, present := srt.FieldByName(wireField.Name)
  1162  		// TODO(r): anonymous names
  1163  		if !present || !isExported(wireField.Name) {
  1164  			op := dec.decIgnoreOpFor(wireField.Id)
  1165  			engine.instr[fieldnum] = decInstr{op, fieldnum, 0, 0, ovfl}
  1166  			continue
  1167  		}
  1168  		if !dec.compatibleType(localField.Type, wireField.Id, make(map[reflect.Type]typeId)) {
  1169  			errorf("wrong type (%s) for received field %s.%s", localField.Type, wireStruct.Name, wireField.Name)
  1170  		}
  1171  		op, indir := dec.decOpFor(wireField.Id, localField.Type, localField.Name, seen)
  1172  		engine.instr[fieldnum] = decInstr{*op, fieldnum, indir, uintptr(localField.Offset), ovfl}
  1173  		engine.numInstr++
  1174  	}
  1175  	return
  1176  }
  1177  
  1178  // getDecEnginePtr returns the engine for the specified type.
  1179  func (dec *Decoder) getDecEnginePtr(remoteId typeId, ut *userTypeInfo) (enginePtr **decEngine, err error) {
  1180  	rt := ut.user
  1181  	decoderMap, ok := dec.decoderCache[rt]
  1182  	if !ok {
  1183  		decoderMap = make(map[typeId]**decEngine)
  1184  		dec.decoderCache[rt] = decoderMap
  1185  	}
  1186  	if enginePtr, ok = decoderMap[remoteId]; !ok {
  1187  		// To handle recursive types, mark this engine as underway before compiling.
  1188  		enginePtr = new(*decEngine)
  1189  		decoderMap[remoteId] = enginePtr
  1190  		*enginePtr, err = dec.compileDec(remoteId, ut)
  1191  		if err != nil {
  1192  			delete(decoderMap, remoteId)
  1193  		}
  1194  	}
  1195  	return
  1196  }
  1197  
  1198  // emptyStruct is the type we compile into when ignoring a struct value.
  1199  type emptyStruct struct{}
  1200  
  1201  var emptyStructType = reflect.TypeOf(emptyStruct{})
  1202  
  1203  // getDecEnginePtr returns the engine for the specified type when the value is to be discarded.
  1204  func (dec *Decoder) getIgnoreEnginePtr(wireId typeId) (enginePtr **decEngine, err error) {
  1205  	var ok bool
  1206  	if enginePtr, ok = dec.ignorerCache[wireId]; !ok {
  1207  		// To handle recursive types, mark this engine as underway before compiling.
  1208  		enginePtr = new(*decEngine)
  1209  		dec.ignorerCache[wireId] = enginePtr
  1210  		wire := dec.wireType[wireId]
  1211  		if wire != nil && wire.StructT != nil {
  1212  			*enginePtr, err = dec.compileDec(wireId, userType(emptyStructType))
  1213  		} else {
  1214  			*enginePtr, err = dec.compileIgnoreSingle(wireId)
  1215  		}
  1216  		if err != nil {
  1217  			delete(dec.ignorerCache, wireId)
  1218  		}
  1219  	}
  1220  	return
  1221  }
  1222  
  1223  // decodeValue decodes the data stream representing a value and stores it in val.
  1224  func (dec *Decoder) decodeValue(wireId typeId, val reflect.Value) {
  1225  	defer catchError(&dec.err)
  1226  	// If the value is nil, it means we should just ignore this item.
  1227  	if !val.IsValid() {
  1228  		dec.decodeIgnoredValue(wireId)
  1229  		return
  1230  	}
  1231  	// Dereference down to the underlying type.
  1232  	ut := userType(val.Type())
  1233  	base := ut.base
  1234  	var enginePtr **decEngine
  1235  	enginePtr, dec.err = dec.getDecEnginePtr(wireId, ut)
  1236  	if dec.err != nil {
  1237  		return
  1238  	}
  1239  	engine := *enginePtr
  1240  	if st := base; st.Kind() == reflect.Struct && ut.externalDec == 0 {
  1241  		if engine.numInstr == 0 && st.NumField() > 0 && len(dec.wireType[wireId].StructT.Field) > 0 {
  1242  			name := base.Name()
  1243  			errorf("type mismatch: no fields matched compiling decoder for %s", name)
  1244  		}
  1245  		dec.decodeStruct(engine, ut, unsafeAddr(val), ut.indir)
  1246  	} else {
  1247  		dec.decodeSingle(engine, ut, unsafeAddr(val))
  1248  	}
  1249  }
  1250  
  1251  // decodeIgnoredValue decodes the data stream representing a value of the specified type and discards it.
  1252  func (dec *Decoder) decodeIgnoredValue(wireId typeId) {
  1253  	var enginePtr **decEngine
  1254  	enginePtr, dec.err = dec.getIgnoreEnginePtr(wireId)
  1255  	if dec.err != nil {
  1256  		return
  1257  	}
  1258  	wire := dec.wireType[wireId]
  1259  	if wire != nil && wire.StructT != nil {
  1260  		dec.ignoreStruct(*enginePtr)
  1261  	} else {
  1262  		dec.ignoreSingle(*enginePtr)
  1263  	}
  1264  }
  1265  
  1266  func init() {
  1267  	var iop, uop decOp
  1268  	switch reflect.TypeOf(int(0)).Bits() {
  1269  	case 32:
  1270  		iop = decInt32
  1271  		uop = decUint32
  1272  	case 64:
  1273  		iop = decInt64
  1274  		uop = decUint64
  1275  	default:
  1276  		panic("gob: unknown size of int/uint")
  1277  	}
  1278  	decOpTable[reflect.Int] = iop
  1279  	decOpTable[reflect.Uint] = uop
  1280  
  1281  	// Finally uintptr
  1282  	switch reflect.TypeOf(uintptr(0)).Bits() {
  1283  	case 32:
  1284  		uop = decUint32
  1285  	case 64:
  1286  		uop = decUint64
  1287  	default:
  1288  		panic("gob: unknown size of uintptr")
  1289  	}
  1290  	decOpTable[reflect.Uintptr] = uop
  1291  }
  1292  
  1293  // Gob assumes it can call UnsafeAddr on any Value
  1294  // in order to get a pointer it can copy data from.
  1295  // Values that have just been created and do not point
  1296  // into existing structs or slices cannot be addressed,
  1297  // so simulate it by returning a pointer to a copy.
  1298  // Each call allocates once.
  1299  func unsafeAddr(v reflect.Value) unsafe.Pointer {
  1300  	if v.CanAddr() {
  1301  		return unsafe.Pointer(v.UnsafeAddr())
  1302  	}
  1303  	x := reflect.New(v.Type()).Elem()
  1304  	x.Set(v)
  1305  	return unsafe.Pointer(x.UnsafeAddr())
  1306  }
  1307  
  1308  // Gob depends on being able to take the address
  1309  // of zeroed Values it creates, so use this wrapper instead
  1310  // of the standard reflect.Zero.
  1311  // Each call allocates once.
  1312  func allocValue(t reflect.Type) reflect.Value {
  1313  	return reflect.New(t).Elem()
  1314  }