git.prognetwork.ru/x0r/utls@v1.3.3/cipher_suites.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package tls
     6  
     7  import (
     8  	"crypto"
     9  	"crypto/aes"
    10  	"crypto/cipher"
    11  	"crypto/des"
    12  	"crypto/hmac"
    13  
    14  	// "crypto/internal/boring"
    15  	"crypto/rc4"
    16  	"crypto/sha1"
    17  	"crypto/sha256"
    18  	"fmt"
    19  	"hash"
    20  	"runtime"
    21  
    22  	"git.prognetwork.ru/x0r/utls/cpu"
    23  
    24  	"golang.org/x/crypto/chacha20poly1305"
    25  )
    26  
    27  // CipherSuite is a TLS cipher suite. Note that most functions in this package
    28  // accept and expose cipher suite IDs instead of this type.
    29  type CipherSuite struct {
    30  	ID   uint16
    31  	Name string
    32  
    33  	// Supported versions is the list of TLS protocol versions that can
    34  	// negotiate this cipher suite.
    35  	SupportedVersions []uint16
    36  
    37  	// Insecure is true if the cipher suite has known security issues
    38  	// due to its primitives, design, or implementation.
    39  	Insecure bool
    40  }
    41  
    42  var (
    43  	supportedUpToTLS12 = []uint16{VersionTLS10, VersionTLS11, VersionTLS12}
    44  	supportedOnlyTLS12 = []uint16{VersionTLS12}
    45  	supportedOnlyTLS13 = []uint16{VersionTLS13}
    46  )
    47  
    48  // CipherSuites returns a list of cipher suites currently implemented by this
    49  // package, excluding those with security issues, which are returned by
    50  // InsecureCipherSuites.
    51  //
    52  // The list is sorted by ID. Note that the default cipher suites selected by
    53  // this package might depend on logic that can't be captured by a static list,
    54  // and might not match those returned by this function.
    55  func CipherSuites() []*CipherSuite {
    56  	return []*CipherSuite{
    57  		{TLS_RSA_WITH_AES_128_CBC_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA", supportedUpToTLS12, false},
    58  		{TLS_RSA_WITH_AES_256_CBC_SHA, "TLS_RSA_WITH_AES_256_CBC_SHA", supportedUpToTLS12, false},
    59  		{TLS_RSA_WITH_AES_128_GCM_SHA256, "TLS_RSA_WITH_AES_128_GCM_SHA256", supportedOnlyTLS12, false},
    60  		{TLS_RSA_WITH_AES_256_GCM_SHA384, "TLS_RSA_WITH_AES_256_GCM_SHA384", supportedOnlyTLS12, false},
    61  
    62  		{TLS_AES_128_GCM_SHA256, "TLS_AES_128_GCM_SHA256", supportedOnlyTLS13, false},
    63  		{TLS_AES_256_GCM_SHA384, "TLS_AES_256_GCM_SHA384", supportedOnlyTLS13, false},
    64  		{TLS_CHACHA20_POLY1305_SHA256, "TLS_CHACHA20_POLY1305_SHA256", supportedOnlyTLS13, false},
    65  
    66  		{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA", supportedUpToTLS12, false},
    67  		{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA", supportedUpToTLS12, false},
    68  		{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", supportedUpToTLS12, false},
    69  		{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", supportedUpToTLS12, false},
    70  		{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", supportedOnlyTLS12, false},
    71  		{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", supportedOnlyTLS12, false},
    72  		{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", supportedOnlyTLS12, false},
    73  		{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384", supportedOnlyTLS12, false},
    74  		{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256", supportedOnlyTLS12, false},
    75  		{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256", supportedOnlyTLS12, false},
    76  	}
    77  }
    78  
    79  // InsecureCipherSuites returns a list of cipher suites currently implemented by
    80  // this package and which have security issues.
    81  //
    82  // Most applications should not use the cipher suites in this list, and should
    83  // only use those returned by CipherSuites.
    84  func InsecureCipherSuites() []*CipherSuite {
    85  	// This list includes RC4, CBC_SHA256, and 3DES cipher suites. See
    86  	// cipherSuitesPreferenceOrder for details.
    87  	return []*CipherSuite{
    88  		{TLS_RSA_WITH_RC4_128_SHA, "TLS_RSA_WITH_RC4_128_SHA", supportedUpToTLS12, true},
    89  		{TLS_RSA_WITH_3DES_EDE_CBC_SHA, "TLS_RSA_WITH_3DES_EDE_CBC_SHA", supportedUpToTLS12, true},
    90  		{TLS_RSA_WITH_AES_128_CBC_SHA256, "TLS_RSA_WITH_AES_128_CBC_SHA256", supportedOnlyTLS12, true},
    91  		{TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, "TLS_ECDHE_ECDSA_WITH_RC4_128_SHA", supportedUpToTLS12, true},
    92  		{TLS_ECDHE_RSA_WITH_RC4_128_SHA, "TLS_ECDHE_RSA_WITH_RC4_128_SHA", supportedUpToTLS12, true},
    93  		{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, "TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA", supportedUpToTLS12, true},
    94  		{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256", supportedOnlyTLS12, true},
    95  		{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", supportedOnlyTLS12, true},
    96  	}
    97  }
    98  
    99  // CipherSuiteName returns the standard name for the passed cipher suite ID
   100  // (e.g. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256"), or a fallback representation
   101  // of the ID value if the cipher suite is not implemented by this package.
   102  func CipherSuiteName(id uint16) string {
   103  	for _, c := range CipherSuites() {
   104  		if c.ID == id {
   105  			return c.Name
   106  		}
   107  	}
   108  	for _, c := range InsecureCipherSuites() {
   109  		if c.ID == id {
   110  			return c.Name
   111  		}
   112  	}
   113  	return fmt.Sprintf("0x%04X", id)
   114  }
   115  
   116  const (
   117  	// suiteECDHE indicates that the cipher suite involves elliptic curve
   118  	// Diffie-Hellman. This means that it should only be selected when the
   119  	// client indicates that it supports ECC with a curve and point format
   120  	// that we're happy with.
   121  	suiteECDHE = 1 << iota
   122  	// suiteECSign indicates that the cipher suite involves an ECDSA or
   123  	// EdDSA signature and therefore may only be selected when the server's
   124  	// certificate is ECDSA or EdDSA. If this is not set then the cipher suite
   125  	// is RSA based.
   126  	suiteECSign
   127  	// suiteTLS12 indicates that the cipher suite should only be advertised
   128  	// and accepted when using TLS 1.2.
   129  	suiteTLS12
   130  	// suiteSHA384 indicates that the cipher suite uses SHA384 as the
   131  	// handshake hash.
   132  	suiteSHA384
   133  )
   134  
   135  // A cipherSuite is a TLS 1.0–1.2 cipher suite, and defines the key exchange
   136  // mechanism, as well as the cipher+MAC pair or the AEAD.
   137  type cipherSuite struct {
   138  	id uint16
   139  	// the lengths, in bytes, of the key material needed for each component.
   140  	keyLen int
   141  	macLen int
   142  	ivLen  int
   143  	ka     func(version uint16) keyAgreement
   144  	// flags is a bitmask of the suite* values, above.
   145  	flags  int
   146  	cipher func(key, iv []byte, isRead bool) any
   147  	mac    func(key []byte) hash.Hash
   148  	aead   func(key, fixedNonce []byte) aead
   149  }
   150  
   151  var cipherSuites = []*cipherSuite{ // TODO: replace with a map, since the order doesn't matter.
   152  	{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
   153  	{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
   154  	{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
   155  	{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12, nil, nil, aeadAESGCM},
   156  	{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
   157  	{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
   158  	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12, cipherAES, macSHA256, nil},
   159  	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
   160  	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12, cipherAES, macSHA256, nil},
   161  	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECSign, cipherAES, macSHA1, nil},
   162  	{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
   163  	{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECSign, cipherAES, macSHA1, nil},
   164  	{TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
   165  	{TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
   166  	{TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12, cipherAES, macSHA256, nil},
   167  	{TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
   168  	{TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
   169  	{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
   170  	{TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil},
   171  	{TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, 0, cipherRC4, macSHA1, nil},
   172  	{TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE, cipherRC4, macSHA1, nil},
   173  	{TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECSign, cipherRC4, macSHA1, nil},
   174  }
   175  
   176  // selectCipherSuite returns the first TLS 1.0–1.2 cipher suite from ids which
   177  // is also in supportedIDs and passes the ok filter.
   178  func selectCipherSuite(ids, supportedIDs []uint16, ok func(*cipherSuite) bool) *cipherSuite {
   179  	for _, id := range ids {
   180  		candidate := cipherSuiteByID(id)
   181  		if candidate == nil || !ok(candidate) {
   182  			continue
   183  		}
   184  
   185  		for _, suppID := range supportedIDs {
   186  			if id == suppID {
   187  				return candidate
   188  			}
   189  		}
   190  	}
   191  	return nil
   192  }
   193  
   194  // A cipherSuiteTLS13 defines only the pair of the AEAD algorithm and hash
   195  // algorithm to be used with HKDF. See RFC 8446, Appendix B.4.
   196  type cipherSuiteTLS13 struct {
   197  	id     uint16
   198  	keyLen int
   199  	aead   func(key, fixedNonce []byte) aead
   200  	hash   crypto.Hash
   201  }
   202  
   203  var cipherSuitesTLS13 = []*cipherSuiteTLS13{ // TODO: replace with a map.
   204  	{TLS_AES_128_GCM_SHA256, 16, aeadAESGCMTLS13, crypto.SHA256},
   205  	{TLS_CHACHA20_POLY1305_SHA256, 32, aeadChaCha20Poly1305, crypto.SHA256},
   206  	{TLS_AES_256_GCM_SHA384, 32, aeadAESGCMTLS13, crypto.SHA384},
   207  }
   208  
   209  // cipherSuitesPreferenceOrder is the order in which we'll select (on the
   210  // server) or advertise (on the client) TLS 1.0–1.2 cipher suites.
   211  //
   212  // Cipher suites are filtered but not reordered based on the application and
   213  // peer's preferences, meaning we'll never select a suite lower in this list if
   214  // any higher one is available. This makes it more defensible to keep weaker
   215  // cipher suites enabled, especially on the server side where we get the last
   216  // word, since there are no known downgrade attacks on cipher suites selection.
   217  //
   218  // The list is sorted by applying the following priority rules, stopping at the
   219  // first (most important) applicable one:
   220  //
   221  //   - Anything else comes before RC4
   222  //
   223  //     RC4 has practically exploitable biases. See https://www.rc4nomore.com.
   224  //
   225  //   - Anything else comes before CBC_SHA256
   226  //
   227  //     SHA-256 variants of the CBC ciphersuites don't implement any Lucky13
   228  //     countermeasures. See http://www.isg.rhul.ac.uk/tls/Lucky13.html and
   229  //     https://www.imperialviolet.org/2013/02/04/luckythirteen.html.
   230  //
   231  //   - Anything else comes before 3DES
   232  //
   233  //     3DES has 64-bit blocks, which makes it fundamentally susceptible to
   234  //     birthday attacks. See https://sweet32.info.
   235  //
   236  //   - ECDHE comes before anything else
   237  //
   238  //     Once we got the broken stuff out of the way, the most important
   239  //     property a cipher suite can have is forward secrecy. We don't
   240  //     implement FFDHE, so that means ECDHE.
   241  //
   242  //   - AEADs come before CBC ciphers
   243  //
   244  //     Even with Lucky13 countermeasures, MAC-then-Encrypt CBC cipher suites
   245  //     are fundamentally fragile, and suffered from an endless sequence of
   246  //     padding oracle attacks. See https://eprint.iacr.org/2015/1129,
   247  //     https://www.imperialviolet.org/2014/12/08/poodleagain.html, and
   248  //     https://blog.cloudflare.com/yet-another-padding-oracle-in-openssl-cbc-ciphersuites/.
   249  //
   250  //   - AES comes before ChaCha20
   251  //
   252  //     When AES hardware is available, AES-128-GCM and AES-256-GCM are faster
   253  //     than ChaCha20Poly1305.
   254  //
   255  //     When AES hardware is not available, AES-128-GCM is one or more of: much
   256  //     slower, way more complex, and less safe (because not constant time)
   257  //     than ChaCha20Poly1305.
   258  //
   259  //     We use this list if we think both peers have AES hardware, and
   260  //     cipherSuitesPreferenceOrderNoAES otherwise.
   261  //
   262  //   - AES-128 comes before AES-256
   263  //
   264  //     The only potential advantages of AES-256 are better multi-target
   265  //     margins, and hypothetical post-quantum properties. Neither apply to
   266  //     TLS, and AES-256 is slower due to its four extra rounds (which don't
   267  //     contribute to the advantages above).
   268  //
   269  //   - ECDSA comes before RSA
   270  //
   271  //     The relative order of ECDSA and RSA cipher suites doesn't matter,
   272  //     as they depend on the certificate. Pick one to get a stable order.
   273  var cipherSuitesPreferenceOrder = []uint16{
   274  	// AEADs w/ ECDHE
   275  	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
   276  	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
   277  	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
   278  
   279  	// CBC w/ ECDHE
   280  	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
   281  	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
   282  
   283  	// AEADs w/o ECDHE
   284  	TLS_RSA_WITH_AES_128_GCM_SHA256,
   285  	TLS_RSA_WITH_AES_256_GCM_SHA384,
   286  
   287  	// CBC w/o ECDHE
   288  	TLS_RSA_WITH_AES_128_CBC_SHA,
   289  	TLS_RSA_WITH_AES_256_CBC_SHA,
   290  
   291  	// 3DES
   292  	TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
   293  	TLS_RSA_WITH_3DES_EDE_CBC_SHA,
   294  
   295  	// CBC_SHA256
   296  	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
   297  	TLS_RSA_WITH_AES_128_CBC_SHA256,
   298  
   299  	// RC4
   300  	TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
   301  	TLS_RSA_WITH_RC4_128_SHA,
   302  }
   303  
   304  var cipherSuitesPreferenceOrderNoAES = []uint16{
   305  	// ChaCha20Poly1305
   306  	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
   307  
   308  	// AES-GCM w/ ECDHE
   309  	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
   310  	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
   311  
   312  	// The rest of cipherSuitesPreferenceOrder.
   313  	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
   314  	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
   315  	TLS_RSA_WITH_AES_128_GCM_SHA256,
   316  	TLS_RSA_WITH_AES_256_GCM_SHA384,
   317  	TLS_RSA_WITH_AES_128_CBC_SHA,
   318  	TLS_RSA_WITH_AES_256_CBC_SHA,
   319  	TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
   320  	TLS_RSA_WITH_3DES_EDE_CBC_SHA,
   321  	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
   322  	TLS_RSA_WITH_AES_128_CBC_SHA256,
   323  	TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
   324  	TLS_RSA_WITH_RC4_128_SHA,
   325  }
   326  
   327  // disabledCipherSuites are not used unless explicitly listed in
   328  // Config.CipherSuites. They MUST be at the end of cipherSuitesPreferenceOrder.
   329  var disabledCipherSuites = []uint16{
   330  	// CBC_SHA256
   331  	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
   332  	TLS_RSA_WITH_AES_128_CBC_SHA256,
   333  
   334  	// RC4
   335  	TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
   336  	TLS_RSA_WITH_RC4_128_SHA,
   337  }
   338  
   339  var (
   340  	defaultCipherSuitesLen = len(cipherSuitesPreferenceOrder) - len(disabledCipherSuites)
   341  	defaultCipherSuites    = cipherSuitesPreferenceOrder[:defaultCipherSuitesLen]
   342  )
   343  
   344  // defaultCipherSuitesTLS13 is also the preference order, since there are no
   345  // disabled by default TLS 1.3 cipher suites. The same AES vs ChaCha20 logic as
   346  // cipherSuitesPreferenceOrder applies.
   347  var defaultCipherSuitesTLS13 = []uint16{
   348  	TLS_AES_128_GCM_SHA256,
   349  	TLS_AES_256_GCM_SHA384,
   350  	TLS_CHACHA20_POLY1305_SHA256,
   351  }
   352  
   353  var defaultCipherSuitesTLS13NoAES = []uint16{
   354  	TLS_CHACHA20_POLY1305_SHA256,
   355  	TLS_AES_128_GCM_SHA256,
   356  	TLS_AES_256_GCM_SHA384,
   357  }
   358  
   359  var (
   360  	hasGCMAsmAMD64 = cpu.X86.HasAES && cpu.X86.HasPCLMULQDQ
   361  	hasGCMAsmARM64 = cpu.ARM64.HasAES && cpu.ARM64.HasPMULL
   362  	// Keep in sync with crypto/aes/cipher_s390x.go.
   363  	hasGCMAsmS390X = cpu.S390X.HasAES && cpu.S390X.HasAESCBC && cpu.S390X.HasAESCTR &&
   364  		(cpu.S390X.HasGHASH || cpu.S390X.HasAESGCM)
   365  
   366  	hasAESGCMHardwareSupport = runtime.GOARCH == "amd64" && hasGCMAsmAMD64 ||
   367  		runtime.GOARCH == "arm64" && hasGCMAsmARM64 ||
   368  		runtime.GOARCH == "s390x" && hasGCMAsmS390X
   369  )
   370  
   371  var aesgcmCiphers = map[uint16]bool{
   372  	// TLS 1.2
   373  	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:   true,
   374  	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384:   true,
   375  	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: true,
   376  	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: true,
   377  	// TLS 1.3
   378  	TLS_AES_128_GCM_SHA256: true,
   379  	TLS_AES_256_GCM_SHA384: true,
   380  }
   381  
   382  var nonAESGCMAEADCiphers = map[uint16]bool{
   383  	// TLS 1.2
   384  	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305:   true,
   385  	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305: true,
   386  	// TLS 1.3
   387  	TLS_CHACHA20_POLY1305_SHA256: true,
   388  }
   389  
   390  // aesgcmPreferred returns whether the first known cipher in the preference list
   391  // is an AES-GCM cipher, implying the peer has hardware support for it.
   392  func aesgcmPreferred(ciphers []uint16) bool {
   393  	for _, cID := range ciphers {
   394  		if c := cipherSuiteByID(cID); c != nil {
   395  			return aesgcmCiphers[cID]
   396  		}
   397  		if c := cipherSuiteTLS13ByID(cID); c != nil {
   398  			return aesgcmCiphers[cID]
   399  		}
   400  	}
   401  	return false
   402  }
   403  
   404  func cipherRC4(key, iv []byte, isRead bool) any {
   405  	cipher, _ := rc4.NewCipher(key)
   406  	return cipher
   407  }
   408  
   409  func cipher3DES(key, iv []byte, isRead bool) any {
   410  	block, _ := des.NewTripleDESCipher(key)
   411  	if isRead {
   412  		return cipher.NewCBCDecrypter(block, iv)
   413  	}
   414  	return cipher.NewCBCEncrypter(block, iv)
   415  }
   416  
   417  func cipherAES(key, iv []byte, isRead bool) any {
   418  	block, _ := aes.NewCipher(key)
   419  	if isRead {
   420  		return cipher.NewCBCDecrypter(block, iv)
   421  	}
   422  	return cipher.NewCBCEncrypter(block, iv)
   423  }
   424  
   425  // macSHA1 returns a SHA-1 based constant time MAC.
   426  func macSHA1(key []byte) hash.Hash {
   427  	h := sha1.New
   428  	// The BoringCrypto SHA1 does not have a constant-time
   429  	// checksum function, so don't try to use it.
   430  	if !boring.Enabled {
   431  		h = newConstantTimeHash(h)
   432  	}
   433  	return hmac.New(h, key)
   434  }
   435  
   436  // macSHA256 returns a SHA-256 based MAC. This is only supported in TLS 1.2 and
   437  // is currently only used in disabled-by-default cipher suites.
   438  func macSHA256(key []byte) hash.Hash {
   439  	return hmac.New(sha256.New, key)
   440  }
   441  
   442  type aead interface {
   443  	cipher.AEAD
   444  
   445  	// explicitNonceLen returns the number of bytes of explicit nonce
   446  	// included in each record. This is eight for older AEADs and
   447  	// zero for modern ones.
   448  	explicitNonceLen() int
   449  }
   450  
   451  const (
   452  	aeadNonceLength   = 12
   453  	noncePrefixLength = 4
   454  )
   455  
   456  // prefixNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
   457  // each call.
   458  type prefixNonceAEAD struct {
   459  	// nonce contains the fixed part of the nonce in the first four bytes.
   460  	nonce [aeadNonceLength]byte
   461  	aead  cipher.AEAD
   462  }
   463  
   464  func (f *prefixNonceAEAD) NonceSize() int        { return aeadNonceLength - noncePrefixLength }
   465  func (f *prefixNonceAEAD) Overhead() int         { return f.aead.Overhead() }
   466  func (f *prefixNonceAEAD) explicitNonceLen() int { return f.NonceSize() }
   467  
   468  func (f *prefixNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
   469  	copy(f.nonce[4:], nonce)
   470  	return f.aead.Seal(out, f.nonce[:], plaintext, additionalData)
   471  }
   472  
   473  func (f *prefixNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([]byte, error) {
   474  	copy(f.nonce[4:], nonce)
   475  	return f.aead.Open(out, f.nonce[:], ciphertext, additionalData)
   476  }
   477  
   478  // xoredNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce
   479  // before each call.
   480  type xorNonceAEAD struct {
   481  	nonceMask [aeadNonceLength]byte
   482  	aead      cipher.AEAD
   483  }
   484  
   485  func (f *xorNonceAEAD) NonceSize() int        { return 8 } // 64-bit sequence number
   486  func (f *xorNonceAEAD) Overhead() int         { return f.aead.Overhead() }
   487  func (f *xorNonceAEAD) explicitNonceLen() int { return 0 }
   488  
   489  func (f *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
   490  	for i, b := range nonce {
   491  		f.nonceMask[4+i] ^= b
   492  	}
   493  	result := f.aead.Seal(out, f.nonceMask[:], plaintext, additionalData)
   494  	for i, b := range nonce {
   495  		f.nonceMask[4+i] ^= b
   496  	}
   497  
   498  	return result
   499  }
   500  
   501  func (f *xorNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([]byte, error) {
   502  	for i, b := range nonce {
   503  		f.nonceMask[4+i] ^= b
   504  	}
   505  	result, err := f.aead.Open(out, f.nonceMask[:], ciphertext, additionalData)
   506  	for i, b := range nonce {
   507  		f.nonceMask[4+i] ^= b
   508  	}
   509  
   510  	return result, err
   511  }
   512  
   513  func aeadAESGCM(key, noncePrefix []byte) aead {
   514  	if len(noncePrefix) != noncePrefixLength {
   515  		panic("tls: internal error: wrong nonce length")
   516  	}
   517  	aes, err := aes.NewCipher(key)
   518  	if err != nil {
   519  		panic(err)
   520  	}
   521  	var aead cipher.AEAD
   522  	if boring.Enabled {
   523  		aead, err = boring.NewGCMTLS(aes)
   524  	} else {
   525  		boring.Unreachable()
   526  		aead, err = cipher.NewGCM(aes)
   527  	}
   528  	if err != nil {
   529  		panic(err)
   530  	}
   531  
   532  	ret := &prefixNonceAEAD{aead: aead}
   533  	copy(ret.nonce[:], noncePrefix)
   534  	return ret
   535  }
   536  
   537  func aeadAESGCMTLS13(key, nonceMask []byte) aead {
   538  	if len(nonceMask) != aeadNonceLength {
   539  		panic("tls: internal error: wrong nonce length")
   540  	}
   541  	aes, err := aes.NewCipher(key)
   542  	if err != nil {
   543  		panic(err)
   544  	}
   545  	aead, err := cipher.NewGCM(aes)
   546  	if err != nil {
   547  		panic(err)
   548  	}
   549  
   550  	ret := &xorNonceAEAD{aead: aead}
   551  	copy(ret.nonceMask[:], nonceMask)
   552  	return ret
   553  }
   554  
   555  func aeadChaCha20Poly1305(key, nonceMask []byte) aead {
   556  	if len(nonceMask) != aeadNonceLength {
   557  		panic("tls: internal error: wrong nonce length")
   558  	}
   559  	aead, err := chacha20poly1305.New(key)
   560  	if err != nil {
   561  		panic(err)
   562  	}
   563  
   564  	ret := &xorNonceAEAD{aead: aead}
   565  	copy(ret.nonceMask[:], nonceMask)
   566  	return ret
   567  }
   568  
   569  type constantTimeHash interface {
   570  	hash.Hash
   571  	ConstantTimeSum(b []byte) []byte
   572  }
   573  
   574  // cthWrapper wraps any hash.Hash that implements ConstantTimeSum, and replaces
   575  // with that all calls to Sum. It's used to obtain a ConstantTimeSum-based HMAC.
   576  type cthWrapper struct {
   577  	h constantTimeHash
   578  }
   579  
   580  func (c *cthWrapper) Size() int                   { return c.h.Size() }
   581  func (c *cthWrapper) BlockSize() int              { return c.h.BlockSize() }
   582  func (c *cthWrapper) Reset()                      { c.h.Reset() }
   583  func (c *cthWrapper) Write(p []byte) (int, error) { return c.h.Write(p) }
   584  func (c *cthWrapper) Sum(b []byte) []byte         { return c.h.ConstantTimeSum(b) }
   585  
   586  func newConstantTimeHash(h func() hash.Hash) func() hash.Hash {
   587  	boring.Unreachable()
   588  	return func() hash.Hash {
   589  		return &cthWrapper{h().(constantTimeHash)}
   590  	}
   591  }
   592  
   593  // tls10MAC implements the TLS 1.0 MAC function. RFC 2246, Section 6.2.3.
   594  func tls10MAC(h hash.Hash, out, seq, header, data, extra []byte) []byte {
   595  	h.Reset()
   596  	h.Write(seq)
   597  	h.Write(header)
   598  	h.Write(data)
   599  	res := h.Sum(out)
   600  	if extra != nil {
   601  		h.Write(extra)
   602  	}
   603  	return res
   604  }
   605  
   606  func rsaKA(version uint16) keyAgreement {
   607  	return rsaKeyAgreement{}
   608  }
   609  
   610  func ecdheECDSAKA(version uint16) keyAgreement {
   611  	return &ecdheKeyAgreement{
   612  		isRSA:   false,
   613  		version: version,
   614  	}
   615  }
   616  
   617  func ecdheRSAKA(version uint16) keyAgreement {
   618  	return &ecdheKeyAgreement{
   619  		isRSA:   true,
   620  		version: version,
   621  	}
   622  }
   623  
   624  // mutualCipherSuite returns a cipherSuite given a list of supported
   625  // ciphersuites and the id requested by the peer.
   626  func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
   627  	for _, id := range have {
   628  		if id == want {
   629  			return cipherSuiteByID(id)
   630  		}
   631  	}
   632  	return nil
   633  }
   634  
   635  func cipherSuiteByID(id uint16) *cipherSuite {
   636  	for _, cipherSuite := range utlsSupportedCipherSuites {
   637  		if cipherSuite.id == id {
   638  			return cipherSuite
   639  		}
   640  	}
   641  	return nil
   642  }
   643  
   644  func mutualCipherSuiteTLS13(have []uint16, want uint16) *cipherSuiteTLS13 {
   645  	for _, id := range have {
   646  		if id == want {
   647  			return cipherSuiteTLS13ByID(id)
   648  		}
   649  	}
   650  	return nil
   651  }
   652  
   653  func cipherSuiteTLS13ByID(id uint16) *cipherSuiteTLS13 {
   654  	for _, cipherSuite := range cipherSuitesTLS13 {
   655  		if cipherSuite.id == id {
   656  			return cipherSuite
   657  		}
   658  	}
   659  	return nil
   660  }
   661  
   662  // A list of cipher suite IDs that are, or have been, implemented by this
   663  // package.
   664  //
   665  // See https://www.iana.org/assignments/tls-parameters/tls-parameters.xml
   666  const (
   667  	// TLS 1.0 - 1.2 cipher suites.
   668  	TLS_RSA_WITH_RC4_128_SHA                      uint16 = 0x0005
   669  	TLS_RSA_WITH_3DES_EDE_CBC_SHA                 uint16 = 0x000a
   670  	TLS_RSA_WITH_AES_128_CBC_SHA                  uint16 = 0x002f
   671  	TLS_RSA_WITH_AES_256_CBC_SHA                  uint16 = 0x0035
   672  	TLS_RSA_WITH_AES_128_CBC_SHA256               uint16 = 0x003c
   673  	TLS_RSA_WITH_AES_128_GCM_SHA256               uint16 = 0x009c
   674  	TLS_RSA_WITH_AES_256_GCM_SHA384               uint16 = 0x009d
   675  	TLS_ECDHE_ECDSA_WITH_RC4_128_SHA              uint16 = 0xc007
   676  	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA          uint16 = 0xc009
   677  	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA          uint16 = 0xc00a
   678  	TLS_ECDHE_RSA_WITH_RC4_128_SHA                uint16 = 0xc011
   679  	TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA           uint16 = 0xc012
   680  	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA            uint16 = 0xc013
   681  	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA            uint16 = 0xc014
   682  	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256       uint16 = 0xc023
   683  	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256         uint16 = 0xc027
   684  	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256         uint16 = 0xc02f
   685  	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256       uint16 = 0xc02b
   686  	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384         uint16 = 0xc030
   687  	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384       uint16 = 0xc02c
   688  	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256   uint16 = 0xcca8
   689  	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca9
   690  
   691  	// TLS 1.3 cipher suites.
   692  	TLS_AES_128_GCM_SHA256       uint16 = 0x1301
   693  	TLS_AES_256_GCM_SHA384       uint16 = 0x1302
   694  	TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303
   695  
   696  	// TLS_FALLBACK_SCSV isn't a standard cipher suite but an indicator
   697  	// that the client is doing version fallback. See RFC 7507.
   698  	TLS_FALLBACK_SCSV uint16 = 0x5600
   699  
   700  	// Legacy names for the corresponding cipher suites with the correct _SHA256
   701  	// suffix, retained for backward compatibility.
   702  	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305   = TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
   703  	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 = TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
   704  )