gitee.com/ks-custle/core-gm@v0.0.0-20230922171213-b83bdd97b62c/gmhttp/server.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP server. See RFC 7230 through 7235.
     6  
     7  package gmhttp
     8  
     9  import (
    10  	"bufio"
    11  	"bytes"
    12  	"context"
    13  	"errors"
    14  	"fmt"
    15  	"io"
    16  	"log"
    17  	"math/rand"
    18  	"net"
    19  	"net/textproto"
    20  	"net/url"
    21  	urlpkg "net/url"
    22  	"os"
    23  	"path"
    24  	"runtime"
    25  	"sort"
    26  	"strconv"
    27  	"strings"
    28  	"sync"
    29  	"sync/atomic"
    30  	"time"
    31  
    32  	tls "gitee.com/ks-custle/core-gm/gmtls"
    33  	"golang.org/x/net/http/httpguts"
    34  )
    35  
    36  // Errors used by the HTTP server.
    37  //
    38  //goland:noinspection GoUnusedGlobalVariable
    39  var (
    40  	// ErrBodyNotAllowed is returned by ResponseWriter.Write calls
    41  	// when the HTTP method or response code does not permit a
    42  	// body.
    43  	ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body")
    44  
    45  	// ErrHijacked is returned by ResponseWriter.Write calls when
    46  	// the underlying connection has been hijacked using the
    47  	// Hijacker interface. A zero-byte write on a hijacked
    48  	// connection will return ErrHijacked without any other side
    49  	// effects.
    50  	ErrHijacked = errors.New("http: connection has been hijacked")
    51  
    52  	// ErrContentLength is returned by ResponseWriter.Write calls
    53  	// when a Handler set a Content-Length response header with a
    54  	// declared size and then attempted to write more bytes than
    55  	// declared.
    56  	ErrContentLength = errors.New("http: wrote more than the declared Content-Length")
    57  
    58  	// Deprecated: ErrWriteAfterFlush is no longer returned by
    59  	// anything in the net/http package. Callers should not
    60  	// compare errors against this variable.
    61  	ErrWriteAfterFlush = errors.New("unused")
    62  )
    63  
    64  // A Handler responds to an HTTP request.
    65  //
    66  // ServeHTTP should write reply headers and data to the ResponseWriter
    67  // and then return. Returning signals that the request is finished; it
    68  // is not valid to use the ResponseWriter or read from the
    69  // Request.Body after or concurrently with the completion of the
    70  // ServeHTTP call.
    71  //
    72  // Depending on the HTTP client software, HTTP protocol version, and
    73  // any intermediaries between the client and the Go server, it may not
    74  // be possible to read from the Request.Body after writing to the
    75  // ResponseWriter. Cautious handlers should read the Request.Body
    76  // first, and then reply.
    77  //
    78  // Except for reading the body, handlers should not modify the
    79  // provided Request.
    80  //
    81  // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
    82  // that the effect of the panic was isolated to the active request.
    83  // It recovers the panic, logs a stack trace to the server error log,
    84  // and either closes the network connection or sends an HTTP/2
    85  // RST_STREAM, depending on the HTTP protocol. To abort a handler so
    86  // the client sees an interrupted response but the server doesn't log
    87  // an error, panic with the value ErrAbortHandler.
    88  type Handler interface {
    89  	ServeHTTP(ResponseWriter, *Request)
    90  }
    91  
    92  // A ResponseWriter interface is used by an HTTP handler to
    93  // construct an HTTP response.
    94  //
    95  // A ResponseWriter may not be used after the Handler.ServeHTTP method
    96  // has returned.
    97  type ResponseWriter interface {
    98  	// Header returns the header map that will be sent by
    99  	// WriteHeader. The Header map also is the mechanism with which
   100  	// Handlers can set HTTP trailers.
   101  	//
   102  	// Changing the header map after a call to WriteHeader (or
   103  	// Write) has no effect unless the modified headers are
   104  	// trailers.
   105  	//
   106  	// There are two ways to set Trailers. The preferred way is to
   107  	// predeclare in the headers which trailers you will later
   108  	// send by setting the "Trailer" header to the names of the
   109  	// trailer keys which will come later. In this case, those
   110  	// keys of the Header map are treated as if they were
   111  	// trailers. See the example. The second way, for trailer
   112  	// keys not known to the Handler until after the first Write,
   113  	// is to prefix the Header map keys with the TrailerPrefix
   114  	// constant value. See TrailerPrefix.
   115  	//
   116  	// To suppress automatic response headers (such as "Date"), set
   117  	// their value to nil.
   118  	Header() Header
   119  
   120  	// Write writes the data to the connection as part of an HTTP reply.
   121  	//
   122  	// If WriteHeader has not yet been called, Write calls
   123  	// WriteHeader(http.StatusOK) before writing the data. If the Header
   124  	// does not contain a Content-Type line, Write adds a Content-Type set
   125  	// to the result of passing the initial 512 bytes of written data to
   126  	// DetectContentType. Additionally, if the total size of all written
   127  	// data is under a few KB and there are no Flush calls, the
   128  	// Content-Length header is added automatically.
   129  	//
   130  	// Depending on the HTTP protocol version and the client, calling
   131  	// Write or WriteHeader may prevent future reads on the
   132  	// Request.Body. For HTTP/1.x requests, handlers should read any
   133  	// needed request body data before writing the response. Once the
   134  	// headers have been flushed (due to either an explicit Flusher.Flush
   135  	// call or writing enough data to trigger a flush), the request body
   136  	// may be unavailable. For HTTP/2 requests, the Go HTTP server permits
   137  	// handlers to continue to read the request body while concurrently
   138  	// writing the response. However, such behavior may not be supported
   139  	// by all HTTP/2 clients. Handlers should read before writing if
   140  	// possible to maximize compatibility.
   141  	Write([]byte) (int, error)
   142  
   143  	// WriteHeader sends an HTTP response header with the provided
   144  	// status code.
   145  	//
   146  	// If WriteHeader is not called explicitly, the first call to Write
   147  	// will trigger an implicit WriteHeader(http.StatusOK).
   148  	// Thus explicit calls to WriteHeader are mainly used to
   149  	// send error codes.
   150  	//
   151  	// The provided code must be a valid HTTP 1xx-5xx status code.
   152  	// Only one header may be written. Go does not currently
   153  	// support sending user-defined 1xx informational headers,
   154  	// with the exception of 100-continue response header that the
   155  	// Server sends automatically when the Request.Body is read.
   156  	WriteHeader(statusCode int)
   157  }
   158  
   159  // The Flusher interface is implemented by ResponseWriters that allow
   160  // an HTTP handler to flush buffered data to the client.
   161  //
   162  // The default HTTP/1.x and HTTP/2 ResponseWriter implementations
   163  // support Flusher, but ResponseWriter wrappers may not. Handlers
   164  // should always test for this ability at runtime.
   165  //
   166  // Note that even for ResponseWriters that support Flush,
   167  // if the client is connected through an HTTP proxy,
   168  // the buffered data may not reach the client until the response
   169  // completes.
   170  type Flusher interface {
   171  	// Flush sends any buffered data to the client.
   172  	Flush()
   173  }
   174  
   175  // The Hijacker interface is implemented by ResponseWriters that allow
   176  // an HTTP handler to take over the connection.
   177  //
   178  // The default ResponseWriter for HTTP/1.x connections supports
   179  // Hijacker, but HTTP/2 connections intentionally do not.
   180  // ResponseWriter wrappers may also not support Hijacker. Handlers
   181  // should always test for this ability at runtime.
   182  type Hijacker interface {
   183  	// Hijack lets the caller take over the connection.
   184  	// After a call to Hijack the HTTP server library
   185  	// will not do anything else with the connection.
   186  	//
   187  	// It becomes the caller's responsibility to manage
   188  	// and close the connection.
   189  	//
   190  	// The returned net.Conn may have read or write deadlines
   191  	// already set, depending on the configuration of the
   192  	// Server. It is the caller's responsibility to set
   193  	// or clear those deadlines as needed.
   194  	//
   195  	// The returned bufio.Reader may contain unprocessed buffered
   196  	// data from the client.
   197  	//
   198  	// After a call to Hijack, the original Request.Body must not
   199  	// be used. The original Request's Context remains valid and
   200  	// is not canceled until the Request's ServeHTTP method
   201  	// returns.
   202  	Hijack() (net.Conn, *bufio.ReadWriter, error)
   203  }
   204  
   205  // The CloseNotifier interface is implemented by ResponseWriters which
   206  // allow detecting when the underlying connection has gone away.
   207  //
   208  // This mechanism can be used to cancel long operations on the server
   209  // if the client has disconnected before the response is ready.
   210  //
   211  // ToDeprecated: the CloseNotifier interface predates Go's context package.
   212  // New code should use Request.Context instead.
   213  type CloseNotifier interface {
   214  	// CloseNotify returns a channel that receives at most a
   215  	// single value (true) when the client connection has gone
   216  	// away.
   217  	//
   218  	// CloseNotify may wait to notify until Request.Body has been
   219  	// fully read.
   220  	//
   221  	// After the Handler has returned, there is no guarantee
   222  	// that the channel receives a value.
   223  	//
   224  	// If the protocol is HTTP/1.1 and CloseNotify is called while
   225  	// processing an idempotent request (such a GET) while
   226  	// HTTP/1.1 pipelining is in use, the arrival of a subsequent
   227  	// pipelined request may cause a value to be sent on the
   228  	// returned channel. In practice HTTP/1.1 pipelining is not
   229  	// enabled in browsers and not seen often in the wild. If this
   230  	// is a problem, use HTTP/2 or only use CloseNotify on methods
   231  	// such as POST.
   232  	CloseNotify() <-chan bool
   233  }
   234  
   235  var (
   236  	// ServerContextKey is a context key. It can be used in HTTP
   237  	// handlers with Context.Value to access the server that
   238  	// started the handler. The associated value will be of
   239  	// type *Server.
   240  	ServerContextKey = &contextKey{"http-server"}
   241  
   242  	// LocalAddrContextKey is a context key. It can be used in
   243  	// HTTP handlers with Context.Value to access the local
   244  	// address the connection arrived on.
   245  	// The associated value will be of type net.Addr.
   246  	LocalAddrContextKey = &contextKey{"local-addr"}
   247  )
   248  
   249  // A conn represents the server side of an HTTP connection.
   250  type conn struct {
   251  	// server is the server on which the connection arrived.
   252  	// Immutable; never nil.
   253  	server *Server
   254  
   255  	// cancelCtx cancels the connection-level context.
   256  	cancelCtx context.CancelFunc
   257  
   258  	// rwc is the underlying network connection.
   259  	// This is never wrapped by other types and is the value given out
   260  	// to CloseNotifier callers. It is usually of type *net.TCPConn or
   261  	// *tls.Conn.
   262  	rwc net.Conn
   263  
   264  	// remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
   265  	// inside the Listener's Accept goroutine, as some implementations block.
   266  	// It is populated immediately inside the (*conn).serve goroutine.
   267  	// This is the value of a Handler's (*Request).RemoteAddr.
   268  	remoteAddr string
   269  
   270  	// tlsState is the TLS connection state when using TLS.
   271  	// nil means not TLS.
   272  	tlsState *tls.ConnectionState
   273  
   274  	// werr is set to the first write error to rwc.
   275  	// It is set via checkConnErrorWriter{w}, where bufw writes.
   276  	werr error
   277  
   278  	// r is bufr's read source. It's a wrapper around rwc that provides
   279  	// io.LimitedReader-style limiting (while reading request headers)
   280  	// and functionality to support CloseNotifier. See *connReader docs.
   281  	r *connReader
   282  
   283  	// bufr reads from r.
   284  	bufr *bufio.Reader
   285  
   286  	// bufw writes to checkConnErrorWriter{c}, which populates werr on error.
   287  	bufw *bufio.Writer
   288  
   289  	// lastMethod is the method of the most recent request
   290  	// on this connection, if any.
   291  	lastMethod string
   292  
   293  	curReq atomic.Value // of *response (which has a Request in it)
   294  
   295  	curState struct{ atomic uint64 } // packed (unixtime<<8|uint8(ConnState))
   296  
   297  	// mu guards hijackedv
   298  	mu sync.Mutex
   299  
   300  	// hijackedv is whether this connection has been hijacked
   301  	// by a Handler with the Hijacker interface.
   302  	// It is guarded by mu.
   303  	hijackedv bool
   304  }
   305  
   306  func (c *conn) hijacked() bool {
   307  	c.mu.Lock()
   308  	defer c.mu.Unlock()
   309  	return c.hijackedv
   310  }
   311  
   312  // c.mu must be held.
   313  func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   314  	if c.hijackedv {
   315  		return nil, nil, ErrHijacked
   316  	}
   317  	c.r.abortPendingRead()
   318  
   319  	c.hijackedv = true
   320  	rwc = c.rwc
   321  	_ = rwc.SetDeadline(time.Time{})
   322  
   323  	buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc))
   324  	if c.r.hasByte {
   325  		if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil {
   326  			return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err)
   327  		}
   328  	}
   329  	c.setState(rwc, StateHijacked, runHooks)
   330  	return
   331  }
   332  
   333  // This should be >= 512 bytes for DetectContentType,
   334  // but otherwise it's somewhat arbitrary.
   335  const bufferBeforeChunkingSize = 2048
   336  
   337  // chunkWriter writes to a response's conn buffer, and is the writer
   338  // wrapped by the response.w buffered writer.
   339  //
   340  // chunkWriter also is responsible for finalizing the Header, including
   341  // conditionally setting the Content-Type and setting a Content-Length
   342  // in cases where the handler's final output is smaller than the buffer
   343  // size. It also conditionally adds chunk headers, when in chunking mode.
   344  //
   345  // See the comment above (*response).Write for the entire write flow.
   346  type chunkWriter struct {
   347  	res *response
   348  
   349  	// header is either nil or a deep clone of res.handlerHeader
   350  	// at the time of res.writeHeader, if res.writeHeader is
   351  	// called and extra buffering is being done to calculate
   352  	// Content-Type and/or Content-Length.
   353  	header Header
   354  
   355  	// wroteHeader tells whether the header's been written to "the
   356  	// wire" (or rather: w.conn.buf). this is unlike
   357  	// (*response).wroteHeader, which tells only whether it was
   358  	// logically written.
   359  	wroteHeader bool
   360  
   361  	// set by the writeHeader method:
   362  	chunking bool // using chunked transfer encoding for reply body
   363  }
   364  
   365  var (
   366  	crlf       = []byte("\r\n")
   367  	colonSpace = []byte(": ")
   368  )
   369  
   370  func (cw *chunkWriter) Write(p []byte) (n int, err error) {
   371  	if !cw.wroteHeader {
   372  		cw.writeHeader(p)
   373  	}
   374  	if cw.res.req.Method == "HEAD" {
   375  		// Eat writes.
   376  		return len(p), nil
   377  	}
   378  	if cw.chunking {
   379  		_, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p))
   380  		if err != nil {
   381  			_ = cw.res.conn.rwc.Close()
   382  			return
   383  		}
   384  	}
   385  	n, err = cw.res.conn.bufw.Write(p)
   386  	if cw.chunking && err == nil {
   387  		_, err = cw.res.conn.bufw.Write(crlf)
   388  	}
   389  	if err != nil {
   390  		_ = cw.res.conn.rwc.Close()
   391  	}
   392  	return
   393  }
   394  
   395  func (cw *chunkWriter) flush() {
   396  	if !cw.wroteHeader {
   397  		cw.writeHeader(nil)
   398  	}
   399  	_ = cw.res.conn.bufw.Flush()
   400  }
   401  
   402  func (cw *chunkWriter) close() {
   403  	if !cw.wroteHeader {
   404  		cw.writeHeader(nil)
   405  	}
   406  	if cw.chunking {
   407  		bw := cw.res.conn.bufw // conn's bufio writer
   408  		// zero chunk to mark EOF
   409  		_, _ = bw.WriteString("0\r\n")
   410  		if trailers := cw.res.finalTrailers(); trailers != nil {
   411  			_ = trailers.Write(bw) // the writer handles noting errors
   412  		}
   413  		// final blank line after the trailers (whether
   414  		// present or not)
   415  		_, _ = bw.WriteString("\r\n")
   416  	}
   417  }
   418  
   419  // A response represents the server side of an HTTP response.
   420  type response struct {
   421  	conn             *conn
   422  	req              *Request // request for this response
   423  	reqBody          io.ReadCloser
   424  	cancelCtx        context.CancelFunc // when ServeHTTP exits
   425  	wroteHeader      bool               // reply header has been (logically) written
   426  	wroteContinue    bool               // 100 Continue response was written
   427  	wants10KeepAlive bool               // HTTP/1.0 w/ Connection "keep-alive"
   428  	wantsClose       bool               // HTTP request has Connection "close"
   429  
   430  	// canWriteContinue is a boolean value accessed as an atomic int32
   431  	// that says whether or not a 100 Continue header can be written
   432  	// to the connection.
   433  	// writeContinueMu must be held while writing the header.
   434  	// These two fields together synchronize the body reader
   435  	// (the expectContinueReader, which wants to write 100 Continue)
   436  	// against the main writer.
   437  	canWriteContinue atomicBool
   438  	writeContinueMu  sync.Mutex
   439  
   440  	w  *bufio.Writer // buffers output in chunks to chunkWriter
   441  	cw chunkWriter
   442  
   443  	// handlerHeader is the Header that Handlers get access to,
   444  	// which may be retained and mutated even after WriteHeader.
   445  	// handlerHeader is copied into cw.header at WriteHeader
   446  	// time, and privately mutated thereafter.
   447  	handlerHeader Header
   448  	calledHeader  bool // handler accessed handlerHeader via Header
   449  
   450  	written       int64 // number of bytes written in body
   451  	contentLength int64 // explicitly-declared Content-Length; or -1
   452  	status        int   // status code passed to WriteHeader
   453  
   454  	// close connection after this reply.  set on request and
   455  	// updated after response from handler if there's a
   456  	// "Connection: keep-alive" response header and a
   457  	// Content-Length.
   458  	closeAfterReply bool
   459  
   460  	// requestBodyLimitHit is set by requestTooLarge when
   461  	// maxBytesReader hits its max size. It is checked in
   462  	// WriteHeader, to make sure we don't consume the
   463  	// remaining request body to try to advance to the next HTTP
   464  	// request. Instead, when this is set, we stop reading
   465  	// subsequent requests on this connection and stop reading
   466  	// input from it.
   467  	requestBodyLimitHit bool
   468  
   469  	// trailers are the headers to be sent after the handler
   470  	// finishes writing the body. This field is initialized from
   471  	// the Trailer response header when the response header is
   472  	// written.
   473  	trailers []string
   474  
   475  	handlerDone atomicBool // set true when the handler exits
   476  
   477  	// Buffers for Date, Content-Length, and status code
   478  	dateBuf   [len(TimeFormat)]byte
   479  	clenBuf   [10]byte
   480  	statusBuf [3]byte
   481  
   482  	// closeNotifyCh is the channel returned by CloseNotify.
   483  	// TODO(bradfitz): this is currently (for Go 1.8) always
   484  	// non-nil. Make this lazily-created again as it used to be?
   485  	closeNotifyCh  chan bool
   486  	didCloseNotify int32 // atomic (only 0->1 winner should send)
   487  }
   488  
   489  // TrailerPrefix is a magic prefix for ResponseWriter.Header map keys
   490  // that, if present, signals that the map entry is actually for
   491  // the response trailers, and not the response headers. The prefix
   492  // is stripped after the ServeHTTP call finishes and the values are
   493  // sent in the trailers.
   494  //
   495  // This mechanism is intended only for trailers that are not known
   496  // prior to the headers being written. If the set of trailers is fixed
   497  // or known before the header is written, the normal Go trailers mechanism
   498  // is preferred:
   499  //
   500  //	https://golang.org/pkg/net/http/#ResponseWriter
   501  //	https://golang.org/pkg/net/http/#example_ResponseWriter_trailers
   502  const TrailerPrefix = "Trailer:"
   503  
   504  // finalTrailers is called after the Handler exits and returns a non-nil
   505  // value if the Handler set any trailers.
   506  func (w *response) finalTrailers() Header {
   507  	var t Header
   508  	for k, vv := range w.handlerHeader {
   509  		if strings.HasPrefix(k, TrailerPrefix) {
   510  			if t == nil {
   511  				t = make(Header)
   512  			}
   513  			t[strings.TrimPrefix(k, TrailerPrefix)] = vv
   514  		}
   515  	}
   516  	for _, k := range w.trailers {
   517  		if t == nil {
   518  			t = make(Header)
   519  		}
   520  		for _, v := range w.handlerHeader[k] {
   521  			t.Add(k, v)
   522  		}
   523  	}
   524  	return t
   525  }
   526  
   527  type atomicBool int32
   528  
   529  func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 }
   530  func (b *atomicBool) setTrue()    { atomic.StoreInt32((*int32)(b), 1) }
   531  func (b *atomicBool) setFalse()   { atomic.StoreInt32((*int32)(b), 0) }
   532  
   533  // declareTrailer is called for each Trailer header when the
   534  // response header is written. It notes that a header will need to be
   535  // written in the trailers at the end of the response.
   536  func (w *response) declareTrailer(k string) {
   537  	k = CanonicalHeaderKey(k)
   538  	if !httpguts.ValidTrailerHeader(k) {
   539  		// Forbidden by RFC 7230, section 4.1.2
   540  		return
   541  	}
   542  	w.trailers = append(w.trailers, k)
   543  }
   544  
   545  // requestTooLarge is called by maxBytesReader when too much input has
   546  // been read from the client.
   547  func (w *response) requestTooLarge() {
   548  	w.closeAfterReply = true
   549  	w.requestBodyLimitHit = true
   550  	if !w.wroteHeader {
   551  		w.Header().Set("Connection", "close")
   552  	}
   553  }
   554  
   555  // needsSniff reports whether a Content-Type still needs to be sniffed.
   556  func (w *response) needsSniff() bool {
   557  	_, haveType := w.handlerHeader["Content-Type"]
   558  	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
   559  }
   560  
   561  // writerOnly hides an io.Writer value's optional ReadFrom method
   562  // from io.Copy.
   563  type writerOnly struct {
   564  	io.Writer
   565  }
   566  
   567  // ReadFrom is here to optimize copying from an *os.File regular file
   568  // to a *net.TCPConn with sendfile, or from a supported src type such
   569  // as a *net.TCPConn on Linux with splice.
   570  func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
   571  	bufp := copyBufPool.Get().(*[]byte)
   572  	buf := *bufp
   573  	defer copyBufPool.Put(bufp)
   574  
   575  	// Our underlying w.conn.rwc is usually a *TCPConn (with its
   576  	// own ReadFrom method). If not, just fall back to the normal
   577  	// copy method.
   578  	rf, ok := w.conn.rwc.(io.ReaderFrom)
   579  	if !ok {
   580  		return io.CopyBuffer(writerOnly{w}, src, buf)
   581  	}
   582  
   583  	// Copy the first sniffLen bytes before switching to ReadFrom.
   584  	// This ensures we don't start writing the response before the
   585  	// source is available (see golang.org/issue/5660) and provides
   586  	// enough bytes to perform Content-Type sniffing when required.
   587  	if !w.cw.wroteHeader {
   588  		n0, err := io.CopyBuffer(writerOnly{w}, io.LimitReader(src, sniffLen), buf)
   589  		n += n0
   590  		if err != nil || n0 < sniffLen {
   591  			return n, err
   592  		}
   593  	}
   594  
   595  	_ = w.w.Flush() // get rid of any previous writes
   596  	w.cw.flush()    // make sure Header is written; flush data to rwc
   597  
   598  	// Now that cw has been flushed, its chunking field is guaranteed initialized.
   599  	if !w.cw.chunking && w.bodyAllowed() {
   600  		n0, err := rf.ReadFrom(src)
   601  		n += n0
   602  		w.written += n0
   603  		return n, err
   604  	}
   605  
   606  	n0, err := io.CopyBuffer(writerOnly{w}, src, buf)
   607  	n += n0
   608  	return n, err
   609  }
   610  
   611  // debugServerConnections controls whether all server connections are wrapped
   612  // with a verbose logging wrapper.
   613  const debugServerConnections = false
   614  
   615  // Create new connection from rwc.
   616  func (srv *Server) newConn(rwc net.Conn) *conn {
   617  	c := &conn{
   618  		server: srv,
   619  		rwc:    rwc,
   620  	}
   621  	if debugServerConnections {
   622  		c.rwc = newLoggingConn("server", c.rwc)
   623  	}
   624  	return c
   625  }
   626  
   627  type readResult struct {
   628  	_   incomparable
   629  	n   int
   630  	err error
   631  	b   byte // byte read, if n == 1
   632  }
   633  
   634  // connReader is the io.Reader wrapper used by *conn. It combines a
   635  // selectively-activated io.LimitedReader (to bound request header
   636  // read sizes) with support for selectively keeping an io.Reader.Read
   637  // call blocked in a background goroutine to wait for activity and
   638  // trigger a CloseNotifier channel.
   639  type connReader struct {
   640  	conn *conn
   641  
   642  	mu      sync.Mutex // guards following
   643  	hasByte bool
   644  	byteBuf [1]byte
   645  	cond    *sync.Cond
   646  	inRead  bool
   647  	aborted bool  // set true before conn.rwc deadline is set to past
   648  	remain  int64 // bytes remaining
   649  }
   650  
   651  func (cr *connReader) lock() {
   652  	cr.mu.Lock()
   653  	if cr.cond == nil {
   654  		cr.cond = sync.NewCond(&cr.mu)
   655  	}
   656  }
   657  
   658  func (cr *connReader) unlock() { cr.mu.Unlock() }
   659  
   660  func (cr *connReader) startBackgroundRead() {
   661  	cr.lock()
   662  	defer cr.unlock()
   663  	if cr.inRead {
   664  		panic("invalid concurrent Body.Read call")
   665  	}
   666  	if cr.hasByte {
   667  		return
   668  	}
   669  	cr.inRead = true
   670  	_ = cr.conn.rwc.SetReadDeadline(time.Time{})
   671  	go cr.backgroundRead()
   672  }
   673  
   674  func (cr *connReader) backgroundRead() {
   675  	n, err := cr.conn.rwc.Read(cr.byteBuf[:])
   676  	cr.lock()
   677  	if n == 1 {
   678  		cr.hasByte = true
   679  		// We were past the end of the previous request's body already
   680  		// (since we wouldn't be in a background read otherwise), so
   681  		// this is a pipelined HTTP request. Prior to Go 1.11 we used to
   682  		// send on the CloseNotify channel and cancel the context here,
   683  		// but the behavior was documented as only "may", and we only
   684  		// did that because that's how CloseNotify accidentally behaved
   685  		// in very early Go releases prior to context support. Once we
   686  		// added context support, people used a Handler's
   687  		// Request.Context() and passed it along. Having that context
   688  		// cancel on pipelined HTTP requests caused problems.
   689  		// Fortunately, almost nothing uses HTTP/1.x pipelining.
   690  		// Unfortunately, apt-get does, or sometimes does.
   691  		// New Go 1.11 behavior: don't fire CloseNotify or cancel
   692  		// contexts on pipelined requests. Shouldn't affect people, but
   693  		// fixes cases like Issue 23921. This does mean that a client
   694  		// closing their TCP connection after sending a pipelined
   695  		// request won't cancel the context, but we'll catch that on any
   696  		// write failure (in checkConnErrorWriter.Write).
   697  		// If the server never writes, yes, there are still contrived
   698  		// server & client behaviors where this fails to ever cancel the
   699  		// context, but that's kinda why HTTP/1.x pipelining died
   700  		// anyway.
   701  	}
   702  	if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() {
   703  		// Ignore this error. It's the expected error from
   704  		// another goroutine calling abortPendingRead.
   705  	} else if err != nil {
   706  		cr.handleReadError(err)
   707  	}
   708  	cr.aborted = false
   709  	cr.inRead = false
   710  	cr.unlock()
   711  	cr.cond.Broadcast()
   712  }
   713  
   714  func (cr *connReader) abortPendingRead() {
   715  	cr.lock()
   716  	defer cr.unlock()
   717  	if !cr.inRead {
   718  		return
   719  	}
   720  	cr.aborted = true
   721  	_ = cr.conn.rwc.SetReadDeadline(aLongTimeAgo)
   722  	for cr.inRead {
   723  		cr.cond.Wait()
   724  	}
   725  	_ = cr.conn.rwc.SetReadDeadline(time.Time{})
   726  }
   727  
   728  func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain }
   729  func (cr *connReader) setInfiniteReadLimit()     { cr.remain = maxInt64 }
   730  func (cr *connReader) hitReadLimit() bool        { return cr.remain <= 0 }
   731  
   732  // handleReadError is called whenever a Read from the client returns a
   733  // non-nil error.
   734  //
   735  // The provided non-nil err is almost always io.EOF or a "use of
   736  // closed network connection". In any case, the error is not
   737  // particularly interesting, except perhaps for debugging during
   738  // development. Any error means the connection is dead and we should
   739  // down its context.
   740  //
   741  // It may be called from multiple goroutines.
   742  func (cr *connReader) handleReadError(_ error) {
   743  	cr.conn.cancelCtx()
   744  	cr.closeNotify()
   745  }
   746  
   747  // may be called from multiple goroutines.
   748  func (cr *connReader) closeNotify() {
   749  	res, _ := cr.conn.curReq.Load().(*response)
   750  	if res != nil && atomic.CompareAndSwapInt32(&res.didCloseNotify, 0, 1) {
   751  		res.closeNotifyCh <- true
   752  	}
   753  }
   754  
   755  func (cr *connReader) Read(p []byte) (n int, err error) {
   756  	cr.lock()
   757  	if cr.inRead {
   758  		cr.unlock()
   759  		if cr.conn.hijacked() {
   760  			panic("invalid Body.Read call. After hijacked, the original Request must not be used")
   761  		}
   762  		panic("invalid concurrent Body.Read call")
   763  	}
   764  	if cr.hitReadLimit() {
   765  		cr.unlock()
   766  		return 0, io.EOF
   767  	}
   768  	if len(p) == 0 {
   769  		cr.unlock()
   770  		return 0, nil
   771  	}
   772  	if int64(len(p)) > cr.remain {
   773  		p = p[:cr.remain]
   774  	}
   775  	if cr.hasByte {
   776  		p[0] = cr.byteBuf[0]
   777  		cr.hasByte = false
   778  		cr.unlock()
   779  		return 1, nil
   780  	}
   781  	cr.inRead = true
   782  	cr.unlock()
   783  	n, err = cr.conn.rwc.Read(p)
   784  
   785  	cr.lock()
   786  	cr.inRead = false
   787  	if err != nil {
   788  		cr.handleReadError(err)
   789  	}
   790  	cr.remain -= int64(n)
   791  	cr.unlock()
   792  
   793  	cr.cond.Broadcast()
   794  	return n, err
   795  }
   796  
   797  var (
   798  	bufioReaderPool   sync.Pool
   799  	bufioWriter2kPool sync.Pool
   800  	bufioWriter4kPool sync.Pool
   801  )
   802  
   803  var copyBufPool = sync.Pool{
   804  	New: func() interface{} {
   805  		b := make([]byte, 32*1024)
   806  		return &b
   807  	},
   808  }
   809  
   810  func bufioWriterPool(size int) *sync.Pool {
   811  	switch size {
   812  	case 2 << 10:
   813  		return &bufioWriter2kPool
   814  	case 4 << 10:
   815  		return &bufioWriter4kPool
   816  	}
   817  	return nil
   818  }
   819  
   820  func newBufioReader(r io.Reader) *bufio.Reader {
   821  	if v := bufioReaderPool.Get(); v != nil {
   822  		br := v.(*bufio.Reader)
   823  		br.Reset(r)
   824  		return br
   825  	}
   826  	// Note: if this reader size is ever changed, update
   827  	// TestHandlerBodyClose's assumptions.
   828  	return bufio.NewReader(r)
   829  }
   830  
   831  func putBufioReader(br *bufio.Reader) {
   832  	br.Reset(nil)
   833  	bufioReaderPool.Put(br)
   834  }
   835  
   836  func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
   837  	pool := bufioWriterPool(size)
   838  	if pool != nil {
   839  		if v := pool.Get(); v != nil {
   840  			bw := v.(*bufio.Writer)
   841  			bw.Reset(w)
   842  			return bw
   843  		}
   844  	}
   845  	return bufio.NewWriterSize(w, size)
   846  }
   847  
   848  func putBufioWriter(bw *bufio.Writer) {
   849  	bw.Reset(nil)
   850  	if pool := bufioWriterPool(bw.Available()); pool != nil {
   851  		pool.Put(bw)
   852  	}
   853  }
   854  
   855  // DefaultMaxHeaderBytes is the maximum permitted size of the headers
   856  // in an HTTP request.
   857  // This can be overridden by setting Server.MaxHeaderBytes.
   858  const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
   859  
   860  func (srv *Server) maxHeaderBytes() int {
   861  	if srv.MaxHeaderBytes > 0 {
   862  		return srv.MaxHeaderBytes
   863  	}
   864  	return DefaultMaxHeaderBytes
   865  }
   866  
   867  func (srv *Server) initialReadLimitSize() int64 {
   868  	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
   869  }
   870  
   871  // wrapper around io.ReadCloser which on first read, sends an
   872  // HTTP/1.1 100 Continue header
   873  type expectContinueReader struct {
   874  	resp       *response
   875  	readCloser io.ReadCloser
   876  	closed     atomicBool
   877  	sawEOF     atomicBool
   878  }
   879  
   880  func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
   881  	if ecr.closed.isSet() {
   882  		return 0, ErrBodyReadAfterClose
   883  	}
   884  	w := ecr.resp
   885  	if !w.wroteContinue && w.canWriteContinue.isSet() && !w.conn.hijacked() {
   886  		w.wroteContinue = true
   887  		w.writeContinueMu.Lock()
   888  		if w.canWriteContinue.isSet() {
   889  			_, _ = w.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
   890  			_ = w.conn.bufw.Flush()
   891  			w.canWriteContinue.setFalse()
   892  		}
   893  		w.writeContinueMu.Unlock()
   894  	}
   895  	n, err = ecr.readCloser.Read(p)
   896  	if err == io.EOF {
   897  		ecr.sawEOF.setTrue()
   898  	}
   899  	return
   900  }
   901  
   902  func (ecr *expectContinueReader) Close() error {
   903  	ecr.closed.setTrue()
   904  	return ecr.readCloser.Close()
   905  }
   906  
   907  // TimeFormat is the time format to use when generating times in HTTP
   908  // headers. It is like time.RFC1123 but hard-codes GMT as the time
   909  // zone. The time being formatted must be in UTC for Format to
   910  // generate the correct format.
   911  //
   912  // For parsing this time format, see ParseTime.
   913  const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
   914  
   915  // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
   916  func appendTime(b []byte, t time.Time) []byte {
   917  	const days = "SunMonTueWedThuFriSat"
   918  	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
   919  
   920  	t = t.UTC()
   921  	yy, mm, dd := t.Date()
   922  	hh, mn, ss := t.Clock()
   923  	day := days[3*t.Weekday():]
   924  	mon := months[3*(mm-1):]
   925  
   926  	return append(b,
   927  		day[0], day[1], day[2], ',', ' ',
   928  		byte('0'+dd/10), byte('0'+dd%10), ' ',
   929  		mon[0], mon[1], mon[2], ' ',
   930  		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
   931  		byte('0'+hh/10), byte('0'+hh%10), ':',
   932  		byte('0'+mn/10), byte('0'+mn%10), ':',
   933  		byte('0'+ss/10), byte('0'+ss%10), ' ',
   934  		'G', 'M', 'T')
   935  }
   936  
   937  var errTooLarge = errors.New("http: request too large")
   938  
   939  // Read next request from connection.
   940  func (c *conn) readRequest(ctx context.Context) (w *response, err error) {
   941  	if c.hijacked() {
   942  		return nil, ErrHijacked
   943  	}
   944  
   945  	var (
   946  		wholeReqDeadline time.Time // or zero if none
   947  		hdrDeadline      time.Time // or zero if none
   948  	)
   949  	t0 := time.Now()
   950  	if d := c.server.readHeaderTimeout(); d > 0 {
   951  		hdrDeadline = t0.Add(d)
   952  	}
   953  	if d := c.server.ReadTimeout; d > 0 {
   954  		wholeReqDeadline = t0.Add(d)
   955  	}
   956  	_ = c.rwc.SetReadDeadline(hdrDeadline)
   957  	if d := c.server.WriteTimeout; d > 0 {
   958  		defer func() {
   959  			_ = c.rwc.SetWriteDeadline(time.Now().Add(d))
   960  		}()
   961  	}
   962  
   963  	c.r.setReadLimit(c.server.initialReadLimitSize())
   964  	if c.lastMethod == "POST" {
   965  		// RFC 7230 section 3 tolerance for old buggy clients.
   966  		peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
   967  		_, _ = c.bufr.Discard(numLeadingCRorLF(peek))
   968  	}
   969  	req, err := readRequest(c.bufr)
   970  	if err != nil {
   971  		if c.r.hitReadLimit() {
   972  			return nil, errTooLarge
   973  		}
   974  		return nil, err
   975  	}
   976  
   977  	if !http1ServerSupportsRequest(req) {
   978  		return nil, statusError{StatusHTTPVersionNotSupported, "unsupported protocol version"}
   979  	}
   980  
   981  	c.lastMethod = req.Method
   982  	c.r.setInfiniteReadLimit()
   983  
   984  	hosts, haveHost := req.Header["Host"]
   985  	isH2Upgrade := req.isH2Upgrade()
   986  	if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" {
   987  		return nil, badRequestError("missing required Host header")
   988  	}
   989  	if len(hosts) == 1 && !httpguts.ValidHostHeader(hosts[0]) {
   990  		return nil, badRequestError("malformed Host header")
   991  	}
   992  	for k, vv := range req.Header {
   993  		if !httpguts.ValidHeaderFieldName(k) {
   994  			return nil, badRequestError("invalid header name")
   995  		}
   996  		for _, v := range vv {
   997  			if !httpguts.ValidHeaderFieldValue(v) {
   998  				return nil, badRequestError("invalid header value")
   999  			}
  1000  		}
  1001  	}
  1002  	delete(req.Header, "Host")
  1003  
  1004  	ctx, cancelCtx := context.WithCancel(ctx)
  1005  	req.ctx = ctx
  1006  	req.RemoteAddr = c.remoteAddr
  1007  	req.TLS = c.tlsState
  1008  	if body, ok := req.Body.(*body); ok {
  1009  		body.doEarlyClose = true
  1010  	}
  1011  
  1012  	// Adjust the read deadline if necessary.
  1013  	if !hdrDeadline.Equal(wholeReqDeadline) {
  1014  		_ = c.rwc.SetReadDeadline(wholeReqDeadline)
  1015  	}
  1016  
  1017  	w = &response{
  1018  		conn:          c,
  1019  		cancelCtx:     cancelCtx,
  1020  		req:           req,
  1021  		reqBody:       req.Body,
  1022  		handlerHeader: make(Header),
  1023  		contentLength: -1,
  1024  		closeNotifyCh: make(chan bool, 1),
  1025  
  1026  		// We populate these ahead of time so we're not
  1027  		// reading from req.Header after their Handler starts
  1028  		// and maybe mutates it (Issue 14940)
  1029  		wants10KeepAlive: req.wantsHttp10KeepAlive(),
  1030  		wantsClose:       req.wantsClose(),
  1031  	}
  1032  	if isH2Upgrade {
  1033  		w.closeAfterReply = true
  1034  	}
  1035  	w.cw.res = w
  1036  	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
  1037  	return w, nil
  1038  }
  1039  
  1040  // http1ServerSupportsRequest reports whether Go's HTTP/1.x server
  1041  // supports the given request.
  1042  func http1ServerSupportsRequest(req *Request) bool {
  1043  	if req.ProtoMajor == 1 {
  1044  		return true
  1045  	}
  1046  	// Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can
  1047  	// wire up their own HTTP/2 upgrades.
  1048  	if req.ProtoMajor == 2 && req.ProtoMinor == 0 &&
  1049  		req.Method == "PRI" && req.RequestURI == "*" {
  1050  		return true
  1051  	}
  1052  	// Reject HTTP/0.x, and all other HTTP/2+ requests (which
  1053  	// aren't encoded in ASCII anyway).
  1054  	return false
  1055  }
  1056  
  1057  func (w *response) Header() Header {
  1058  	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
  1059  		// Accessing the header between logically writing it
  1060  		// and physically writing it means we need to allocate
  1061  		// a clone to snapshot the logically written state.
  1062  		w.cw.header = w.handlerHeader.Clone()
  1063  	}
  1064  	w.calledHeader = true
  1065  	return w.handlerHeader
  1066  }
  1067  
  1068  // maxPostHandlerReadBytes is the max number of Request.Body bytes not
  1069  // consumed by a handler that the server will read from the client
  1070  // in order to keep a connection alive. If there are more bytes than
  1071  // this then the server to be paranoid instead sends a "Connection:
  1072  // close" response.
  1073  //
  1074  // This number is approximately what a typical machine's TCP buffer
  1075  // size is anyway.  (if we have the bytes on the machine, we might as
  1076  // well read them)
  1077  const maxPostHandlerReadBytes = 256 << 10
  1078  
  1079  func checkWriteHeaderCode(code int) {
  1080  	// Issue 22880: require valid WriteHeader status codes.
  1081  	// For now we only enforce that it's three digits.
  1082  	// In the future we might block things over 599 (600 and above aren't defined
  1083  	// at https://httpwg.org/specs/rfc7231.html#status.codes)
  1084  	// and we might block under 200 (once we have more mature 1xx support).
  1085  	// But for now any three digits.
  1086  	//
  1087  	// We used to send "HTTP/1.1 000 0" on the wire in responses but there's
  1088  	// no equivalent bogus thing we can realistically send in HTTP/2,
  1089  	// so we'll consistently panic instead and help people find their bugs
  1090  	// early. (We can't return an error from WriteHeader even if we wanted to.)
  1091  	if code < 100 || code > 999 {
  1092  		panic(fmt.Sprintf("invalid WriteHeader code %v", code))
  1093  	}
  1094  }
  1095  
  1096  // relevantCaller searches the call stack for the first function outside of net/http.
  1097  // The purpose of this function is to provide more helpful error messages.
  1098  func relevantCaller() runtime.Frame {
  1099  	pc := make([]uintptr, 16)
  1100  	n := runtime.Callers(1, pc)
  1101  	frames := runtime.CallersFrames(pc[:n])
  1102  	var frame runtime.Frame
  1103  	for {
  1104  		frame, more := frames.Next()
  1105  		if !strings.HasPrefix(frame.Function, "gitee.com/ks-custle/core-gm/gmhttp.") {
  1106  			return frame
  1107  		}
  1108  		if !more {
  1109  			break
  1110  		}
  1111  	}
  1112  	return frame
  1113  }
  1114  
  1115  func (w *response) WriteHeader(code int) {
  1116  	if w.conn.hijacked() {
  1117  		caller := relevantCaller()
  1118  		w.conn.server.logf("http: response.WriteHeader on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line)
  1119  		return
  1120  	}
  1121  	if w.wroteHeader {
  1122  		caller := relevantCaller()
  1123  		w.conn.server.logf("http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line)
  1124  		return
  1125  	}
  1126  	checkWriteHeaderCode(code)
  1127  	w.wroteHeader = true
  1128  	w.status = code
  1129  
  1130  	if w.calledHeader && w.cw.header == nil {
  1131  		w.cw.header = w.handlerHeader.Clone()
  1132  	}
  1133  
  1134  	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
  1135  		v, err := strconv.ParseInt(cl, 10, 64)
  1136  		if err == nil && v >= 0 {
  1137  			w.contentLength = v
  1138  		} else {
  1139  			w.conn.server.logf("http: invalid Content-Length of %q", cl)
  1140  			w.handlerHeader.Del("Content-Length")
  1141  		}
  1142  	}
  1143  }
  1144  
  1145  // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
  1146  // This type is used to avoid extra allocations from cloning and/or populating
  1147  // the response Header map and all its 1-element slices.
  1148  type extraHeader struct {
  1149  	contentType      string
  1150  	connection       string
  1151  	transferEncoding string
  1152  	date             []byte // written if not nil
  1153  	contentLength    []byte // written if not nil
  1154  }
  1155  
  1156  // Sorted the same as extraHeader.Write's loop.
  1157  var extraHeaderKeys = [][]byte{
  1158  	[]byte("Content-Type"),
  1159  	[]byte("Connection"),
  1160  	[]byte("Transfer-Encoding"),
  1161  }
  1162  
  1163  var (
  1164  	headerContentLength = []byte("Content-Length: ")
  1165  	headerDate          = []byte("Date: ")
  1166  )
  1167  
  1168  // Write writes the headers described in h to w.
  1169  //
  1170  // This method has a value receiver, despite the somewhat large size
  1171  // of h, because it prevents an allocation. The escape analysis isn't
  1172  // smart enough to realize this function doesn't mutate h.
  1173  func (h extraHeader) Write(w *bufio.Writer) {
  1174  	if h.date != nil {
  1175  		_, _ = w.Write(headerDate)
  1176  		_, _ = w.Write(h.date)
  1177  		_, _ = w.Write(crlf)
  1178  	}
  1179  	if h.contentLength != nil {
  1180  		_, _ = w.Write(headerContentLength)
  1181  		_, _ = w.Write(h.contentLength)
  1182  		_, _ = w.Write(crlf)
  1183  	}
  1184  	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
  1185  		if v != "" {
  1186  			_, _ = w.Write(extraHeaderKeys[i])
  1187  			_, _ = w.Write(colonSpace)
  1188  			_, _ = w.WriteString(v)
  1189  			_, _ = w.Write(crlf)
  1190  		}
  1191  	}
  1192  }
  1193  
  1194  // writeHeader finalizes the header sent to the client and writes it
  1195  // to cw.res.conn.bufw.
  1196  //
  1197  // p is not written by writeHeader, but is the first chunk of the body
  1198  // that will be written. It is sniffed for a Content-Type if none is
  1199  // set explicitly. It's also used to set the Content-Length, if the
  1200  // total body size was small and the handler has already finished
  1201  // running.
  1202  func (cw *chunkWriter) writeHeader(p []byte) {
  1203  	if cw.wroteHeader {
  1204  		return
  1205  	}
  1206  	cw.wroteHeader = true
  1207  
  1208  	w := cw.res
  1209  	keepAlivesEnabled := w.conn.server.doKeepAlives()
  1210  	isHEAD := w.req.Method == "HEAD"
  1211  
  1212  	// header is written out to w.conn.buf below. Depending on the
  1213  	// state of the handler, we either own the map or not. If we
  1214  	// don't own it, the exclude map is created lazily for
  1215  	// WriteSubset to remove headers. The setHeader struct holds
  1216  	// headers we need to add.
  1217  	header := cw.header
  1218  	owned := header != nil
  1219  	if !owned {
  1220  		header = w.handlerHeader
  1221  	}
  1222  	var excludeHeader map[string]bool
  1223  	delHeader := func(key string) {
  1224  		if owned {
  1225  			header.Del(key)
  1226  			return
  1227  		}
  1228  		if _, ok := header[key]; !ok {
  1229  			return
  1230  		}
  1231  		if excludeHeader == nil {
  1232  			excludeHeader = make(map[string]bool)
  1233  		}
  1234  		excludeHeader[key] = true
  1235  	}
  1236  	var setHeader extraHeader
  1237  
  1238  	// Don't write out the fake "Trailer:foo" keys. See TrailerPrefix.
  1239  	trailers := false
  1240  	for k := range cw.header {
  1241  		if strings.HasPrefix(k, TrailerPrefix) {
  1242  			if excludeHeader == nil {
  1243  				excludeHeader = make(map[string]bool)
  1244  			}
  1245  			excludeHeader[k] = true
  1246  			trailers = true
  1247  		}
  1248  	}
  1249  	for _, v := range cw.header["Trailer"] {
  1250  		trailers = true
  1251  		foreachHeaderElement(v, cw.res.declareTrailer)
  1252  	}
  1253  
  1254  	te := header.get("Transfer-Encoding")
  1255  	hasTE := te != ""
  1256  
  1257  	// If the handler is done but never sent a Content-Length
  1258  	// response header and this is our first (and last) write, set
  1259  	// it, even to zero. This helps HTTP/1.0 clients keep their
  1260  	// "keep-alive" connections alive.
  1261  	// Exceptions: 304/204/1xx responses never get Content-Length, and if
  1262  	// it was a HEAD request, we don't know the difference between
  1263  	// 0 actual bytes and 0 bytes because the handler noticed it
  1264  	// was a HEAD request and chose not to write anything. So for
  1265  	// HEAD, the handler should either write the Content-Length or
  1266  	// write non-zero bytes. If it's actually 0 bytes and the
  1267  	// handler never looked at the Request.Method, we just don't
  1268  	// send a Content-Length header.
  1269  	// Further, we don't send an automatic Content-Length if they
  1270  	// set a Transfer-Encoding, because they're generally incompatible.
  1271  	if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
  1272  		w.contentLength = int64(len(p))
  1273  		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
  1274  	}
  1275  
  1276  	// If this was an HTTP/1.0 request with keep-alive and we sent a
  1277  	// Content-Length back, we can make this a keep-alive response ...
  1278  	if w.wants10KeepAlive && keepAlivesEnabled {
  1279  		sentLength := header.get("Content-Length") != ""
  1280  		if sentLength && header.get("Connection") == "keep-alive" {
  1281  			w.closeAfterReply = false
  1282  		}
  1283  	}
  1284  
  1285  	// Check for an explicit (and valid) Content-Length header.
  1286  	hasCL := w.contentLength != -1
  1287  
  1288  	if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) {
  1289  		_, connectionHeaderSet := header["Connection"]
  1290  		if !connectionHeaderSet {
  1291  			setHeader.connection = "keep-alive"
  1292  		}
  1293  	} else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose {
  1294  		w.closeAfterReply = true
  1295  	}
  1296  
  1297  	if header.get("Connection") == "close" || !keepAlivesEnabled {
  1298  		w.closeAfterReply = true
  1299  	}
  1300  
  1301  	// If the client wanted a 100-continue but we never sent it to
  1302  	// them (or, more strictly: we never finished reading their
  1303  	// request body), don't reuse this connection because it's now
  1304  	// in an unknown state: we might be sending this response at
  1305  	// the same time the client is now sending its request body
  1306  	// after a timeout.  (Some HTTP clients send Expect:
  1307  	// 100-continue but knowing that some servers don't support
  1308  	// it, the clients set a timer and send the body later anyway)
  1309  	// If we haven't seen EOF, we can't skip over the unread body
  1310  	// because we don't know if the next bytes on the wire will be
  1311  	// the body-following-the-timer or the subsequent request.
  1312  	// See Issue 11549.
  1313  	if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF.isSet() {
  1314  		w.closeAfterReply = true
  1315  	}
  1316  
  1317  	// Per RFC 2616, we should consume the request body before
  1318  	// replying, if the handler hasn't already done so. But we
  1319  	// don't want to do an unbounded amount of reading here for
  1320  	// DoS reasons, so we only try up to a threshold.
  1321  	// TODO(bradfitz): where does RFC 2616 say that? See Issue 15527
  1322  	// about HTTP/1.x Handlers concurrently reading and writing, like
  1323  	// HTTP/2 handlers can do. Maybe this code should be relaxed?
  1324  	if w.req.ContentLength != 0 && !w.closeAfterReply {
  1325  		var discard, tooBig bool
  1326  
  1327  		switch bdy := w.req.Body.(type) {
  1328  		case *expectContinueReader:
  1329  			if bdy.resp.wroteContinue {
  1330  				discard = true
  1331  			}
  1332  		case *body:
  1333  			bdy.mu.Lock()
  1334  			switch {
  1335  			case bdy.closed:
  1336  				if !bdy.sawEOF {
  1337  					// Body was closed in handler with non-EOF error.
  1338  					w.closeAfterReply = true
  1339  				}
  1340  			case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes:
  1341  				tooBig = true
  1342  			default:
  1343  				discard = true
  1344  			}
  1345  			bdy.mu.Unlock()
  1346  		default:
  1347  			discard = true
  1348  		}
  1349  
  1350  		if discard {
  1351  			_, err := io.CopyN(io.Discard, w.reqBody, maxPostHandlerReadBytes+1)
  1352  			switch err {
  1353  			case nil:
  1354  				// There must be even more data left over.
  1355  				tooBig = true
  1356  			case ErrBodyReadAfterClose:
  1357  				// Body was already consumed and closed.
  1358  			case io.EOF:
  1359  				// The remaining body was just consumed, close it.
  1360  				err = w.reqBody.Close()
  1361  				if err != nil {
  1362  					w.closeAfterReply = true
  1363  				}
  1364  			default:
  1365  				// Some other kind of error occurred, like a read timeout, or
  1366  				// corrupt chunked encoding. In any case, whatever remains
  1367  				// on the wire must not be parsed as another HTTP request.
  1368  				w.closeAfterReply = true
  1369  			}
  1370  		}
  1371  
  1372  		if tooBig {
  1373  			w.requestTooLarge()
  1374  			delHeader("Connection")
  1375  			setHeader.connection = "close"
  1376  		}
  1377  	}
  1378  
  1379  	code := w.status
  1380  	if bodyAllowedForStatus(code) {
  1381  		// If no content type, apply sniffing algorithm to body.
  1382  		_, haveType := header["Content-Type"]
  1383  
  1384  		// If the Content-Encoding was set and is non-blank,
  1385  		// we shouldn't sniff the body. See Issue 31753.
  1386  		ce := header.Get("Content-Encoding")
  1387  		hasCE := len(ce) > 0
  1388  		if !hasCE && !haveType && !hasTE && len(p) > 0 {
  1389  			setHeader.contentType = DetectContentType(p)
  1390  		}
  1391  	} else {
  1392  		for _, k := range suppressedHeaders(code) {
  1393  			delHeader(k)
  1394  		}
  1395  	}
  1396  
  1397  	if !header.has("Date") {
  1398  		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
  1399  	}
  1400  
  1401  	if hasCL && hasTE && te != "identity" {
  1402  		// TODO: return an error if WriteHeader gets a return parameter
  1403  		// For now just ignore the Content-Length.
  1404  		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
  1405  			te, w.contentLength)
  1406  		delHeader("Content-Length")
  1407  		hasCL = false
  1408  	}
  1409  
  1410  	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) || code == StatusNoContent {
  1411  		// Response has no body.
  1412  		delHeader("Transfer-Encoding")
  1413  	} else if hasCL {
  1414  		// Content-Length has been provided, so no chunking is to be done.
  1415  		delHeader("Transfer-Encoding")
  1416  	} else if w.req.ProtoAtLeast(1, 1) {
  1417  		// HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no
  1418  		// content-length has been provided. The connection must be closed after the
  1419  		// reply is written, and no chunking is to be done. This is the setup
  1420  		// recommended in the Server-Sent Events candidate recommendation 11,
  1421  		// section 8.
  1422  		if hasTE && te == "identity" {
  1423  			cw.chunking = false
  1424  			w.closeAfterReply = true
  1425  			delHeader("Transfer-Encoding")
  1426  		} else {
  1427  			// HTTP/1.1 or greater: use chunked transfer encoding
  1428  			// to avoid closing the connection at EOF.
  1429  			cw.chunking = true
  1430  			setHeader.transferEncoding = "chunked"
  1431  			if hasTE && te == "chunked" {
  1432  				// We will send the chunked Transfer-Encoding header later.
  1433  				delHeader("Transfer-Encoding")
  1434  			}
  1435  		}
  1436  	} else {
  1437  		// HTTP version < 1.1: cannot do chunked transfer
  1438  		// encoding and we don't know the Content-Length so
  1439  		// signal EOF by closing connection.
  1440  		w.closeAfterReply = true
  1441  		delHeader("Transfer-Encoding") // in case already set
  1442  	}
  1443  
  1444  	// Cannot use Content-Length with non-identity Transfer-Encoding.
  1445  	if cw.chunking {
  1446  		delHeader("Content-Length")
  1447  	}
  1448  	if !w.req.ProtoAtLeast(1, 0) {
  1449  		return
  1450  	}
  1451  
  1452  	// Only override the Connection header if it is not a successful
  1453  	// protocol switch response and if KeepAlives are not enabled.
  1454  	// See https://golang.org/issue/36381.
  1455  	delConnectionHeader := w.closeAfterReply &&
  1456  		(!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) &&
  1457  		!isProtocolSwitchResponse(w.status, header)
  1458  	if delConnectionHeader {
  1459  		delHeader("Connection")
  1460  		if w.req.ProtoAtLeast(1, 1) {
  1461  			setHeader.connection = "close"
  1462  		}
  1463  	}
  1464  
  1465  	writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:])
  1466  	_ = cw.header.WriteSubset(w.conn.bufw, excludeHeader)
  1467  	setHeader.Write(w.conn.bufw)
  1468  	_, _ = w.conn.bufw.Write(crlf)
  1469  }
  1470  
  1471  // foreachHeaderElement splits v according to the "#rule" construction
  1472  // in RFC 7230 section 7 and calls fn for each non-empty element.
  1473  func foreachHeaderElement(v string, fn func(string)) {
  1474  	v = textproto.TrimString(v)
  1475  	if v == "" {
  1476  		return
  1477  	}
  1478  	if !strings.Contains(v, ",") {
  1479  		fn(v)
  1480  		return
  1481  	}
  1482  	for _, f := range strings.Split(v, ",") {
  1483  		if f = textproto.TrimString(f); f != "" {
  1484  			fn(f)
  1485  		}
  1486  	}
  1487  }
  1488  
  1489  // writeStatusLine writes an HTTP/1.x Status-Line (RFC 7230 Section 3.1.2)
  1490  // to bw. is11 is whether the HTTP request is HTTP/1.1. false means HTTP/1.0.
  1491  // code is the response status code.
  1492  // scratch is an optional scratch buffer. If it has at least capacity 3, it's used.
  1493  func writeStatusLine(bw *bufio.Writer, is11 bool, code int, scratch []byte) {
  1494  	if is11 {
  1495  		_, _ = bw.WriteString("HTTP/1.1 ")
  1496  	} else {
  1497  		_, _ = bw.WriteString("HTTP/1.0 ")
  1498  	}
  1499  	if text, ok := statusText[code]; ok {
  1500  		_, _ = bw.Write(strconv.AppendInt(scratch[:0], int64(code), 10))
  1501  		_ = bw.WriteByte(' ')
  1502  		_, _ = bw.WriteString(text)
  1503  		_, _ = bw.WriteString("\r\n")
  1504  	} else {
  1505  		// don't worry about performance
  1506  		_, _ = fmt.Fprintf(bw, "%03d status code %d\r\n", code, code)
  1507  	}
  1508  }
  1509  
  1510  // bodyAllowed reports whether a Write is allowed for this response type.
  1511  // It's illegal to call this before the header has been flushed.
  1512  func (w *response) bodyAllowed() bool {
  1513  	if !w.wroteHeader {
  1514  		panic("")
  1515  	}
  1516  	return bodyAllowedForStatus(w.status)
  1517  }
  1518  
  1519  // The Life Of A Write is like this:
  1520  //
  1521  // Handler starts. No header has been sent. The handler can either
  1522  // write a header, or just start writing. Writing before sending a header
  1523  // sends an implicitly empty 200 OK header.
  1524  //
  1525  // If the handler didn't declare a Content-Length up front, we either
  1526  // go into chunking mode or, if the handler finishes running before
  1527  // the chunking buffer size, we compute a Content-Length and send that
  1528  // in the header instead.
  1529  //
  1530  // Likewise, if the handler didn't set a Content-Type, we sniff that
  1531  // from the initial chunk of output.
  1532  //
  1533  // The Writers are wired together like:
  1534  //
  1535  //  1. *response (the ResponseWriter) ->
  1536  //  2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes ->
  1537  //  3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
  1538  //     and which writes the chunk headers, if needed ->
  1539  //  4. conn.bufw, a *bufio.Writer of default (4kB) bytes, writing to ->
  1540  //  5. checkConnErrorWriter{c}, which notes any non-nil error on Write
  1541  //     and populates c.werr with it if so, but otherwise writes to ->
  1542  //  6. the rwc, the net.Conn.
  1543  //
  1544  // TODO(bradfitz): short-circuit some of the buffering when the
  1545  // initial header contains both a Content-Type and Content-Length.
  1546  // Also short-circuit in (1) when the header's been sent and not in
  1547  // chunking mode, writing directly to (4) instead, if (2) has no
  1548  // buffered data. More generally, we could short-circuit from (1) to
  1549  // (3) even in chunking mode if the write size from (1) is over some
  1550  // threshold and nothing is in (2).  The answer might be mostly making
  1551  // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
  1552  // with this instead.
  1553  func (w *response) Write(data []byte) (n int, err error) {
  1554  	return w.write(len(data), data, "")
  1555  }
  1556  
  1557  func (w *response) WriteString(data string) (n int, err error) {
  1558  	return w.write(len(data), nil, data)
  1559  }
  1560  
  1561  // either dataB or dataS is non-zero.
  1562  func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
  1563  	if w.conn.hijacked() {
  1564  		if lenData > 0 {
  1565  			caller := relevantCaller()
  1566  			w.conn.server.logf("http: response.Write on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line)
  1567  		}
  1568  		return 0, ErrHijacked
  1569  	}
  1570  
  1571  	if w.canWriteContinue.isSet() {
  1572  		// Body reader wants to write 100 Continue but hasn't yet.
  1573  		// Tell it not to. The store must be done while holding the lock
  1574  		// because the lock makes sure that there is not an active write
  1575  		// this very moment.
  1576  		w.writeContinueMu.Lock()
  1577  		w.canWriteContinue.setFalse()
  1578  		w.writeContinueMu.Unlock()
  1579  	}
  1580  
  1581  	if !w.wroteHeader {
  1582  		w.WriteHeader(StatusOK)
  1583  	}
  1584  	if lenData == 0 {
  1585  		return 0, nil
  1586  	}
  1587  	if !w.bodyAllowed() {
  1588  		return 0, ErrBodyNotAllowed
  1589  	}
  1590  
  1591  	w.written += int64(lenData) // ignoring errors, for errorKludge
  1592  	if w.contentLength != -1 && w.written > w.contentLength {
  1593  		return 0, ErrContentLength
  1594  	}
  1595  	if dataB != nil {
  1596  		return w.w.Write(dataB)
  1597  	} else {
  1598  		return w.w.WriteString(dataS)
  1599  	}
  1600  }
  1601  
  1602  func (w *response) finishRequest() {
  1603  	w.handlerDone.setTrue()
  1604  
  1605  	if !w.wroteHeader {
  1606  		w.WriteHeader(StatusOK)
  1607  	}
  1608  
  1609  	_ = w.w.Flush()
  1610  	putBufioWriter(w.w)
  1611  	w.cw.close()
  1612  	_ = w.conn.bufw.Flush()
  1613  
  1614  	w.conn.r.abortPendingRead()
  1615  
  1616  	// Close the body (regardless of w.closeAfterReply) so we can
  1617  	// re-use its bufio.Reader later safely.
  1618  	_ = w.reqBody.Close()
  1619  
  1620  	if w.req.MultipartForm != nil {
  1621  		_ = w.req.MultipartForm.RemoveAll()
  1622  	}
  1623  }
  1624  
  1625  // shouldReuseConnection reports whether the underlying TCP connection can be reused.
  1626  // It must only be called after the handler is done executing.
  1627  func (w *response) shouldReuseConnection() bool {
  1628  	if w.closeAfterReply {
  1629  		// The request or something set while executing the
  1630  		// handler indicated we shouldn't reuse this
  1631  		// connection.
  1632  		return false
  1633  	}
  1634  
  1635  	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
  1636  		// Did not write enough. Avoid getting out of sync.
  1637  		return false
  1638  	}
  1639  
  1640  	// There was some error writing to the underlying connection
  1641  	// during the request, so don't re-use this conn.
  1642  	if w.conn.werr != nil {
  1643  		return false
  1644  	}
  1645  
  1646  	if w.closedRequestBodyEarly() {
  1647  		return false
  1648  	}
  1649  
  1650  	return true
  1651  }
  1652  
  1653  func (w *response) closedRequestBodyEarly() bool {
  1654  	body, ok := w.req.Body.(*body)
  1655  	return ok && body.didEarlyClose()
  1656  }
  1657  
  1658  func (w *response) Flush() {
  1659  	if !w.wroteHeader {
  1660  		w.WriteHeader(StatusOK)
  1661  	}
  1662  	_ = w.w.Flush()
  1663  	w.cw.flush()
  1664  }
  1665  
  1666  func (c *conn) finalFlush() {
  1667  	if c.bufr != nil {
  1668  		// Steal the bufio.Reader (~4KB worth of memory) and its associated
  1669  		// reader for a future connection.
  1670  		putBufioReader(c.bufr)
  1671  		c.bufr = nil
  1672  	}
  1673  
  1674  	if c.bufw != nil {
  1675  		_ = c.bufw.Flush()
  1676  		// Steal the bufio.Writer (~4KB worth of memory) and its associated
  1677  		// writer for a future connection.
  1678  		putBufioWriter(c.bufw)
  1679  		c.bufw = nil
  1680  	}
  1681  }
  1682  
  1683  // Close the connection.
  1684  func (c *conn) close() {
  1685  	c.finalFlush()
  1686  	_ = c.rwc.Close()
  1687  }
  1688  
  1689  // rstAvoidanceDelay is the amount of time we sleep after closing the
  1690  // write side of a TCP connection before closing the entire socket.
  1691  // By sleeping, we increase the chances that the client sees our FIN
  1692  // and processes its final data before they process the subsequent RST
  1693  // from closing a connection with known unread data.
  1694  // This RST seems to occur mostly on BSD systems. (And Windows?)
  1695  // This timeout is somewhat arbitrary (~latency around the planet).
  1696  const rstAvoidanceDelay = 500 * time.Millisecond
  1697  
  1698  type closeWriter interface {
  1699  	CloseWrite() error
  1700  }
  1701  
  1702  var _ closeWriter = (*net.TCPConn)(nil)
  1703  
  1704  // closeWrite flushes any outstanding data and sends a FIN packet (if
  1705  // client is connected via TCP), signalling that we're done. We then
  1706  // pause for a bit, hoping the client processes it before any
  1707  // subsequent RST.
  1708  //
  1709  // See https://golang.org/issue/3595
  1710  func (c *conn) closeWriteAndWait() {
  1711  	c.finalFlush()
  1712  	if tcp, ok := c.rwc.(closeWriter); ok {
  1713  		_ = tcp.CloseWrite()
  1714  	}
  1715  	time.Sleep(rstAvoidanceDelay)
  1716  }
  1717  
  1718  // validNextProto reports whether the proto is a valid ALPN protocol name.
  1719  // Everything is valid except the empty string and built-in protocol types,
  1720  // so that those can't be overridden with alternate implementations.
  1721  func validNextProto(proto string) bool {
  1722  	switch proto {
  1723  	case "", "http/1.1", "http/1.0":
  1724  		return false
  1725  	}
  1726  	return true
  1727  }
  1728  
  1729  const (
  1730  	runHooks  = true
  1731  	skipHooks = false
  1732  )
  1733  
  1734  func (c *conn) setState(nc net.Conn, state ConnState, runHook bool) {
  1735  	srv := c.server
  1736  	switch state {
  1737  	case StateNew:
  1738  		srv.trackConn(c, true)
  1739  	case StateHijacked, StateClosed:
  1740  		srv.trackConn(c, false)
  1741  	}
  1742  	if state > 0xff || state < 0 {
  1743  		panic("internal error")
  1744  	}
  1745  	packedState := uint64(time.Now().Unix()<<8) | uint64(state)
  1746  	atomic.StoreUint64(&c.curState.atomic, packedState)
  1747  	if !runHook {
  1748  		return
  1749  	}
  1750  	if hook := srv.ConnState; hook != nil {
  1751  		hook(nc, state)
  1752  	}
  1753  }
  1754  
  1755  func (c *conn) getState() (state ConnState, unixSec int64) {
  1756  	packedState := atomic.LoadUint64(&c.curState.atomic)
  1757  	return ConnState(packedState & 0xff), int64(packedState >> 8)
  1758  }
  1759  
  1760  // badRequestError is a literal string (used by in the server in HTML,
  1761  // unescaped) to tell the user why their request was bad. It should
  1762  // be plain text without user info or other embedded errors.
  1763  func badRequestError(e string) error { return statusError{StatusBadRequest, e} }
  1764  
  1765  // statusError is an error used to respond to a request with an HTTP status.
  1766  // The text should be plain text without user info or other embedded errors.
  1767  type statusError struct {
  1768  	code int
  1769  	text string
  1770  }
  1771  
  1772  func (e statusError) Error() string { return StatusText(e.code) + ": " + e.text }
  1773  
  1774  // ErrAbortHandler is a sentinel panic value to abort a handler.
  1775  // While any panic from ServeHTTP aborts the response to the client,
  1776  // panicking with ErrAbortHandler also suppresses logging of a stack
  1777  // trace to the server's error log.
  1778  var ErrAbortHandler = errors.New("gitee.com/ks-custle/core-gm/gmhttp: abort Handler")
  1779  
  1780  // isCommonNetReadError reports whether err is a common error
  1781  // encountered during reading a request off the network when the
  1782  // client has gone away or had its read fail somehow. This is used to
  1783  // determine which logs are interesting enough to log about.
  1784  func isCommonNetReadError(err error) bool {
  1785  	if err == io.EOF {
  1786  		return true
  1787  	}
  1788  	if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
  1789  		return true
  1790  	}
  1791  	if oe, ok := err.(*net.OpError); ok && oe.Op == "read" {
  1792  		return true
  1793  	}
  1794  	return false
  1795  }
  1796  
  1797  // Serve a new connection.
  1798  func (c *conn) serve(ctx context.Context) {
  1799  	c.remoteAddr = c.rwc.RemoteAddr().String()
  1800  	ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
  1801  	defer func() {
  1802  		if err := recover(); err != nil && err != ErrAbortHandler {
  1803  			const size = 64 << 10
  1804  			buf := make([]byte, size)
  1805  			buf = buf[:runtime.Stack(buf, false)]
  1806  			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
  1807  		}
  1808  		if !c.hijacked() {
  1809  			c.close()
  1810  			c.setState(c.rwc, StateClosed, runHooks)
  1811  		}
  1812  	}()
  1813  
  1814  	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
  1815  		if d := c.server.ReadTimeout; d > 0 {
  1816  			_ = c.rwc.SetReadDeadline(time.Now().Add(d))
  1817  		}
  1818  		if d := c.server.WriteTimeout; d > 0 {
  1819  			_ = c.rwc.SetWriteDeadline(time.Now().Add(d))
  1820  		}
  1821  		if err := tlsConn.HandshakeContext(ctx); err != nil {
  1822  			// If the handshake failed due to the client not speaking
  1823  			// TLS, assume they're speaking plaintext HTTP and write a
  1824  			// 400 response on the TLS conn's underlying net.Conn.
  1825  			if re, ok := err.(tls.RecordHeaderError); ok && re.Conn != nil && tlsRecordHeaderLooksLikeHTTP(re.RecordHeader) {
  1826  				_, _ = io.WriteString(re.Conn, "HTTP/1.0 400 Bad Request\r\n\r\nClient sent an HTTP request to an HTTPS server.\n")
  1827  				_ = re.Conn.Close()
  1828  				return
  1829  			}
  1830  			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
  1831  			return
  1832  		}
  1833  		c.tlsState = new(tls.ConnectionState)
  1834  		*c.tlsState = tlsConn.ConnectionState()
  1835  		if proto := c.tlsState.NegotiatedProtocol; validNextProto(proto) {
  1836  			if fn := c.server.TLSNextProto[proto]; fn != nil {
  1837  				h := initALPNRequest{ctx, tlsConn, serverHandler{c.server}}
  1838  				// Mark freshly created HTTP/2 as active and prevent any server state hooks
  1839  				// from being run on these connections. This prevents closeIdleConns from
  1840  				// closing such connections. See issue https://golang.org/issue/39776.
  1841  				c.setState(c.rwc, StateActive, skipHooks)
  1842  				fn(c.server, tlsConn, h)
  1843  			}
  1844  			return
  1845  		}
  1846  	}
  1847  
  1848  	// HTTP/1.x from here on.
  1849  
  1850  	ctx, cancelCtx := context.WithCancel(ctx)
  1851  	c.cancelCtx = cancelCtx
  1852  	defer cancelCtx()
  1853  
  1854  	c.r = &connReader{conn: c}
  1855  	c.bufr = newBufioReader(c.r)
  1856  	c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
  1857  
  1858  	for {
  1859  		w, err := c.readRequest(ctx)
  1860  		if c.r.remain != c.server.initialReadLimitSize() {
  1861  			// If we read any bytes off the wire, we're active.
  1862  			c.setState(c.rwc, StateActive, runHooks)
  1863  		}
  1864  		if err != nil {
  1865  			const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
  1866  
  1867  			switch {
  1868  			case err == errTooLarge:
  1869  				// Their HTTP client may or may not be
  1870  				// able to read this if we're
  1871  				// responding to them and hanging up
  1872  				// while they're still writing their
  1873  				// request. Undefined behavior.
  1874  				const publicErr = "431 Request Header Fields Too Large"
  1875  				_, _ = fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
  1876  				c.closeWriteAndWait()
  1877  				return
  1878  
  1879  			case isUnsupportedTEError(err):
  1880  				// Respond as per RFC 7230 Section 3.3.1 which says,
  1881  				//      A server that receives a request message with a
  1882  				//      transfer coding it does not understand SHOULD
  1883  				//      respond with 501 (Unimplemented).
  1884  				code := StatusNotImplemented
  1885  
  1886  				// We purposefully aren't echoing back the transfer-encoding's value,
  1887  				// so as to mitigate the risk of cross side scripting by an attacker.
  1888  				_, _ = fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders)
  1889  				return
  1890  
  1891  			case isCommonNetReadError(err):
  1892  				return // don't reply
  1893  
  1894  			default:
  1895  				if v, ok := err.(statusError); ok {
  1896  					_, _ = fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s: %s%s%d %s: %s", v.code, StatusText(v.code), v.text, errorHeaders, v.code, StatusText(v.code), v.text)
  1897  					return
  1898  				}
  1899  				publicErr := "400 Bad Request"
  1900  				_, _ = fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
  1901  				return
  1902  			}
  1903  		}
  1904  
  1905  		// Expect 100 Continue support
  1906  		req := w.req
  1907  		if req.expectsContinue() {
  1908  			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
  1909  				// Wrap the Body reader with one that replies on the connection
  1910  				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
  1911  				w.canWriteContinue.setTrue()
  1912  			}
  1913  		} else if req.Header.get("Expect") != "" {
  1914  			w.sendExpectationFailed()
  1915  			return
  1916  		}
  1917  
  1918  		c.curReq.Store(w)
  1919  
  1920  		if requestBodyRemains(req.Body) {
  1921  			registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
  1922  		} else {
  1923  			w.conn.r.startBackgroundRead()
  1924  		}
  1925  
  1926  		// HTTP cannot have multiple simultaneous active requests.[*]
  1927  		// Until the server replies to this request, it can't read another,
  1928  		// so we might as well run the handler in this goroutine.
  1929  		// [*] Not strictly true: HTTP pipelining. We could let them all process
  1930  		// in parallel even if their responses need to be serialized.
  1931  		// But we're not going to implement HTTP pipelining because it
  1932  		// was never deployed in the wild and the answer is HTTP/2.
  1933  		serverHandler{c.server}.ServeHTTP(w, w.req)
  1934  		w.cancelCtx()
  1935  		if c.hijacked() {
  1936  			return
  1937  		}
  1938  		w.finishRequest()
  1939  		if !w.shouldReuseConnection() {
  1940  			if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
  1941  				c.closeWriteAndWait()
  1942  			}
  1943  			return
  1944  		}
  1945  		c.setState(c.rwc, StateIdle, runHooks)
  1946  		c.curReq.Store((*response)(nil))
  1947  
  1948  		if !w.conn.server.doKeepAlives() {
  1949  			// We're in shutdown mode. We might've replied
  1950  			// to the user without "Connection: close" and
  1951  			// they might think they can send another
  1952  			// request, but such is life with HTTP/1.1.
  1953  			return
  1954  		}
  1955  
  1956  		if d := c.server.idleTimeout(); d != 0 {
  1957  			_ = c.rwc.SetReadDeadline(time.Now().Add(d))
  1958  			if _, err := c.bufr.Peek(4); err != nil {
  1959  				return
  1960  			}
  1961  		}
  1962  		_ = c.rwc.SetReadDeadline(time.Time{})
  1963  	}
  1964  }
  1965  
  1966  func (w *response) sendExpectationFailed() {
  1967  	// TODO(bradfitz): let ServeHTTP handlers handle
  1968  	// requests with non-standard expectation[s]? Seems
  1969  	// theoretical at best, and doesn't fit into the
  1970  	// current ServeHTTP model anyway. We'd need to
  1971  	// make the ResponseWriter an optional
  1972  	// "ExpectReplier" interface or something.
  1973  	//
  1974  	// For now we'll just obey RFC 7231 5.1.1 which says
  1975  	// "A server that receives an Expect field-value other
  1976  	// than 100-continue MAY respond with a 417 (Expectation
  1977  	// Failed) status code to indicate that the unexpected
  1978  	// expectation cannot be met."
  1979  	w.Header().Set("Connection", "close")
  1980  	w.WriteHeader(StatusExpectationFailed)
  1981  	w.finishRequest()
  1982  }
  1983  
  1984  // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
  1985  // and a Hijacker.
  1986  func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
  1987  	if w.handlerDone.isSet() {
  1988  		panic("gitee.com/ks-custle/core-gm/gmhttp: Hijack called after ServeHTTP finished")
  1989  	}
  1990  	if w.wroteHeader {
  1991  		w.cw.flush()
  1992  	}
  1993  
  1994  	c := w.conn
  1995  	c.mu.Lock()
  1996  	defer c.mu.Unlock()
  1997  
  1998  	// Release the bufioWriter that writes to the chunk writer, it is not
  1999  	// used after a connection has been hijacked.
  2000  	rwc, buf, err = c.hijackLocked()
  2001  	if err == nil {
  2002  		putBufioWriter(w.w)
  2003  		w.w = nil
  2004  	}
  2005  	return rwc, buf, err
  2006  }
  2007  
  2008  func (w *response) CloseNotify() <-chan bool {
  2009  	if w.handlerDone.isSet() {
  2010  		panic("gitee.com/ks-custle/core-gm/gmhttp: CloseNotify called after ServeHTTP finished")
  2011  	}
  2012  	return w.closeNotifyCh
  2013  }
  2014  
  2015  func registerOnHitEOF(rc io.ReadCloser, fn func()) {
  2016  	switch v := rc.(type) {
  2017  	case *expectContinueReader:
  2018  		registerOnHitEOF(v.readCloser, fn)
  2019  	case *body:
  2020  		v.registerOnHitEOF(fn)
  2021  	default:
  2022  		panic("unexpected type " + fmt.Sprintf("%T", rc))
  2023  	}
  2024  }
  2025  
  2026  // requestBodyRemains reports whether future calls to Read
  2027  // on rc might yield more data.
  2028  func requestBodyRemains(rc io.ReadCloser) bool {
  2029  	if rc == NoBody {
  2030  		return false
  2031  	}
  2032  	switch v := rc.(type) {
  2033  	case *expectContinueReader:
  2034  		return requestBodyRemains(v.readCloser)
  2035  	case *body:
  2036  		return v.bodyRemains()
  2037  	default:
  2038  		panic("unexpected type " + fmt.Sprintf("%T", rc))
  2039  	}
  2040  }
  2041  
  2042  // The HandlerFunc type is an adapter to allow the use of
  2043  // ordinary functions as HTTP handlers. If f is a function
  2044  // with the appropriate signature, HandlerFunc(f) is a
  2045  // Handler that calls f.
  2046  type HandlerFunc func(ResponseWriter, *Request)
  2047  
  2048  // ServeHTTP calls f(w, r).
  2049  func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
  2050  	f(w, r)
  2051  }
  2052  
  2053  // Helper handlers
  2054  
  2055  // Error replies to the request with the specified error message and HTTP code.
  2056  // It does not otherwise end the request; the caller should ensure no further
  2057  // writes are done to w.
  2058  // The error message should be plain text.
  2059  func Error(w ResponseWriter, error string, code int) {
  2060  	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
  2061  	w.Header().Set("X-Content-Type-Options", "nosniff")
  2062  	w.WriteHeader(code)
  2063  	_, _ = fmt.Fprintln(w, error)
  2064  }
  2065  
  2066  // NotFound replies to the request with an HTTP 404 not found error.
  2067  //
  2068  //goland:noinspection GoUnusedParameter
  2069  func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
  2070  
  2071  // NotFoundHandler returns a simple request handler
  2072  // that replies to each request with a “404 page not found” reply.
  2073  func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
  2074  
  2075  // StripPrefix returns a handler that serves HTTP requests by removing the
  2076  // given prefix from the request URL's Path (and RawPath if set) and invoking
  2077  // the handler h. StripPrefix handles a request for a path that doesn't begin
  2078  // with prefix by replying with an HTTP 404 not found error. The prefix must
  2079  // match exactly: if the prefix in the request contains escaped characters
  2080  // the reply is also an HTTP 404 not found error.
  2081  func StripPrefix(prefix string, h Handler) Handler {
  2082  	if prefix == "" {
  2083  		return h
  2084  	}
  2085  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  2086  		p := strings.TrimPrefix(r.URL.Path, prefix)
  2087  		rp := strings.TrimPrefix(r.URL.RawPath, prefix)
  2088  		if len(p) < len(r.URL.Path) && (r.URL.RawPath == "" || len(rp) < len(r.URL.RawPath)) {
  2089  			r2 := new(Request)
  2090  			*r2 = *r
  2091  			r2.URL = new(url.URL)
  2092  			*r2.URL = *r.URL
  2093  			r2.URL.Path = p
  2094  			r2.URL.RawPath = rp
  2095  			h.ServeHTTP(w, r2)
  2096  		} else {
  2097  			NotFound(w, r)
  2098  		}
  2099  	})
  2100  }
  2101  
  2102  // Redirect replies to the request with a redirect to url,
  2103  // which may be a path relative to the request path.
  2104  //
  2105  // The provided code should be in the 3xx range and is usually
  2106  // StatusMovedPermanently, StatusFound or StatusSeeOther.
  2107  //
  2108  // If the Content-Type header has not been set, Redirect sets it
  2109  // to "text/html; charset=utf-8" and writes a small HTML body.
  2110  // Setting the Content-Type header to any value, including nil,
  2111  // disables that behavior.
  2112  func Redirect(w ResponseWriter, r *Request, url string, code int) {
  2113  	if u, err := urlpkg.Parse(url); err == nil {
  2114  		// If url was relative, make its path absolute by
  2115  		// combining with request path.
  2116  		// The client would probably do this for us,
  2117  		// but doing it ourselves is more reliable.
  2118  		// See RFC 7231, section 7.1.2
  2119  		if u.Scheme == "" && u.Host == "" {
  2120  			oldpath := r.URL.Path
  2121  			if oldpath == "" { // should not happen, but avoid a crash if it does
  2122  				oldpath = "/"
  2123  			}
  2124  
  2125  			// no leading http://server
  2126  			if url == "" || url[0] != '/' {
  2127  				// make relative path absolute
  2128  				olddir, _ := path.Split(oldpath)
  2129  				url = olddir + url
  2130  			}
  2131  
  2132  			var query string
  2133  			if i := strings.Index(url, "?"); i != -1 {
  2134  				url, query = url[:i], url[i:]
  2135  			}
  2136  
  2137  			// clean up but preserve trailing slash
  2138  			trailing := strings.HasSuffix(url, "/")
  2139  			url = path.Clean(url)
  2140  			if trailing && !strings.HasSuffix(url, "/") {
  2141  				url += "/"
  2142  			}
  2143  			url += query
  2144  		}
  2145  	}
  2146  
  2147  	h := w.Header()
  2148  
  2149  	// RFC 7231 notes that a short HTML body is usually included in
  2150  	// the response because older user agents may not understand 301/307.
  2151  	// Do it only if the request didn't already have a Content-Type header.
  2152  	_, hadCT := h["Content-Type"]
  2153  
  2154  	h.Set("Location", hexEscapeNonASCII(url))
  2155  	if !hadCT && (r.Method == "GET" || r.Method == "HEAD") {
  2156  		h.Set("Content-Type", "text/html; charset=utf-8")
  2157  	}
  2158  	w.WriteHeader(code)
  2159  
  2160  	// Shouldn't send the body for POST or HEAD; that leaves GET.
  2161  	if !hadCT && r.Method == "GET" {
  2162  		body := "<a href=\"" + htmlEscape(url) + "\">" + statusText[code] + "</a>.\n"
  2163  		_, _ = fmt.Fprintln(w, body)
  2164  	}
  2165  }
  2166  
  2167  var htmlReplacer = strings.NewReplacer(
  2168  	"&", "&amp;",
  2169  	"<", "&lt;",
  2170  	">", "&gt;",
  2171  	// "&#34;" is shorter than "&quot;".
  2172  	`"`, "&#34;",
  2173  	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
  2174  	"'", "&#39;",
  2175  )
  2176  
  2177  func htmlEscape(s string) string {
  2178  	return htmlReplacer.Replace(s)
  2179  }
  2180  
  2181  // Redirect to a fixed URL
  2182  type redirectHandler struct {
  2183  	url  string
  2184  	code int
  2185  }
  2186  
  2187  func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
  2188  	Redirect(w, r, rh.url, rh.code)
  2189  }
  2190  
  2191  // RedirectHandler returns a request handler that redirects
  2192  // each request it receives to the given url using the given
  2193  // status code.
  2194  //
  2195  // The provided code should be in the 3xx range and is usually
  2196  // StatusMovedPermanently, StatusFound or StatusSeeOther.
  2197  func RedirectHandler(url string, code int) Handler {
  2198  	return &redirectHandler{url, code}
  2199  }
  2200  
  2201  // ServeMux is an HTTP request multiplexer.
  2202  // It matches the URL of each incoming request against a list of registered
  2203  // patterns and calls the handler for the pattern that
  2204  // most closely matches the URL.
  2205  //
  2206  // Patterns name fixed, rooted paths, like "/favicon.ico",
  2207  // or rooted subtrees, like "/images/" (note the trailing slash).
  2208  // Longer patterns take precedence over shorter ones, so that
  2209  // if there are handlers registered for both "/images/"
  2210  // and "/images/thumbnails/", the latter handler will be
  2211  // called for paths beginning "/images/thumbnails/" and the
  2212  // former will receive requests for any other paths in the
  2213  // "/images/" subtree.
  2214  //
  2215  // Note that since a pattern ending in a slash names a rooted subtree,
  2216  // the pattern "/" matches all paths not matched by other registered
  2217  // patterns, not just the URL with Path == "/".
  2218  //
  2219  // If a subtree has been registered and a request is received naming the
  2220  // subtree root without its trailing slash, ServeMux redirects that
  2221  // request to the subtree root (adding the trailing slash). This behavior can
  2222  // be overridden with a separate registration for the path without
  2223  // the trailing slash. For example, registering "/images/" causes ServeMux
  2224  // to redirect a request for "/images" to "/images/", unless "/images" has
  2225  // been registered separately.
  2226  //
  2227  // Patterns may optionally begin with a host name, restricting matches to
  2228  // URLs on that host only. Host-specific patterns take precedence over
  2229  // general patterns, so that a handler might register for the two patterns
  2230  // "/codesearch" and "codesearch.google.com/" without also taking over
  2231  // requests for "http://www.google.com/".
  2232  //
  2233  // ServeMux also takes care of sanitizing the URL request path and the Host
  2234  // header, stripping the port number and redirecting any request containing . or
  2235  // .. elements or repeated slashes to an equivalent, cleaner URL.
  2236  type ServeMux struct {
  2237  	mu    sync.RWMutex
  2238  	m     map[string]muxEntry
  2239  	es    []muxEntry // slice of entries sorted from longest to shortest.
  2240  	hosts bool       // whether any patterns contain hostnames
  2241  }
  2242  
  2243  type muxEntry struct {
  2244  	h       Handler
  2245  	pattern string
  2246  }
  2247  
  2248  // NewServeMux allocates and returns a new ServeMux.
  2249  func NewServeMux() *ServeMux { return new(ServeMux) }
  2250  
  2251  // DefaultServeMux is the default ServeMux used by Serve.
  2252  var DefaultServeMux = &defaultServeMux
  2253  
  2254  var defaultServeMux ServeMux
  2255  
  2256  // cleanPath returns the canonical path for p, eliminating . and .. elements.
  2257  func cleanPath(p string) string {
  2258  	if p == "" {
  2259  		return "/"
  2260  	}
  2261  	if p[0] != '/' {
  2262  		p = "/" + p
  2263  	}
  2264  	np := path.Clean(p)
  2265  	// path.Clean removes trailing slash except for root;
  2266  	// put the trailing slash back if necessary.
  2267  	if p[len(p)-1] == '/' && np != "/" {
  2268  		// Fast path for common case of p being the string we want:
  2269  		if len(p) == len(np)+1 && strings.HasPrefix(p, np) {
  2270  			np = p
  2271  		} else {
  2272  			np += "/"
  2273  		}
  2274  	}
  2275  	return np
  2276  }
  2277  
  2278  // stripHostPort returns h without any trailing ":<port>".
  2279  func stripHostPort(h string) string {
  2280  	// If no port on host, return unchanged
  2281  	if strings.IndexByte(h, ':') == -1 {
  2282  		return h
  2283  	}
  2284  	host, _, err := net.SplitHostPort(h)
  2285  	if err != nil {
  2286  		return h // on error, return unchanged
  2287  	}
  2288  	return host
  2289  }
  2290  
  2291  // Find a handler on a handler map given a path string.
  2292  // Most-specific (longest) pattern wins.
  2293  func (mux *ServeMux) match(path string) (h Handler, pattern string) {
  2294  	// Check for exact match first.
  2295  	v, ok := mux.m[path]
  2296  	if ok {
  2297  		return v.h, v.pattern
  2298  	}
  2299  
  2300  	// Check for longest valid match.  mux.es contains all patterns
  2301  	// that end in / sorted from longest to shortest.
  2302  	for _, e := range mux.es {
  2303  		if strings.HasPrefix(path, e.pattern) {
  2304  			return e.h, e.pattern
  2305  		}
  2306  	}
  2307  	return nil, ""
  2308  }
  2309  
  2310  // redirectToPathSlash determines if the given path needs appending "/" to it.
  2311  // This occurs when a handler for path + "/" was already registered, but
  2312  // not for path itself. If the path needs appending to, it creates a new
  2313  // URL, setting the path to u.Path + "/" and returning true to indicate so.
  2314  func (mux *ServeMux) redirectToPathSlash(host, path string, u *url.URL) (*url.URL, bool) {
  2315  	mux.mu.RLock()
  2316  	shouldRedirect := mux.shouldRedirectRLocked(host, path)
  2317  	mux.mu.RUnlock()
  2318  	if !shouldRedirect {
  2319  		return u, false
  2320  	}
  2321  	path = path + "/"
  2322  	u = &url.URL{Path: path, RawQuery: u.RawQuery}
  2323  	return u, true
  2324  }
  2325  
  2326  // shouldRedirectRLocked reports whether the given path and host should be redirected to
  2327  // path+"/". This should happen if a handler is registered for path+"/" but
  2328  // not path -- see comments at ServeMux.
  2329  func (mux *ServeMux) shouldRedirectRLocked(host, path string) bool {
  2330  	p := []string{path, host + path}
  2331  
  2332  	for _, c := range p {
  2333  		if _, exist := mux.m[c]; exist {
  2334  			return false
  2335  		}
  2336  	}
  2337  
  2338  	n := len(path)
  2339  	if n == 0 {
  2340  		return false
  2341  	}
  2342  	for _, c := range p {
  2343  		if _, exist := mux.m[c+"/"]; exist {
  2344  			return path[n-1] != '/'
  2345  		}
  2346  	}
  2347  
  2348  	return false
  2349  }
  2350  
  2351  // Handler returns the handler to use for the given request,
  2352  // consulting r.Method, r.Host, and r.URL.Path. It always returns
  2353  // a non-nil handler. If the path is not in its canonical form, the
  2354  // handler will be an internally-generated handler that redirects
  2355  // to the canonical path. If the host contains a port, it is ignored
  2356  // when matching handlers.
  2357  //
  2358  // The path and host are used unchanged for CONNECT requests.
  2359  //
  2360  // Handler also returns the registered pattern that matches the
  2361  // request or, in the case of internally-generated redirects,
  2362  // the pattern that will match after following the redirect.
  2363  //
  2364  // If there is no registered handler that applies to the request,
  2365  // Handler returns a “page not found” handler and an empty pattern.
  2366  func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
  2367  
  2368  	// CONNECT requests are not canonicalized.
  2369  	if r.Method == "CONNECT" {
  2370  		// If r.URL.Path is /tree and its handler is not registered,
  2371  		// the /tree -> /tree/ redirect applies to CONNECT requests
  2372  		// but the path canonicalization does not.
  2373  		if u, ok := mux.redirectToPathSlash(r.URL.Host, r.URL.Path, r.URL); ok {
  2374  			return RedirectHandler(u.String(), StatusMovedPermanently), u.Path
  2375  		}
  2376  
  2377  		return mux.handler(r.Host, r.URL.Path)
  2378  	}
  2379  
  2380  	// All other requests have any port stripped and path cleaned
  2381  	// before passing to mux.handler.
  2382  	host := stripHostPort(r.Host)
  2383  	pathCleaned := cleanPath(r.URL.Path)
  2384  
  2385  	// If the given path is /tree and its handler is not registered,
  2386  	// redirect for /tree/.
  2387  	if u, ok := mux.redirectToPathSlash(host, pathCleaned, r.URL); ok {
  2388  		return RedirectHandler(u.String(), StatusMovedPermanently), u.Path
  2389  	}
  2390  
  2391  	if pathCleaned != r.URL.Path {
  2392  		_, pattern = mux.handler(host, pathCleaned)
  2393  		u := &url.URL{Path: pathCleaned, RawQuery: r.URL.RawQuery}
  2394  		return RedirectHandler(u.String(), StatusMovedPermanently), pattern
  2395  	}
  2396  
  2397  	return mux.handler(host, r.URL.Path)
  2398  }
  2399  
  2400  // handler is the main implementation of Handler.
  2401  // The path is known to be in canonical form, except for CONNECT methods.
  2402  func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
  2403  	mux.mu.RLock()
  2404  	defer mux.mu.RUnlock()
  2405  
  2406  	// Host-specific pattern takes precedence over generic ones
  2407  	if mux.hosts {
  2408  		h, pattern = mux.match(host + path)
  2409  	}
  2410  	if h == nil {
  2411  		h, pattern = mux.match(path)
  2412  	}
  2413  	if h == nil {
  2414  		h, pattern = NotFoundHandler(), ""
  2415  	}
  2416  	return
  2417  }
  2418  
  2419  // ServeHTTP dispatches the request to the handler whose
  2420  // pattern most closely matches the request URL.
  2421  func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
  2422  	if r.RequestURI == "*" {
  2423  		if r.ProtoAtLeast(1, 1) {
  2424  			w.Header().Set("Connection", "close")
  2425  		}
  2426  		w.WriteHeader(StatusBadRequest)
  2427  		return
  2428  	}
  2429  	h, _ := mux.Handler(r)
  2430  	h.ServeHTTP(w, r)
  2431  }
  2432  
  2433  // Handle registers the handler for the given pattern.
  2434  // If a handler already exists for pattern, Handle panics.
  2435  func (mux *ServeMux) Handle(pattern string, handler Handler) {
  2436  	mux.mu.Lock()
  2437  	defer mux.mu.Unlock()
  2438  
  2439  	if pattern == "" {
  2440  		panic("http: invalid pattern")
  2441  	}
  2442  	if handler == nil {
  2443  		panic("http: nil handler")
  2444  	}
  2445  	if _, exist := mux.m[pattern]; exist {
  2446  		panic("http: multiple registrations for " + pattern)
  2447  	}
  2448  
  2449  	if mux.m == nil {
  2450  		mux.m = make(map[string]muxEntry)
  2451  	}
  2452  	e := muxEntry{h: handler, pattern: pattern}
  2453  	mux.m[pattern] = e
  2454  	if pattern[len(pattern)-1] == '/' {
  2455  		mux.es = appendSorted(mux.es, e)
  2456  	}
  2457  
  2458  	if pattern[0] != '/' {
  2459  		mux.hosts = true
  2460  	}
  2461  }
  2462  
  2463  func appendSorted(es []muxEntry, e muxEntry) []muxEntry {
  2464  	n := len(es)
  2465  	i := sort.Search(n, func(i int) bool {
  2466  		return len(es[i].pattern) < len(e.pattern)
  2467  	})
  2468  	if i == n {
  2469  		return append(es, e)
  2470  	}
  2471  	// we now know that i points at where we want to insert
  2472  	es = append(es, muxEntry{}) // try to grow the slice in place, any entry works.
  2473  	copy(es[i+1:], es[i:])      // Move shorter entries down
  2474  	es[i] = e
  2475  	return es
  2476  }
  2477  
  2478  // HandleFunc registers the handler function for the given pattern.
  2479  func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  2480  	if handler == nil {
  2481  		panic("http: nil handler")
  2482  	}
  2483  	mux.Handle(pattern, HandlerFunc(handler))
  2484  }
  2485  
  2486  // Handle registers the handler for the given pattern
  2487  // in the DefaultServeMux.
  2488  // The documentation for ServeMux explains how patterns are matched.
  2489  func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
  2490  
  2491  // HandleFunc registers the handler function for the given pattern
  2492  // in the DefaultServeMux.
  2493  // The documentation for ServeMux explains how patterns are matched.
  2494  func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  2495  	DefaultServeMux.HandleFunc(pattern, handler)
  2496  }
  2497  
  2498  // Serve accepts incoming HTTP connections on the listener l,
  2499  // creating a new service goroutine for each. The service goroutines
  2500  // read requests and then call handler to reply to them.
  2501  //
  2502  // The handler is typically nil, in which case the DefaultServeMux is used.
  2503  //
  2504  // HTTP/2 support is only enabled if the Listener returns *tls.Conn
  2505  // connections and they were configured with "h2" in the TLS
  2506  // Config.NextProtos.
  2507  //
  2508  // Serve always returns a non-nil error.
  2509  func Serve(l net.Listener, handler Handler) error {
  2510  	srv := &Server{Handler: handler}
  2511  	return srv.Serve(l)
  2512  }
  2513  
  2514  // ServeTLS accepts incoming HTTPS connections on the listener l,
  2515  // creating a new service goroutine for each. The service goroutines
  2516  // read requests and then call handler to reply to them.
  2517  //
  2518  // The handler is typically nil, in which case the DefaultServeMux is used.
  2519  //
  2520  // Additionally, files containing a certificate and matching private key
  2521  // for the server must be provided. If the certificate is signed by a
  2522  // certificate authority, the certFile should be the concatenation
  2523  // of the server's certificate, any intermediates, and the CA's certificate.
  2524  //
  2525  // ServeTLS always returns a non-nil error.
  2526  //
  2527  //goland:noinspection GoUnusedExportedFunction
  2528  func ServeTLS(l net.Listener, handler Handler, certFile, keyFile string) error {
  2529  	srv := &Server{Handler: handler}
  2530  	return srv.ServeTLS(l, certFile, keyFile)
  2531  }
  2532  
  2533  // A Server defines parameters for running an HTTP server.
  2534  // The zero value for Server is a valid configuration.
  2535  type Server struct {
  2536  	// Addr optionally specifies the TCP address for the server to listen on,
  2537  	// in the form "host:port". If empty, ":http" (port 80) is used.
  2538  	// The service names are defined in RFC 6335 and assigned by IANA.
  2539  	// See net.Dial for details of the address format.
  2540  	Addr string
  2541  
  2542  	Handler Handler // handler to invoke, http.DefaultServeMux if nil
  2543  
  2544  	// TLSConfig optionally provides a TLS configuration for use
  2545  	// by ServeTLS and ListenAndServeTLS. Note that this value is
  2546  	// cloned by ServeTLS and ListenAndServeTLS, so it's not
  2547  	// possible to modify the configuration with methods like
  2548  	// tls.Config.SetSessionTicketKeys. To use
  2549  	// SetSessionTicketKeys, use Server.Serve with a TLS Listener
  2550  	// instead.
  2551  	TLSConfig *tls.Config
  2552  
  2553  	// ReadTimeout is the maximum duration for reading the entire
  2554  	// request, including the body. A zero or negative value means
  2555  	// there will be no timeout.
  2556  	//
  2557  	// Because ReadTimeout does not let Handlers make per-request
  2558  	// decisions on each request body's acceptable deadline or
  2559  	// upload rate, most users will prefer to use
  2560  	// ReadHeaderTimeout. It is valid to use them both.
  2561  	ReadTimeout time.Duration
  2562  
  2563  	// ReadHeaderTimeout is the amount of time allowed to read
  2564  	// request headers. The connection's read deadline is reset
  2565  	// after reading the headers and the Handler can decide what
  2566  	// is considered too slow for the body. If ReadHeaderTimeout
  2567  	// is zero, the value of ReadTimeout is used. If both are
  2568  	// zero, there is no timeout.
  2569  	ReadHeaderTimeout time.Duration
  2570  
  2571  	// WriteTimeout is the maximum duration before timing out
  2572  	// writes of the response. It is reset whenever a new
  2573  	// request's header is read. Like ReadTimeout, it does not
  2574  	// let Handlers make decisions on a per-request basis.
  2575  	// A zero or negative value means there will be no timeout.
  2576  	WriteTimeout time.Duration
  2577  
  2578  	// IdleTimeout is the maximum amount of time to wait for the
  2579  	// next request when keep-alives are enabled. If IdleTimeout
  2580  	// is zero, the value of ReadTimeout is used. If both are
  2581  	// zero, there is no timeout.
  2582  	IdleTimeout time.Duration
  2583  
  2584  	// MaxHeaderBytes controls the maximum number of bytes the
  2585  	// server will read parsing the request header's keys and
  2586  	// values, including the request line. It does not limit the
  2587  	// size of the request body.
  2588  	// If zero, DefaultMaxHeaderBytes is used.
  2589  	MaxHeaderBytes int
  2590  
  2591  	// TLSNextProto optionally specifies a function to take over
  2592  	// ownership of the provided TLS connection when an ALPN
  2593  	// protocol upgrade has occurred. The map key is the protocol
  2594  	// name negotiated. The Handler argument should be used to
  2595  	// handle HTTP requests and will initialize the Request's TLS
  2596  	// and RemoteAddr if not already set. The connection is
  2597  	// automatically closed when the function returns.
  2598  	// If TLSNextProto is not nil, HTTP/2 support is not enabled
  2599  	// automatically.
  2600  	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
  2601  
  2602  	// ConnState specifies an optional callback function that is
  2603  	// called when a client connection changes state. See the
  2604  	// ConnState type and associated constants for details.
  2605  	ConnState func(net.Conn, ConnState)
  2606  
  2607  	// ErrorLog specifies an optional logger for errors accepting
  2608  	// connections, unexpected behavior from handlers, and
  2609  	// underlying FileSystem errors.
  2610  	// If nil, logging is done via the log package's standard logger.
  2611  	ErrorLog *log.Logger
  2612  
  2613  	// BaseContext optionally specifies a function that returns
  2614  	// the base context for incoming requests on this server.
  2615  	// The provided Listener is the specific Listener that's
  2616  	// about to start accepting requests.
  2617  	// If BaseContext is nil, the default is context.Background().
  2618  	// If non-nil, it must return a non-nil context.
  2619  	BaseContext func(net.Listener) context.Context
  2620  
  2621  	// ConnContext optionally specifies a function that modifies
  2622  	// the context used for a new connection c. The provided ctx
  2623  	// is derived from the base context and has a ServerContextKey
  2624  	// value.
  2625  	ConnContext func(ctx context.Context, c net.Conn) context.Context
  2626  
  2627  	inShutdown atomicBool // true when server is in shutdown
  2628  
  2629  	disableKeepAlives int32     // accessed atomically.
  2630  	nextProtoOnce     sync.Once // guards setupHTTP2_* init
  2631  	nextProtoErr      error     // result of http2.ConfigureServer if used
  2632  
  2633  	mu         sync.Mutex
  2634  	listeners  map[*net.Listener]struct{}
  2635  	activeConn map[*conn]struct{}
  2636  	doneChan   chan struct{}
  2637  	onShutdown []func()
  2638  }
  2639  
  2640  func (srv *Server) getDoneChan() <-chan struct{} {
  2641  	srv.mu.Lock()
  2642  	defer srv.mu.Unlock()
  2643  	return srv.getDoneChanLocked()
  2644  }
  2645  
  2646  func (srv *Server) getDoneChanLocked() chan struct{} {
  2647  	if srv.doneChan == nil {
  2648  		srv.doneChan = make(chan struct{})
  2649  	}
  2650  	return srv.doneChan
  2651  }
  2652  
  2653  func (srv *Server) closeDoneChanLocked() {
  2654  	ch := srv.getDoneChanLocked()
  2655  	select {
  2656  	case <-ch:
  2657  		// Already closed. Don't close again.
  2658  	default:
  2659  		// Safe to close here. We're the only closer, guarded
  2660  		// by srv.mu.
  2661  		close(ch)
  2662  	}
  2663  }
  2664  
  2665  // Close immediately closes all active net.Listeners and any
  2666  // connections in state StateNew, StateActive, or StateIdle. For a
  2667  // graceful shutdown, use Shutdown.
  2668  //
  2669  // Close does not attempt to close (and does not even know about)
  2670  // any hijacked connections, such as WebSockets.
  2671  //
  2672  // Close returns any error returned from closing the Server's
  2673  // underlying Listener(s).
  2674  func (srv *Server) Close() error {
  2675  	srv.inShutdown.setTrue()
  2676  	srv.mu.Lock()
  2677  	defer srv.mu.Unlock()
  2678  	srv.closeDoneChanLocked()
  2679  	err := srv.closeListenersLocked()
  2680  	for c := range srv.activeConn {
  2681  		_ = c.rwc.Close()
  2682  		delete(srv.activeConn, c)
  2683  	}
  2684  	return err
  2685  }
  2686  
  2687  // shutdownPollIntervalMax is the max polling interval when checking
  2688  // quiescence during Server.Shutdown. Polling starts with a small
  2689  // interval and backs off to the max.
  2690  // Ideally we could find a solution that doesn't involve polling,
  2691  // but which also doesn't have a high runtime cost (and doesn't
  2692  // involve any contentious mutexes), but that is left as an
  2693  // exercise for the reader.
  2694  const shutdownPollIntervalMax = 500 * time.Millisecond
  2695  
  2696  // Shutdown gracefully shuts down the server without interrupting any
  2697  // active connections. Shutdown works by first closing all open
  2698  // listeners, then closing all idle connections, and then waiting
  2699  // indefinitely for connections to return to idle and then shut down.
  2700  // If the provided context expires before the shutdown is complete,
  2701  // Shutdown returns the context's error, otherwise it returns any
  2702  // error returned from closing the Server's underlying Listener(s).
  2703  //
  2704  // When Shutdown is called, Serve, ListenAndServe, and
  2705  // ListenAndServeTLS immediately return ErrServerClosed. Make sure the
  2706  // program doesn't exit and waits instead for Shutdown to return.
  2707  //
  2708  // Shutdown does not attempt to close nor wait for hijacked
  2709  // connections such as WebSockets. The caller of Shutdown should
  2710  // separately notify such long-lived connections of shutdown and wait
  2711  // for them to close, if desired. See RegisterOnShutdown for a way to
  2712  // register shutdown notification functions.
  2713  //
  2714  // Once Shutdown has been called on a server, it may not be reused;
  2715  // future calls to methods such as Serve will return ErrServerClosed.
  2716  func (srv *Server) Shutdown(ctx context.Context) error {
  2717  	srv.inShutdown.setTrue()
  2718  
  2719  	srv.mu.Lock()
  2720  	lnerr := srv.closeListenersLocked()
  2721  	srv.closeDoneChanLocked()
  2722  	for _, f := range srv.onShutdown {
  2723  		go f()
  2724  	}
  2725  	srv.mu.Unlock()
  2726  
  2727  	pollIntervalBase := time.Millisecond
  2728  	nextPollInterval := func() time.Duration {
  2729  		// Add 10% jitter.
  2730  		interval := pollIntervalBase + time.Duration(rand.Intn(int(pollIntervalBase/10)))
  2731  		// Double and clamp for next time.
  2732  		pollIntervalBase *= 2
  2733  		if pollIntervalBase > shutdownPollIntervalMax {
  2734  			pollIntervalBase = shutdownPollIntervalMax
  2735  		}
  2736  		return interval
  2737  	}
  2738  
  2739  	timer := time.NewTimer(nextPollInterval())
  2740  	defer timer.Stop()
  2741  	for {
  2742  		if srv.closeIdleConns() && srv.numListeners() == 0 {
  2743  			return lnerr
  2744  		}
  2745  		select {
  2746  		case <-ctx.Done():
  2747  			return ctx.Err()
  2748  		case <-timer.C:
  2749  			timer.Reset(nextPollInterval())
  2750  		}
  2751  	}
  2752  }
  2753  
  2754  // RegisterOnShutdown registers a function to call on Shutdown.
  2755  // This can be used to gracefully shutdown connections that have
  2756  // undergone ALPN protocol upgrade or that have been hijacked.
  2757  // This function should start protocol-specific graceful shutdown,
  2758  // but should not wait for shutdown to complete.
  2759  func (srv *Server) RegisterOnShutdown(f func()) {
  2760  	srv.mu.Lock()
  2761  	srv.onShutdown = append(srv.onShutdown, f)
  2762  	srv.mu.Unlock()
  2763  }
  2764  
  2765  func (srv *Server) numListeners() int {
  2766  	srv.mu.Lock()
  2767  	defer srv.mu.Unlock()
  2768  	return len(srv.listeners)
  2769  }
  2770  
  2771  // closeIdleConns closes all idle connections and reports whether the
  2772  // server is quiescent.
  2773  func (srv *Server) closeIdleConns() bool {
  2774  	srv.mu.Lock()
  2775  	defer srv.mu.Unlock()
  2776  	quiescent := true
  2777  	for c := range srv.activeConn {
  2778  		st, unixSec := c.getState()
  2779  		// Issue 22682: treat StateNew connections as if
  2780  		// they're idle if we haven't read the first request'srv
  2781  		// header in over 5 seconds.
  2782  		if st == StateNew && unixSec < time.Now().Unix()-5 {
  2783  			st = StateIdle
  2784  		}
  2785  		if st != StateIdle || unixSec == 0 {
  2786  			// Assume unixSec == 0 means it'srv a very new
  2787  			// connection, without state set yet.
  2788  			quiescent = false
  2789  			continue
  2790  		}
  2791  		_ = c.rwc.Close()
  2792  		delete(srv.activeConn, c)
  2793  	}
  2794  	return quiescent
  2795  }
  2796  
  2797  func (srv *Server) closeListenersLocked() error {
  2798  	var err error
  2799  	for ln := range srv.listeners {
  2800  		if cerr := (*ln).Close(); cerr != nil && err == nil {
  2801  			err = cerr
  2802  		}
  2803  	}
  2804  	return err
  2805  }
  2806  
  2807  // A ConnState represents the state of a client connection to a server.
  2808  // It's used by the optional Server.ConnState hook.
  2809  type ConnState int
  2810  
  2811  const (
  2812  	// StateNew represents a new connection that is expected to
  2813  	// send a request immediately. Connections begin at this
  2814  	// state and then transition to either StateActive or
  2815  	// StateClosed.
  2816  	StateNew ConnState = iota
  2817  
  2818  	// StateActive represents a connection that has read 1 or more
  2819  	// bytes of a request. The Server.ConnState hook for
  2820  	// StateActive fires before the request has entered a handler
  2821  	// and doesn't fire again until the request has been
  2822  	// handled. After the request is handled, the state
  2823  	// transitions to StateClosed, StateHijacked, or StateIdle.
  2824  	// For HTTP/2, StateActive fires on the transition from zero
  2825  	// to one active request, and only transitions away once all
  2826  	// active requests are complete. That means that ConnState
  2827  	// cannot be used to do per-request work; ConnState only notes
  2828  	// the overall state of the connection.
  2829  	StateActive
  2830  
  2831  	// StateIdle represents a connection that has finished
  2832  	// handling a request and is in the keep-alive state, waiting
  2833  	// for a new request. Connections transition from StateIdle
  2834  	// to either StateActive or StateClosed.
  2835  	StateIdle
  2836  
  2837  	// StateHijacked represents a hijacked connection.
  2838  	// This is a terminal state. It does not transition to StateClosed.
  2839  	StateHijacked
  2840  
  2841  	// StateClosed represents a closed connection.
  2842  	// This is a terminal state. Hijacked connections do not
  2843  	// transition to StateClosed.
  2844  	StateClosed
  2845  )
  2846  
  2847  var stateName = map[ConnState]string{
  2848  	StateNew:      "new",
  2849  	StateActive:   "active",
  2850  	StateIdle:     "idle",
  2851  	StateHijacked: "hijacked",
  2852  	StateClosed:   "closed",
  2853  }
  2854  
  2855  func (c ConnState) String() string {
  2856  	return stateName[c]
  2857  }
  2858  
  2859  // serverHandler delegates to either the server's Handler or
  2860  // DefaultServeMux and also handles "OPTIONS *" requests.
  2861  type serverHandler struct {
  2862  	srv *Server
  2863  }
  2864  
  2865  func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
  2866  	handler := sh.srv.Handler
  2867  	if handler == nil {
  2868  		handler = DefaultServeMux
  2869  	}
  2870  	if req.RequestURI == "*" && req.Method == "OPTIONS" {
  2871  		handler = globalOptionsHandler{}
  2872  	}
  2873  
  2874  	if req.URL != nil && strings.Contains(req.URL.RawQuery, ";") {
  2875  		var allowQuerySemicolonsInUse int32
  2876  		req = req.WithContext(context.WithValue(req.Context(), silenceSemWarnContextKey, func() {
  2877  			atomic.StoreInt32(&allowQuerySemicolonsInUse, 1)
  2878  		}))
  2879  		defer func() {
  2880  			if atomic.LoadInt32(&allowQuerySemicolonsInUse) == 0 {
  2881  				sh.srv.logf("http: URL query contains semicolon, which is no longer a supported separator; parts of the query may be stripped when parsed; see golang.org/issue/25192")
  2882  			}
  2883  		}()
  2884  	}
  2885  
  2886  	handler.ServeHTTP(rw, req)
  2887  }
  2888  
  2889  var silenceSemWarnContextKey = &contextKey{"silence-semicolons"}
  2890  
  2891  // AllowQuerySemicolons returns a handler that serves requests by converting any
  2892  // unescaped semicolons in the URL query to ampersands, and invoking the handler h.
  2893  //
  2894  // This restores the pre-Go 1.17 behavior of splitting query parameters on both
  2895  // semicolons and ampersands. (See golang.org/issue/25192). Note that this
  2896  // behavior doesn't match that of many proxies, and the mismatch can lead to
  2897  // security issues.
  2898  //
  2899  // AllowQuerySemicolons should be invoked before Request.ParseForm is called.
  2900  func AllowQuerySemicolons(h Handler) Handler {
  2901  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  2902  		if silenceSemicolonsWarning, ok := r.Context().Value(silenceSemWarnContextKey).(func()); ok {
  2903  			silenceSemicolonsWarning()
  2904  		}
  2905  		if strings.Contains(r.URL.RawQuery, ";") {
  2906  			r2 := new(Request)
  2907  			*r2 = *r
  2908  			r2.URL = new(url.URL)
  2909  			*r2.URL = *r.URL
  2910  			r2.URL.RawQuery = strings.ReplaceAll(r.URL.RawQuery, ";", "&")
  2911  			h.ServeHTTP(w, r2)
  2912  		} else {
  2913  			h.ServeHTTP(w, r)
  2914  		}
  2915  	})
  2916  }
  2917  
  2918  // ListenAndServe listens on the TCP network address srv.Addr and then
  2919  // calls Serve to handle requests on incoming connections.
  2920  // Accepted connections are configured to enable TCP keep-alives.
  2921  //
  2922  // If srv.Addr is blank, ":http" is used.
  2923  //
  2924  // ListenAndServe always returns a non-nil error. After Shutdown or Close,
  2925  // the returned error is ErrServerClosed.
  2926  func (srv *Server) ListenAndServe() error {
  2927  	if srv.shuttingDown() {
  2928  		return ErrServerClosed
  2929  	}
  2930  	addr := srv.Addr
  2931  	if addr == "" {
  2932  		addr = ":http"
  2933  	}
  2934  	ln, err := net.Listen("tcp", addr)
  2935  	if err != nil {
  2936  		return err
  2937  	}
  2938  	return srv.Serve(ln)
  2939  }
  2940  
  2941  var testHookServerServe func(*Server, net.Listener) // used if non-nil
  2942  
  2943  // shouldDoServeHTTP2 reports whether Server.Serve should configure
  2944  // automatic HTTP/2. (which sets up the srv.TLSNextProto map)
  2945  func (srv *Server) shouldConfigureHTTP2ForServe() bool {
  2946  	if srv.TLSConfig == nil {
  2947  		// Compatibility with Go 1.6:
  2948  		// If there's no TLSConfig, it's possible that the user just
  2949  		// didn't set it on the http.Server, but did pass it to
  2950  		// tls.NewListener and passed that listener to Serve.
  2951  		// So we should configure HTTP/2 (to set up srv.TLSNextProto)
  2952  		// in case the listener returns an "h2" *tls.Conn.
  2953  		return true
  2954  	}
  2955  	// The user specified a TLSConfig on their http.Server.
  2956  	// In this, case, only configure HTTP/2 if their tls.Config
  2957  	// explicitly mentions "h2". Otherwise http2.ConfigureServer
  2958  	// would modify the tls.Config to add it, but they probably already
  2959  	// passed this tls.Config to tls.NewListener. And if they did,
  2960  	// it's too late anyway to fix it. It would only be potentially racy.
  2961  	// See Issue 15908.
  2962  	return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS)
  2963  }
  2964  
  2965  // ErrServerClosed is returned by the Server's Serve, ServeTLS, ListenAndServe,
  2966  // and ListenAndServeTLS methods after a call to Shutdown or Close.
  2967  var ErrServerClosed = errors.New("http: Server closed")
  2968  
  2969  // Serve accepts incoming connections on the Listener l, creating a
  2970  // new service goroutine for each. The service goroutines read requests and
  2971  // then call srv.Handler to reply to them.
  2972  //
  2973  // HTTP/2 support is only enabled if the Listener returns *tls.Conn
  2974  // connections and they were configured with "h2" in the TLS
  2975  // Config.NextProtos.
  2976  //
  2977  // Serve always returns a non-nil error and closes l.
  2978  // After Shutdown or Close, the returned error is ErrServerClosed.
  2979  func (srv *Server) Serve(l net.Listener) error {
  2980  	if fn := testHookServerServe; fn != nil {
  2981  		fn(srv, l) // call hook with unwrapped listener
  2982  	}
  2983  
  2984  	origListener := l
  2985  	l = &onceCloseListener{Listener: l}
  2986  	defer func(l net.Listener) {
  2987  		_ = l.Close()
  2988  	}(l)
  2989  
  2990  	if err := srv.setupHTTP2_Serve(); err != nil {
  2991  		return err
  2992  	}
  2993  
  2994  	if !srv.trackListener(&l, true) {
  2995  		return ErrServerClosed
  2996  	}
  2997  	defer srv.trackListener(&l, false)
  2998  
  2999  	baseCtx := context.Background()
  3000  	if srv.BaseContext != nil {
  3001  		baseCtx = srv.BaseContext(origListener)
  3002  		if baseCtx == nil {
  3003  			panic("BaseContext returned a nil context")
  3004  		}
  3005  	}
  3006  
  3007  	var tempDelay time.Duration // how long to sleep on accept failure
  3008  
  3009  	ctx := context.WithValue(baseCtx, ServerContextKey, srv)
  3010  	for {
  3011  		rw, err := l.Accept()
  3012  		if err != nil {
  3013  			select {
  3014  			case <-srv.getDoneChan():
  3015  				return ErrServerClosed
  3016  			default:
  3017  			}
  3018  			if ne, ok := err.(net.Error); ok && ne.Temporary() {
  3019  				if tempDelay == 0 {
  3020  					tempDelay = 5 * time.Millisecond
  3021  				} else {
  3022  					tempDelay *= 2
  3023  				}
  3024  				if max := 1 * time.Second; tempDelay > max {
  3025  					tempDelay = max
  3026  				}
  3027  				srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay)
  3028  				time.Sleep(tempDelay)
  3029  				continue
  3030  			}
  3031  			return err
  3032  		}
  3033  		connCtx := ctx
  3034  		if cc := srv.ConnContext; cc != nil {
  3035  			connCtx = cc(connCtx, rw)
  3036  			if connCtx == nil {
  3037  				panic("ConnContext returned nil")
  3038  			}
  3039  		}
  3040  		tempDelay = 0
  3041  		c := srv.newConn(rw)
  3042  		c.setState(c.rwc, StateNew, runHooks) // before Serve can return
  3043  		go c.serve(connCtx)
  3044  	}
  3045  }
  3046  
  3047  // ServeTLS accepts incoming connections on the Listener l, creating a
  3048  // new service goroutine for each. The service goroutines perform TLS
  3049  // setup and then read requests, calling srv.Handler to reply to them.
  3050  //
  3051  // Files containing a certificate and matching private key for the
  3052  // server must be provided if neither the Server's
  3053  // TLSConfig.Certificates nor TLSConfig.GetCertificate are populated.
  3054  // If the certificate is signed by a certificate authority, the
  3055  // certFile should be the concatenation of the server's certificate,
  3056  // any intermediates, and the CA's certificate.
  3057  //
  3058  // ServeTLS always returns a non-nil error. After Shutdown or Close, the
  3059  // returned error is ErrServerClosed.
  3060  func (srv *Server) ServeTLS(l net.Listener, certFile, keyFile string) error {
  3061  	// Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig
  3062  	// before we clone it and create the TLS Listener.
  3063  	if err := srv.setupHTTP2_ServeTLS(); err != nil {
  3064  		return err
  3065  	}
  3066  
  3067  	config := cloneTLSConfig(srv.TLSConfig)
  3068  	if !strSliceContains(config.NextProtos, "http/1.1") {
  3069  		config.NextProtos = append(config.NextProtos, "http/1.1")
  3070  	}
  3071  
  3072  	configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil
  3073  	if !configHasCert || certFile != "" || keyFile != "" {
  3074  		var err error
  3075  		config.Certificates = make([]tls.Certificate, 1)
  3076  		config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
  3077  		if err != nil {
  3078  			return err
  3079  		}
  3080  	}
  3081  
  3082  	tlsListener := tls.NewListener(l, config)
  3083  	return srv.Serve(tlsListener)
  3084  }
  3085  
  3086  // trackListener adds or removes a net.Listener to the set of tracked
  3087  // listeners.
  3088  //
  3089  // We store a pointer to interface in the map set, in case the
  3090  // net.Listener is not comparable. This is safe because we only call
  3091  // trackListener via Serve and can track+defer untrack the same
  3092  // pointer to local variable there. We never need to compare a
  3093  // Listener from another caller.
  3094  //
  3095  // It reports whether the server is still up (not Shutdown or Closed).
  3096  func (srv *Server) trackListener(ln *net.Listener, add bool) bool {
  3097  	srv.mu.Lock()
  3098  	defer srv.mu.Unlock()
  3099  	if srv.listeners == nil {
  3100  		srv.listeners = make(map[*net.Listener]struct{})
  3101  	}
  3102  	if add {
  3103  		if srv.shuttingDown() {
  3104  			return false
  3105  		}
  3106  		srv.listeners[ln] = struct{}{}
  3107  	} else {
  3108  		delete(srv.listeners, ln)
  3109  	}
  3110  	return true
  3111  }
  3112  
  3113  func (srv *Server) trackConn(c *conn, add bool) {
  3114  	srv.mu.Lock()
  3115  	defer srv.mu.Unlock()
  3116  	if srv.activeConn == nil {
  3117  		srv.activeConn = make(map[*conn]struct{})
  3118  	}
  3119  	if add {
  3120  		srv.activeConn[c] = struct{}{}
  3121  	} else {
  3122  		delete(srv.activeConn, c)
  3123  	}
  3124  }
  3125  
  3126  func (srv *Server) idleTimeout() time.Duration {
  3127  	if srv.IdleTimeout != 0 {
  3128  		return srv.IdleTimeout
  3129  	}
  3130  	return srv.ReadTimeout
  3131  }
  3132  
  3133  func (srv *Server) readHeaderTimeout() time.Duration {
  3134  	if srv.ReadHeaderTimeout != 0 {
  3135  		return srv.ReadHeaderTimeout
  3136  	}
  3137  	return srv.ReadTimeout
  3138  }
  3139  
  3140  func (srv *Server) doKeepAlives() bool {
  3141  	return atomic.LoadInt32(&srv.disableKeepAlives) == 0 && !srv.shuttingDown()
  3142  }
  3143  
  3144  func (srv *Server) shuttingDown() bool {
  3145  	return srv.inShutdown.isSet()
  3146  }
  3147  
  3148  // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
  3149  // By default, keep-alives are always enabled. Only very
  3150  // resource-constrained environments or servers in the process of
  3151  // shutting down should disable them.
  3152  func (srv *Server) SetKeepAlivesEnabled(v bool) {
  3153  	if v {
  3154  		atomic.StoreInt32(&srv.disableKeepAlives, 0)
  3155  		return
  3156  	}
  3157  	atomic.StoreInt32(&srv.disableKeepAlives, 1)
  3158  
  3159  	// Close idle HTTP/1 conns:
  3160  	srv.closeIdleConns()
  3161  
  3162  	// TODO: Issue 26303: close HTTP/2 conns as soon as they become idle.
  3163  }
  3164  
  3165  func (srv *Server) logf(format string, args ...interface{}) {
  3166  	if srv.ErrorLog != nil {
  3167  		srv.ErrorLog.Printf(format, args...)
  3168  	} else {
  3169  		log.Printf(format, args...)
  3170  	}
  3171  }
  3172  
  3173  // logf prints to the ErrorLog of the *Server associated with request r
  3174  // via ServerContextKey. If there's no associated server, or if ErrorLog
  3175  // is nil, logging is done via the log package's standard logger.
  3176  func logf(r *Request, format string, args ...interface{}) {
  3177  	s, _ := r.Context().Value(ServerContextKey).(*Server)
  3178  	if s != nil && s.ErrorLog != nil {
  3179  		s.ErrorLog.Printf(format, args...)
  3180  	} else {
  3181  		log.Printf(format, args...)
  3182  	}
  3183  }
  3184  
  3185  // ListenAndServe listens on the TCP network address addr and then calls
  3186  // Serve with handler to handle requests on incoming connections.
  3187  // Accepted connections are configured to enable TCP keep-alives.
  3188  //
  3189  // The handler is typically nil, in which case the DefaultServeMux is used.
  3190  //
  3191  // ListenAndServe always returns a non-nil error.
  3192  func ListenAndServe(addr string, handler Handler) error {
  3193  	server := &Server{Addr: addr, Handler: handler}
  3194  	return server.ListenAndServe()
  3195  }
  3196  
  3197  // ListenAndServeTLS acts identically to ListenAndServe, except that it
  3198  // expects HTTPS connections. Additionally, files containing a certificate and
  3199  // matching private key for the server must be provided. If the certificate
  3200  // is signed by a certificate authority, the certFile should be the concatenation
  3201  // of the server's certificate, any intermediates, and the CA's certificate.
  3202  func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
  3203  	server := &Server{Addr: addr, Handler: handler}
  3204  	return server.ListenAndServeTLS(certFile, keyFile)
  3205  }
  3206  
  3207  // ListenAndServeTLS listens on the TCP network address srv.Addr and
  3208  // then calls ServeTLS to handle requests on incoming TLS connections.
  3209  // Accepted connections are configured to enable TCP keep-alives.
  3210  //
  3211  // Filenames containing a certificate and matching private key for the
  3212  // server must be provided if neither the Server's TLSConfig.Certificates
  3213  // nor TLSConfig.GetCertificate are populated. If the certificate is
  3214  // signed by a certificate authority, the certFile should be the
  3215  // concatenation of the server's certificate, any intermediates, and
  3216  // the CA's certificate.
  3217  //
  3218  // If srv.Addr is blank, ":https" is used.
  3219  //
  3220  // ListenAndServeTLS always returns a non-nil error. After Shutdown or
  3221  // Close, the returned error is ErrServerClosed.
  3222  func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
  3223  	if srv.shuttingDown() {
  3224  		return ErrServerClosed
  3225  	}
  3226  	addr := srv.Addr
  3227  	if addr == "" {
  3228  		addr = ":https"
  3229  	}
  3230  
  3231  	ln, err := net.Listen("tcp", addr)
  3232  	if err != nil {
  3233  		return err
  3234  	}
  3235  
  3236  	defer func(ln net.Listener) {
  3237  		_ = ln.Close()
  3238  	}(ln)
  3239  
  3240  	return srv.ServeTLS(ln, certFile, keyFile)
  3241  }
  3242  
  3243  // setupHTTP2_ServeTLS conditionally configures HTTP/2 on
  3244  // srv and reports whether there was an error setting it up. If it is
  3245  // not configured for policy reasons, nil is returned.
  3246  //
  3247  //goland:noinspection GoSnakeCaseUsage
  3248  func (srv *Server) setupHTTP2_ServeTLS() error {
  3249  	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults)
  3250  	return srv.nextProtoErr
  3251  }
  3252  
  3253  // setupHTTP2_Serve is called from (*Server).Serve and conditionally
  3254  // configures HTTP/2 on srv using a more conservative policy than
  3255  // setupHTTP2_ServeTLS because Serve is called after tls.Listen,
  3256  // and may be called concurrently. See shouldConfigureHTTP2ForServe.
  3257  //
  3258  // The tests named TestTransportAutomaticHTTP2* and
  3259  // TestConcurrentServerServe in server_test.go demonstrate some
  3260  // of the supported use cases and motivations.
  3261  //
  3262  //goland:noinspection GoSnakeCaseUsage
  3263  func (srv *Server) setupHTTP2_Serve() error {
  3264  	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve)
  3265  	return srv.nextProtoErr
  3266  }
  3267  
  3268  //goland:noinspection GoSnakeCaseUsage
  3269  func (srv *Server) onceSetNextProtoDefaults_Serve() {
  3270  	if srv.shouldConfigureHTTP2ForServe() {
  3271  		srv.onceSetNextProtoDefaults()
  3272  	}
  3273  }
  3274  
  3275  // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't
  3276  // configured otherwise. (by setting srv.TLSNextProto non-nil)
  3277  // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*).
  3278  func (srv *Server) onceSetNextProtoDefaults() {
  3279  	if omitBundledHTTP2 || strings.Contains(os.Getenv("GODEBUG"), "http2server=0") {
  3280  		return
  3281  	}
  3282  	// Enable HTTP/2 by default if the user hasn't otherwise
  3283  	// configured their TLSNextProto map.
  3284  	if srv.TLSNextProto == nil {
  3285  		conf := &http2Server{
  3286  			NewWriteScheduler: func() http2WriteScheduler { return http2NewPriorityWriteScheduler(nil) },
  3287  		}
  3288  		srv.nextProtoErr = http2ConfigureServer(srv, conf)
  3289  	}
  3290  }
  3291  
  3292  // TimeoutHandler returns a Handler that runs h with the given time limit.
  3293  //
  3294  // The new Handler calls h.ServeHTTP to handle each request, but if a
  3295  // call runs for longer than its time limit, the handler responds with
  3296  // a 503 Service Unavailable error and the given message in its body.
  3297  // (If msg is empty, a suitable default message will be sent.)
  3298  // After such a timeout, writes by h to its ResponseWriter will return
  3299  // ErrHandlerTimeout.
  3300  //
  3301  // TimeoutHandler supports the Pusher interface but does not support
  3302  // the Hijacker or Flusher interfaces.
  3303  func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
  3304  	return &timeoutHandler{
  3305  		handler: h,
  3306  		body:    msg,
  3307  		dt:      dt,
  3308  	}
  3309  }
  3310  
  3311  // ErrHandlerTimeout is returned on ResponseWriter Write calls
  3312  // in handlers which have timed out.
  3313  var ErrHandlerTimeout = errors.New("http: Handler timeout")
  3314  
  3315  type timeoutHandler struct {
  3316  	handler Handler
  3317  	body    string
  3318  	dt      time.Duration
  3319  
  3320  	// When set, no context will be created and this context will
  3321  	// be used instead.
  3322  	testContext context.Context
  3323  }
  3324  
  3325  func (h *timeoutHandler) errorBody() string {
  3326  	if h.body != "" {
  3327  		return h.body
  3328  	}
  3329  	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
  3330  }
  3331  
  3332  func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
  3333  	ctx := h.testContext
  3334  	if ctx == nil {
  3335  		var cancelCtx context.CancelFunc
  3336  		ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt)
  3337  		defer cancelCtx()
  3338  	}
  3339  	r = r.WithContext(ctx)
  3340  	done := make(chan struct{})
  3341  	tw := &timeoutWriter{
  3342  		w:   w,
  3343  		h:   make(Header),
  3344  		req: r,
  3345  	}
  3346  	panicChan := make(chan interface{}, 1)
  3347  	go func() {
  3348  		defer func() {
  3349  			if p := recover(); p != nil {
  3350  				panicChan <- p
  3351  			}
  3352  		}()
  3353  		h.handler.ServeHTTP(tw, r)
  3354  		close(done)
  3355  	}()
  3356  	select {
  3357  	case p := <-panicChan:
  3358  		panic(p)
  3359  	case <-done:
  3360  		tw.mu.Lock()
  3361  		defer tw.mu.Unlock()
  3362  		dst := w.Header()
  3363  		for k, vv := range tw.h {
  3364  			dst[k] = vv
  3365  		}
  3366  		if !tw.wroteHeader {
  3367  			tw.code = StatusOK
  3368  		}
  3369  		w.WriteHeader(tw.code)
  3370  		_, _ = w.Write(tw.wbuf.Bytes())
  3371  	case <-ctx.Done():
  3372  		tw.mu.Lock()
  3373  		defer tw.mu.Unlock()
  3374  		w.WriteHeader(StatusServiceUnavailable)
  3375  		_, _ = io.WriteString(w, h.errorBody())
  3376  		tw.timedOut = true
  3377  	}
  3378  }
  3379  
  3380  type timeoutWriter struct {
  3381  	w    ResponseWriter
  3382  	h    Header
  3383  	wbuf bytes.Buffer
  3384  	req  *Request
  3385  
  3386  	mu          sync.Mutex
  3387  	timedOut    bool
  3388  	wroteHeader bool
  3389  	code        int
  3390  }
  3391  
  3392  var _ Pusher = (*timeoutWriter)(nil)
  3393  
  3394  // Push implements the Pusher interface.
  3395  func (tw *timeoutWriter) Push(target string, opts *PushOptions) error {
  3396  	if pusher, ok := tw.w.(Pusher); ok {
  3397  		return pusher.Push(target, opts)
  3398  	}
  3399  	return ErrNotSupported
  3400  }
  3401  
  3402  func (tw *timeoutWriter) Header() Header { return tw.h }
  3403  
  3404  func (tw *timeoutWriter) Write(p []byte) (int, error) {
  3405  	tw.mu.Lock()
  3406  	defer tw.mu.Unlock()
  3407  	if tw.timedOut {
  3408  		return 0, ErrHandlerTimeout
  3409  	}
  3410  	if !tw.wroteHeader {
  3411  		tw.writeHeaderLocked(StatusOK)
  3412  	}
  3413  	return tw.wbuf.Write(p)
  3414  }
  3415  
  3416  func (tw *timeoutWriter) writeHeaderLocked(code int) {
  3417  	checkWriteHeaderCode(code)
  3418  
  3419  	switch {
  3420  	case tw.timedOut:
  3421  		return
  3422  	case tw.wroteHeader:
  3423  		if tw.req != nil {
  3424  			caller := relevantCaller()
  3425  			logf(tw.req, "http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line)
  3426  		}
  3427  	default:
  3428  		tw.wroteHeader = true
  3429  		tw.code = code
  3430  	}
  3431  }
  3432  
  3433  func (tw *timeoutWriter) WriteHeader(code int) {
  3434  	tw.mu.Lock()
  3435  	defer tw.mu.Unlock()
  3436  	tw.writeHeaderLocked(code)
  3437  }
  3438  
  3439  // onceCloseListener wraps a net.Listener, protecting it from
  3440  // multiple Close calls.
  3441  type onceCloseListener struct {
  3442  	net.Listener
  3443  	once     sync.Once
  3444  	closeErr error
  3445  }
  3446  
  3447  func (oc *onceCloseListener) Close() error {
  3448  	oc.once.Do(oc.close)
  3449  	return oc.closeErr
  3450  }
  3451  
  3452  func (oc *onceCloseListener) close() { oc.closeErr = oc.Listener.Close() }
  3453  
  3454  // globalOptionsHandler responds to "OPTIONS *" requests.
  3455  type globalOptionsHandler struct{}
  3456  
  3457  func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
  3458  	w.Header().Set("Content-Length", "0")
  3459  	if r.ContentLength != 0 {
  3460  		// Read up to 4KB of OPTIONS body (as mentioned in the
  3461  		// spec as being reserved for future use), but anything
  3462  		// over that is considered a waste of server resources
  3463  		// (or an attack) and we abort and close the connection,
  3464  		// courtesy of MaxBytesReader's EOF behavior.
  3465  		mb := MaxBytesReader(w, r.Body, 4<<10)
  3466  		_, _ = io.Copy(io.Discard, mb)
  3467  	}
  3468  }
  3469  
  3470  // initALPNRequest is an HTTP handler that initializes certain
  3471  // uninitialized fields in its *Request. Such partially-initialized
  3472  // Requests come from ALPN protocol handlers.
  3473  type initALPNRequest struct {
  3474  	ctx context.Context
  3475  	c   *tls.Conn
  3476  	h   serverHandler
  3477  }
  3478  
  3479  // BaseContext is an exported but unadvertised http.Handler method
  3480  // recognized by x/net/http2 to pass down a context; the TLSNextProto
  3481  // API predates context support so we shoehorn through the only
  3482  // interface we have available.
  3483  func (h initALPNRequest) BaseContext() context.Context { return h.ctx }
  3484  
  3485  func (h initALPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
  3486  	if req.TLS == nil {
  3487  		req.TLS = &tls.ConnectionState{}
  3488  		*req.TLS = h.c.ConnectionState()
  3489  	}
  3490  	if req.Body == nil {
  3491  		req.Body = NoBody
  3492  	}
  3493  	if req.RemoteAddr == "" {
  3494  		req.RemoteAddr = h.c.RemoteAddr().String()
  3495  	}
  3496  	h.h.ServeHTTP(rw, req)
  3497  }
  3498  
  3499  // loggingConn is used for debugging.
  3500  type loggingConn struct {
  3501  	name string
  3502  	net.Conn
  3503  }
  3504  
  3505  var (
  3506  	uniqNameMu   sync.Mutex
  3507  	uniqNameNext = make(map[string]int)
  3508  )
  3509  
  3510  func newLoggingConn(baseName string, c net.Conn) net.Conn {
  3511  	uniqNameMu.Lock()
  3512  	defer uniqNameMu.Unlock()
  3513  	uniqNameNext[baseName]++
  3514  	return &loggingConn{
  3515  		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
  3516  		Conn: c,
  3517  	}
  3518  }
  3519  
  3520  func (c *loggingConn) Write(p []byte) (n int, err error) {
  3521  	log.Printf("%s.Write(%d) = ....", c.name, len(p))
  3522  	n, err = c.Conn.Write(p)
  3523  	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
  3524  	return
  3525  }
  3526  
  3527  func (c *loggingConn) Read(p []byte) (n int, err error) {
  3528  	log.Printf("%s.Read(%d) = ....", c.name, len(p))
  3529  	n, err = c.Conn.Read(p)
  3530  	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
  3531  	return
  3532  }
  3533  
  3534  func (c *loggingConn) Close() (err error) {
  3535  	log.Printf("%s.Close() = ...", c.name)
  3536  	err = c.Conn.Close()
  3537  	log.Printf("%s.Close() = %v", c.name, err)
  3538  	return
  3539  }
  3540  
  3541  // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
  3542  // It only contains one field (and a pointer field at that), so it
  3543  // fits in an interface value without an extra allocation.
  3544  type checkConnErrorWriter struct {
  3545  	c *conn
  3546  }
  3547  
  3548  func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
  3549  	n, err = w.c.rwc.Write(p)
  3550  	if err != nil && w.c.werr == nil {
  3551  		w.c.werr = err
  3552  		w.c.cancelCtx()
  3553  	}
  3554  	return
  3555  }
  3556  
  3557  func numLeadingCRorLF(v []byte) (n int) {
  3558  	for _, b := range v {
  3559  		if b == '\r' || b == '\n' {
  3560  			n++
  3561  			continue
  3562  		}
  3563  		break
  3564  	}
  3565  	return
  3566  
  3567  }
  3568  
  3569  func strSliceContains(ss []string, s string) bool {
  3570  	for _, v := range ss {
  3571  		if v == s {
  3572  			return true
  3573  		}
  3574  	}
  3575  	return false
  3576  }
  3577  
  3578  // tlsRecordHeaderLooksLikeHTTP reports whether a TLS record header
  3579  // looks like it might've been a misdirected plaintext HTTP request.
  3580  func tlsRecordHeaderLooksLikeHTTP(hdr [5]byte) bool {
  3581  	switch string(hdr[:]) {
  3582  	case "GET /", "HEAD ", "POST ", "PUT /", "OPTIO":
  3583  		return true
  3584  	}
  3585  	return false
  3586  }