gitee.com/ks-custle/core-gm@v0.0.0-20230922171213-b83bdd97b62c/gmtls/conn.go (about)

     1  // Copyright (c) 2022 zhaochun
     2  // core-gm is licensed under Mulan PSL v2.
     3  // You can use this software according to the terms and conditions of the Mulan PSL v2.
     4  // You may obtain a copy of Mulan PSL v2 at:
     5  //          http://license.coscl.org.cn/MulanPSL2
     6  // THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
     7  // See the Mulan PSL v2 for more details.
     8  
     9  /*
    10  gmtls是基于`golang/go`的`tls`包实现的国密改造版本。
    11  对应版权声明: thrid_licenses/github.com/golang/go/LICENSE
    12  */
    13  
    14  // TLS low level connection and record layer
    15  
    16  package gmtls
    17  
    18  import (
    19  	"bytes"
    20  	"context"
    21  	"crypto/cipher"
    22  	"crypto/subtle"
    23  	"errors"
    24  	"fmt"
    25  	"hash"
    26  	"io"
    27  	"log"
    28  	"net"
    29  	"sync"
    30  	"sync/atomic"
    31  	"time"
    32  
    33  	"gitee.com/ks-custle/core-gm/x509"
    34  )
    35  
    36  // Conn tls安全连接定义, 实现`net.Conn`接口
    37  // A Conn represents a secured connection.
    38  // It implements the net.Conn interface.
    39  type Conn struct {
    40  	// constant
    41  	conn        net.Conn
    42  	isClient    bool
    43  	handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake
    44  
    45  	// handshakeStatus为1时代表正在传输应用数据,即当前不在握手阶段。
    46  	// 即一个连接要么处于握手阶段(handshakeStatus != 1),要么处于握手成功后的传输应用数据阶段(handshakeStatus == 1)。
    47  	// 该状态值的读写是同步原子操作。
    48  	// handshakeStatus is 1 if the connection is currently transferring
    49  	// application data (i.e. is not currently processing a handshake).
    50  	// This field is only to be accessed with sync/atomic.
    51  	handshakeStatus uint32
    52  	// constant after handshake; protected by handshakeMutex
    53  	handshakeMutex sync.Mutex
    54  	handshakeErr   error   // error resulting from handshake
    55  	vers           uint16  // TLS version
    56  	haveVers       bool    // 版本已协商
    57  	config         *Config // configuration passed to constructor
    58  
    59  	// 该连接到目前为止执行的握手次数,如果renegotiation被禁止,则该值只能是0或1。
    60  	// handshakes counts the number of handshakes performed on the
    61  	// connection so far. If renegotiation is disabled then this is either
    62  	// zero or one.
    63  	handshakes       int
    64  	didResume        bool     // 此连接是否是会话恢复
    65  	cipherSuite      uint16   // 该连接使用的密码套件
    66  	ocspResponse     []byte   // 装订的 OCSP 响应, 由服务端提供给客户端用于检查证书是否已撤销
    67  	scts             [][]byte // signed certificate timestamps from server
    68  	peerCertificates []*x509.Certificate
    69  
    70  	// verifiedChains是连接握手过程中构建的经过验证的证书链,而非服务端提供的证书链。
    71  	// verifiedChains contains the certificate chains that we built, as
    72  	// opposed to the ones presented by the server.
    73  	verifiedChains [][]*x509.Certificate
    74  	// serverName contains the server name indicated by the client, if any.
    75  	serverName string
    76  	// 安全重协商?
    77  	// secureRenegotiation is true if the server echoed the secure
    78  	// renegotiation extension. (This is meaningless as a server because
    79  	// renegotiation is not supported in that case.)
    80  	secureRenegotiation bool
    81  	// ekm是一个用于导出密钥材料的闭包函数
    82  	// ekm is a closure for exporting keying material.
    83  	ekm func(label string, context []byte, length int) ([]byte, error)
    84  	// 处理NewSessionTicket消息时的回复主密钥
    85  	// resumptionSecret is the resumption_master_secret for handling
    86  	// NewSessionTicket messages. nil if config.SessionTicketsDisabled.
    87  	resumptionSecret []byte
    88  
    89  	// ticketKeys 是此连接的一组活动会话票证密钥。
    90  	// 第一个用于加密新票证,并尝试全部解密票证。
    91  	// ticketKeys is the set of active session ticket keys for this
    92  	// connection. The first one is used to encrypt new tickets and
    93  	// all are tried to decrypt tickets.
    94  	ticketKeys []ticketKey
    95  
    96  	// 客户端在最近一次握手中发送的Finished消息是否该连接到目前为止的首次Finished。
    97  	// 首次Finished消息是 tls-unique 通道绑定值。
    98  	// clientFinishedIsFirst is true if the client sent the first Finished
    99  	// message during the most recent handshake. This is recorded because
   100  	// the first transmitted Finished message is the tls-unique
   101  	// channel-binding value.
   102  	clientFinishedIsFirst bool
   103  
   104  	// closeNotifyErr is any error from sending the alertCloseNotify record.
   105  	closeNotifyErr error
   106  	// closeNotifySent is true if the Conn attempted to send an
   107  	// alertCloseNotify record.
   108  	closeNotifySent bool
   109  
   110  	// clientFinished 和 serverFinished 用于记录客户端或服务器在最近一次握手中发送的 Finished 消息。
   111  	// 记录的目的是为了支持重新协商扩展和 tls-unique 通道绑定。
   112  	// clientFinished and serverFinished contain the Finished message sent
   113  	// by the client or server in the most recent handshake. This is
   114  	// retained to support the renegotiation extension and tls-unique
   115  	// channel-binding.
   116  	clientFinished [12]byte
   117  	serverFinished [12]byte
   118  
   119  	// 协商好的ALPN协议。
   120  	// 应用层协议协商(Application-Layer Protocol Negotiation,简称ALPN)是一个传输层安全协议(TLS) 的扩展,
   121  	// ALPN 使得应用层可以协商在安全连接层之上使用什么协议, 避免了额外的往返通讯, 并且独立于应用层协议。
   122  	// ALPN 用于 HTTP/2 连接, 和HTTP/1.x 相比, ALPN 的使用增强了网页的压缩率减少了网络延时。
   123  	// ALPN 和 HTTP/2 协议是伴随着 Google 开发 SPDY 协议出现的。
   124  	// clientProtocol is the negotiated ALPN protocol.
   125  	clientProtocol string
   126  
   127  	// input/output
   128  	in, out   halfConn
   129  	rawInput  bytes.Buffer // raw input, starting with a record header
   130  	input     bytes.Reader // application data waiting to be read, from rawInput.Next
   131  	hand      bytes.Buffer // handshake data waiting to be read
   132  	buffering bool         // whether records are buffered in sendBuf
   133  	sendBuf   []byte       // a buffer of records waiting to be sent
   134  
   135  	// bytesSent counts the bytes of application data sent.
   136  	// packetsSent counts packets.
   137  	bytesSent   int64
   138  	packetsSent int64
   139  
   140  	// retryCount counts the number of consecutive non-advancing records
   141  	// received by Conn.readRecord. That is, records that neither advance the
   142  	// handshake, nor deliver application data. Protected by in.Mutex.
   143  	retryCount int
   144  
   145  	// activeCall 是一个原子 int32。
   146  	// 低位标识 Close 是否被调用。
   147  	// 其余位记录 Conn.Write 中的 goroutine 的数量。
   148  	// activeCall is an atomic int32; the low bit is whether Close has
   149  	// been called. the rest of the bits are the number of goroutines
   150  	// in Conn.Write.
   151  	activeCall int32
   152  
   153  	tmp [16]byte
   154  }
   155  
   156  // Access to net.Conn methods.
   157  // Cannot just embed net.Conn because that would
   158  // export the struct field too.
   159  
   160  // LocalAddr returns the local network address.
   161  func (c *Conn) LocalAddr() net.Addr {
   162  	return c.conn.LocalAddr()
   163  }
   164  
   165  // RemoteAddr returns the remote network address.
   166  func (c *Conn) RemoteAddr() net.Addr {
   167  	return c.conn.RemoteAddr()
   168  }
   169  
   170  // SetDeadline sets the read and write deadlines associated with the connection.
   171  // A zero value for t means Read and Write will not time out.
   172  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   173  func (c *Conn) SetDeadline(t time.Time) error {
   174  	return c.conn.SetDeadline(t)
   175  }
   176  
   177  // SetReadDeadline sets the read deadline on the underlying connection.
   178  // A zero value for t means Read will not time out.
   179  func (c *Conn) SetReadDeadline(t time.Time) error {
   180  	return c.conn.SetReadDeadline(t)
   181  }
   182  
   183  // SetWriteDeadline sets the write deadline on the underlying connection.
   184  // A zero value for t means Write will not time out.
   185  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   186  func (c *Conn) SetWriteDeadline(t time.Time) error {
   187  	return c.conn.SetWriteDeadline(t)
   188  }
   189  
   190  // A halfConn represents one direction of the record layer
   191  // connection, either sending or receiving.
   192  type halfConn struct {
   193  	sync.Mutex
   194  
   195  	err     error       // first permanent error
   196  	version uint16      // protocol version
   197  	cipher  interface{} // cipher algorithm
   198  	mac     hash.Hash
   199  	seq     [8]byte // 64-bit sequence number
   200  
   201  	scratchBuf [13]byte // to avoid allocs; interface method args escape
   202  
   203  	nextCipher interface{} // next encryption state
   204  	nextMac    hash.Hash   // next MAC algorithm
   205  
   206  	trafficSecret []byte // current TLS 1.3 traffic secret
   207  }
   208  
   209  type permanentError struct {
   210  	err net.Error
   211  }
   212  
   213  func (e *permanentError) Error() string   { return e.err.Error() }
   214  func (e *permanentError) Unwrap() error   { return e.err }
   215  func (e *permanentError) Timeout() bool   { return e.err.Timeout() }
   216  func (e *permanentError) Temporary() bool { return false }
   217  
   218  func (hc *halfConn) setErrorLocked(err error) error {
   219  	if e, ok := err.(net.Error); ok {
   220  		hc.err = &permanentError{err: e}
   221  	} else {
   222  		hc.err = err
   223  	}
   224  	return hc.err
   225  }
   226  
   227  // prepareCipherSpec sets the encryption and MAC states
   228  // that a subsequent changeCipherSpec will use.
   229  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac hash.Hash) {
   230  	hc.version = version
   231  	hc.nextCipher = cipher
   232  	hc.nextMac = mac
   233  }
   234  
   235  // changeCipherSpec changes the encryption and MAC states
   236  // to the ones previously passed to prepareCipherSpec.
   237  func (hc *halfConn) changeCipherSpec() error {
   238  	if hc.nextCipher == nil || hc.version == VersionTLS13 || hc.version == VersionGMSSL {
   239  		return alertInternalError
   240  	}
   241  	hc.cipher = hc.nextCipher
   242  	hc.mac = hc.nextMac
   243  	hc.nextCipher = nil
   244  	hc.nextMac = nil
   245  	for i := range hc.seq {
   246  		hc.seq[i] = 0
   247  	}
   248  	return nil
   249  }
   250  
   251  func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
   252  	hc.trafficSecret = secret
   253  	key, iv := suite.trafficKey(secret)
   254  	hc.cipher = suite.aead(key, iv)
   255  	for i := range hc.seq {
   256  		hc.seq[i] = 0
   257  	}
   258  }
   259  
   260  // incSeq increments the sequence number.
   261  func (hc *halfConn) incSeq() {
   262  	for i := 7; i >= 0; i-- {
   263  		hc.seq[i]++
   264  		if hc.seq[i] != 0 {
   265  			return
   266  		}
   267  	}
   268  
   269  	// Not allowed to let sequence number wrap.
   270  	// Instead, must renegotiate before it does.
   271  	// Not likely enough to bother.
   272  	panic("gmtls: sequence number wraparound")
   273  }
   274  
   275  // explicitNonceLen returns the number of bytes of explicit nonce or IV included
   276  // in each record. Explicit nonces are present only in CBC modes after TLS 1.0
   277  // and in certain AEAD modes in TLS 1.2.
   278  func (hc *halfConn) explicitNonceLen() int {
   279  	if hc.cipher == nil {
   280  		return 0
   281  	}
   282  
   283  	switch c := hc.cipher.(type) {
   284  	case cipher.Stream:
   285  		return 0
   286  	case aead:
   287  		return c.explicitNonceLen()
   288  	case cbcMode:
   289  		// TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
   290  		if hc.version >= VersionTLS11 {
   291  			return c.BlockSize()
   292  		}
   293  		return 0
   294  	default:
   295  		panic("unknown cipher type")
   296  	}
   297  }
   298  
   299  // extractPadding returns, in constant time, the length of the padding to remove
   300  // from the end of payload. It also returns a byte which is equal to 255 if the
   301  // padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
   302  func extractPadding(payload []byte) (toRemove int, good byte) {
   303  	if len(payload) < 1 {
   304  		return 0, 0
   305  	}
   306  
   307  	paddingLen := payload[len(payload)-1]
   308  	t := uint(len(payload)-1) - uint(paddingLen)
   309  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   310  	good = byte(int32(^t) >> 31)
   311  
   312  	// The maximum possible padding length plus the actual length field
   313  	toCheck := 256
   314  	// The length of the padded data is public, so we can use an if here
   315  	if toCheck > len(payload) {
   316  		toCheck = len(payload)
   317  	}
   318  
   319  	for i := 0; i < toCheck; i++ {
   320  		t := uint(paddingLen) - uint(i)
   321  		// if i <= paddingLen then the MSB of t is zero
   322  		mask := byte(int32(^t) >> 31)
   323  		b := payload[len(payload)-1-i]
   324  		good &^= mask&paddingLen ^ mask&b
   325  	}
   326  
   327  	// We AND together the bits of good and replicate the result across
   328  	// all the bits.
   329  	good &= good << 4
   330  	good &= good << 2
   331  	good &= good << 1
   332  	good = uint8(int8(good) >> 7)
   333  
   334  	// Zero the padding length on error. This ensures any unchecked bytes
   335  	// are included in the MAC. Otherwise, an attacker that could
   336  	// distinguish MAC failures from padding failures could mount an attack
   337  	// similar to POODLE in SSL 3.0: given a good ciphertext that uses a
   338  	// full block's worth of padding, replace the final block with another
   339  	// block. If the MAC check passed but the padding check failed, the
   340  	// last byte of that block decrypted to the block size.
   341  	//
   342  	// See also macAndPaddingGood logic below.
   343  	paddingLen &= good
   344  
   345  	toRemove = int(paddingLen) + 1
   346  	return
   347  }
   348  
   349  func roundUp(a, b int) int {
   350  	return a + (b-a%b)%b
   351  }
   352  
   353  // cbcMode is an interface for block ciphers using cipher block chaining.
   354  type cbcMode interface {
   355  	cipher.BlockMode
   356  	SetIV([]byte)
   357  }
   358  
   359  // decrypt authenticates and decrypts the record if protection is active at
   360  // this stage. The returned plaintext might overlap with the input.
   361  func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
   362  	var plaintext []byte
   363  	typ := recordType(record[0])
   364  	payload := record[recordHeaderLen:]
   365  
   366  	// In TLS 1.3, change_cipher_spec messages are to be ignored without being
   367  	// decrypted. See RFC 8446, Appendix D.4.
   368  	if (hc.version == VersionTLS13 || hc.version == VersionGMSSL) && typ == recordTypeChangeCipherSpec {
   369  		return payload, typ, nil
   370  	}
   371  
   372  	paddingGood := byte(255)
   373  	paddingLen := 0
   374  
   375  	explicitNonceLen := hc.explicitNonceLen()
   376  
   377  	if hc.cipher != nil {
   378  		switch c := hc.cipher.(type) {
   379  		case cipher.Stream:
   380  			c.XORKeyStream(payload, payload)
   381  		case aead:
   382  			if len(payload) < explicitNonceLen {
   383  				return nil, 0, alertBadRecordMAC
   384  			}
   385  			nonce := payload[:explicitNonceLen]
   386  			if len(nonce) == 0 {
   387  				nonce = hc.seq[:]
   388  			}
   389  			payload = payload[explicitNonceLen:]
   390  
   391  			var additionalData []byte
   392  			if hc.version == VersionTLS13 || hc.version == VersionGMSSL {
   393  				additionalData = record[:recordHeaderLen]
   394  			} else {
   395  				additionalData = append(hc.scratchBuf[:0], hc.seq[:]...)
   396  				additionalData = append(additionalData, record[:3]...)
   397  				n := len(payload) - c.Overhead()
   398  				additionalData = append(additionalData, byte(n>>8), byte(n))
   399  			}
   400  
   401  			var err error
   402  			plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
   403  			if err != nil {
   404  				return nil, 0, alertBadRecordMAC
   405  			}
   406  		case cbcMode:
   407  			blockSize := c.BlockSize()
   408  			minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
   409  			if len(payload)%blockSize != 0 || len(payload) < minPayload {
   410  				return nil, 0, alertBadRecordMAC
   411  			}
   412  
   413  			if explicitNonceLen > 0 {
   414  				c.SetIV(payload[:explicitNonceLen])
   415  				payload = payload[explicitNonceLen:]
   416  			}
   417  			c.CryptBlocks(payload, payload)
   418  
   419  			// In a limited attempt to protect against CBC padding oracles like
   420  			// Lucky13, the data past paddingLen (which is secret) is passed to
   421  			// the MAC function as extra data, to be fed into the HMAC after
   422  			// computing the digest. This makes the MAC roughly constant time as
   423  			// long as the digest computation is constant time and does not
   424  			// affect the subsequent write, modulo cache effects.
   425  			paddingLen, paddingGood = extractPadding(payload)
   426  		default:
   427  			panic("unknown cipher type")
   428  		}
   429  
   430  		if hc.version == VersionTLS13 || hc.version == VersionGMSSL {
   431  			if typ != recordTypeApplicationData {
   432  				return nil, 0, alertUnexpectedMessage
   433  			}
   434  			if len(plaintext) > maxPlaintext+1 {
   435  				return nil, 0, alertRecordOverflow
   436  			}
   437  			// Remove padding and find the ContentType scanning from the end.
   438  			for i := len(plaintext) - 1; i >= 0; i-- {
   439  				if plaintext[i] != 0 {
   440  					typ = recordType(plaintext[i])
   441  					plaintext = plaintext[:i]
   442  					break
   443  				}
   444  				if i == 0 {
   445  					return nil, 0, alertUnexpectedMessage
   446  				}
   447  			}
   448  		}
   449  	} else {
   450  		plaintext = payload
   451  	}
   452  
   453  	if hc.mac != nil {
   454  		macSize := hc.mac.Size()
   455  		if len(payload) < macSize {
   456  			return nil, 0, alertBadRecordMAC
   457  		}
   458  
   459  		n := len(payload) - macSize - paddingLen
   460  		n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
   461  		record[3] = byte(n >> 8)
   462  		record[4] = byte(n)
   463  		remoteMAC := payload[n : n+macSize]
   464  		localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
   465  
   466  		// This is equivalent to checking the MACs and paddingGood
   467  		// separately, but in constant-time to prevent distinguishing
   468  		// padding failures from MAC failures. Depending on what value
   469  		// of paddingLen was returned on bad padding, distinguishing
   470  		// bad MAC from bad padding can lead to an attack.
   471  		//
   472  		// See also the logic at the end of extractPadding.
   473  		macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
   474  		if macAndPaddingGood != 1 {
   475  			return nil, 0, alertBadRecordMAC
   476  		}
   477  
   478  		plaintext = payload[:n]
   479  	}
   480  
   481  	hc.incSeq()
   482  	return plaintext, typ, nil
   483  }
   484  
   485  // sliceForAppend extends the input slice by n bytes. head is the full extended
   486  // slice, while tail is the appended part. If the original slice has sufficient
   487  // capacity no allocation is performed.
   488  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   489  	if total := len(in) + n; cap(in) >= total {
   490  		head = in[:total]
   491  	} else {
   492  		head = make([]byte, total)
   493  		copy(head, in)
   494  	}
   495  	tail = head[len(in):]
   496  	return
   497  }
   498  
   499  // encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
   500  // appends it to record, which must already contain the record header.
   501  func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
   502  	if hc.cipher == nil {
   503  		return append(record, payload...), nil
   504  	}
   505  
   506  	var explicitNonce []byte
   507  	if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
   508  		record, explicitNonce = sliceForAppend(record, explicitNonceLen)
   509  		if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
   510  			// The AES-GCM construction in TLS has an explicit nonce so that the
   511  			// nonce can be random. However, the nonce is only 8 bytes which is
   512  			// too small for a secure, random nonce. Therefore we use the
   513  			// sequence number as the nonce. The 3DES-CBC construction also has
   514  			// an 8 bytes nonce but its nonces must be unpredictable (see RFC
   515  			// 5246, Appendix F.3), forcing us to use randomness. That's not
   516  			// 3DES' biggest problem anyway because the birthday bound on block
   517  			// collision is reached first due to its similarly small block size
   518  			// (see the Sweet32 attack).
   519  			copy(explicitNonce, hc.seq[:])
   520  		} else {
   521  			if _, err := io.ReadFull(rand, explicitNonce); err != nil {
   522  				return nil, err
   523  			}
   524  		}
   525  	}
   526  
   527  	var dst []byte
   528  	switch c := hc.cipher.(type) {
   529  	case cipher.Stream:
   530  		mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
   531  		record, dst = sliceForAppend(record, len(payload)+len(mac))
   532  		c.XORKeyStream(dst[:len(payload)], payload)
   533  		c.XORKeyStream(dst[len(payload):], mac)
   534  	case aead:
   535  		nonce := explicitNonce
   536  		if len(nonce) == 0 {
   537  			nonce = hc.seq[:]
   538  		}
   539  
   540  		if hc.version == VersionTLS13 || hc.version == VersionGMSSL {
   541  			record = append(record, payload...)
   542  
   543  			// Encrypt the actual ContentType and replace the plaintext one.
   544  			record = append(record, record[0])
   545  			record[0] = byte(recordTypeApplicationData)
   546  
   547  			n := len(payload) + 1 + c.Overhead()
   548  			record[3] = byte(n >> 8)
   549  			record[4] = byte(n)
   550  
   551  			record = c.Seal(record[:recordHeaderLen],
   552  				nonce, record[recordHeaderLen:], record[:recordHeaderLen])
   553  		} else {
   554  			additionalData := append(hc.scratchBuf[:0], hc.seq[:]...)
   555  			additionalData = append(additionalData, record[:recordHeaderLen]...)
   556  			record = c.Seal(record, nonce, payload, additionalData)
   557  		}
   558  	case cbcMode:
   559  		mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
   560  		blockSize := c.BlockSize()
   561  		plaintextLen := len(payload) + len(mac)
   562  		paddingLen := blockSize - plaintextLen%blockSize
   563  		record, dst = sliceForAppend(record, plaintextLen+paddingLen)
   564  		copy(dst, payload)
   565  		copy(dst[len(payload):], mac)
   566  		for i := plaintextLen; i < len(dst); i++ {
   567  			dst[i] = byte(paddingLen - 1)
   568  		}
   569  		if len(explicitNonce) > 0 {
   570  			c.SetIV(explicitNonce)
   571  		}
   572  		c.CryptBlocks(dst, dst)
   573  	default:
   574  		panic("unknown cipher type")
   575  	}
   576  
   577  	// Update length to include nonce, MAC and any block padding needed.
   578  	n := len(record) - recordHeaderLen
   579  	record[3] = byte(n >> 8)
   580  	record[4] = byte(n)
   581  	hc.incSeq()
   582  
   583  	return record, nil
   584  }
   585  
   586  // RecordHeaderError is returned when a TLS record header is invalid.
   587  type RecordHeaderError struct {
   588  	// Msg contains a human readable string that describes the error.
   589  	Msg string
   590  	// RecordHeader contains the five bytes of TLS record header that
   591  	// triggered the error.
   592  	RecordHeader [5]byte
   593  	// Conn provides the underlying net.Conn in the case that a client
   594  	// sent an initial handshake that didn't look like TLS.
   595  	// It is nil if there's already been a handshake or a TLS alert has
   596  	// been written to the connection.
   597  	Conn net.Conn
   598  }
   599  
   600  func (e RecordHeaderError) Error() string { return "gmtls: " + e.Msg }
   601  
   602  func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
   603  	err.Msg = msg
   604  	err.Conn = conn
   605  	copy(err.RecordHeader[:], c.rawInput.Bytes())
   606  	return err
   607  }
   608  
   609  func (c *Conn) readRecord() error {
   610  	return c.readRecordOrCCS(false)
   611  }
   612  
   613  func (c *Conn) readChangeCipherSpec() error {
   614  	return c.readRecordOrCCS(true)
   615  }
   616  
   617  // readRecordOrCCS reads one or more TLS records from the connection and
   618  // updates the record layer state. Some invariants:
   619  //   - c.in must be locked
   620  //   - c.input must be empty
   621  //
   622  // During the handshake one and only one of the following will happen:
   623  //   - c.hand grows
   624  //   - c.in.changeCipherSpec is called
   625  //   - an error is returned
   626  //
   627  // After the handshake one and only one of the following will happen:
   628  //   - c.hand grows
   629  //   - c.input is set
   630  //   - an error is returned
   631  func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
   632  	if c.in.err != nil {
   633  		return c.in.err
   634  	}
   635  	handshakeComplete := c.handshakeComplete()
   636  
   637  	// This function modifies c.rawInput, which owns the c.input memory.
   638  	if c.input.Len() != 0 {
   639  		return c.in.setErrorLocked(errors.New("gmtls: internal error: attempted to read record with pending application data"))
   640  	}
   641  	c.input.Reset(nil)
   642  
   643  	// Read header, payload.
   644  	if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
   645  		// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
   646  		// is an error, but popular web sites seem to do this, so we accept it
   647  		// if and only if at the record boundary.
   648  		if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
   649  			err = io.EOF
   650  		}
   651  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   652  			err := c.in.setErrorLocked(err)
   653  			if err != nil {
   654  				return err
   655  			}
   656  		}
   657  		return err
   658  	}
   659  	hdr := c.rawInput.Bytes()[:recordHeaderLen]
   660  	typ := recordType(hdr[0])
   661  
   662  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   663  	// start with a uint16 length where the MSB is set and the first record
   664  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   665  	// an SSLv2 client.
   666  	if !handshakeComplete && typ == 0x80 {
   667  		_ = c.sendAlert(alertProtocolVersion)
   668  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
   669  	}
   670  
   671  	vers := uint16(hdr[1])<<8 | uint16(hdr[2])
   672  	n := int(hdr[3])<<8 | int(hdr[4])
   673  	// gmssl采用tls1.3的处理
   674  	if c.haveVers && c.vers != VersionTLS13 && c.vers != VersionGMSSL && vers != c.vers {
   675  		_ = c.sendAlert(alertProtocolVersion)
   676  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   677  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   678  	}
   679  	if !c.haveVers {
   680  		// First message, be extra suspicious: this might not be a TLS
   681  		// client. Bail out before reading a full 'body', if possible.
   682  		// The current max version is 3.3 so if the version is >= 16.0,
   683  		// it's probably not real.
   684  		if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
   685  			return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
   686  		}
   687  	}
   688  	if (c.vers == VersionTLS13 || c.vers == VersionGMSSL) && n > maxCiphertextTLS13 || n > maxCiphertext {
   689  		_ = c.sendAlert(alertRecordOverflow)
   690  		msg := fmt.Sprintf("oversized record received with length %d", n)
   691  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   692  	}
   693  	if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   694  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   695  			err := c.in.setErrorLocked(err)
   696  			if err != nil {
   697  				return err
   698  			}
   699  		}
   700  		return err
   701  	}
   702  
   703  	// Process message.
   704  	record := c.rawInput.Next(recordHeaderLen + n)
   705  	data, typ, err := c.in.decrypt(record)
   706  	if err != nil {
   707  		return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   708  	}
   709  	if len(data) > maxPlaintext {
   710  		return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
   711  	}
   712  
   713  	// Application Data messages are always protected.
   714  	if c.in.cipher == nil && typ == recordTypeApplicationData {
   715  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   716  	}
   717  
   718  	if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
   719  		// This is a state-advancing message: reset the retry count.
   720  		c.retryCount = 0
   721  	}
   722  
   723  	// Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
   724  	if (c.vers == VersionTLS13 || c.vers == VersionGMSSL) && typ != recordTypeHandshake && c.hand.Len() > 0 {
   725  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   726  	}
   727  
   728  	switch typ {
   729  	default:
   730  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   731  
   732  	case recordTypeAlert:
   733  		if len(data) != 2 {
   734  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   735  		}
   736  		if alert(data[1]) == alertCloseNotify {
   737  			return c.in.setErrorLocked(io.EOF)
   738  		}
   739  		if c.vers == VersionTLS13 || c.vers == VersionGMSSL {
   740  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   741  		}
   742  		switch data[0] {
   743  		case alertLevelWarning:
   744  			// Drop the record on the floor and retry.
   745  			return c.retryReadRecord(expectChangeCipherSpec)
   746  		case alertLevelError:
   747  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   748  		default:
   749  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   750  		}
   751  
   752  	case recordTypeChangeCipherSpec:
   753  		if len(data) != 1 || data[0] != 1 {
   754  			return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
   755  		}
   756  		// Handshake messages are not allowed to fragment across the CCS.
   757  		if c.hand.Len() > 0 {
   758  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   759  		}
   760  		// In TLS 1.3, change_cipher_spec records are ignored until the
   761  		// Finished. See RFC 8446, Appendix D.4. Note that according to Section
   762  		// 5, a server can send a ChangeCipherSpec before its ServerHello, when
   763  		// c.vers is still unset. That's not useful though and suspicious if the
   764  		// server then selects a lower protocol version, so don't allow that.
   765  		if c.vers == VersionTLS13 || c.vers == VersionGMSSL {
   766  			return c.retryReadRecord(expectChangeCipherSpec)
   767  		}
   768  		if !expectChangeCipherSpec {
   769  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   770  		}
   771  		if err := c.in.changeCipherSpec(); err != nil {
   772  			return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   773  		}
   774  
   775  	case recordTypeApplicationData:
   776  		if !handshakeComplete || expectChangeCipherSpec {
   777  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   778  		}
   779  		// Some OpenSSL servers send empty records in order to randomize the
   780  		// CBC IV. Ignore a limited number of empty records.
   781  		if len(data) == 0 {
   782  			return c.retryReadRecord(expectChangeCipherSpec)
   783  		}
   784  		// Note that data is owned by c.rawInput, following the Next call above,
   785  		// to avoid copying the plaintext. This is safe because c.rawInput is
   786  		// not read from or written to until c.input is drained.
   787  		c.input.Reset(data)
   788  
   789  	case recordTypeHandshake:
   790  		if len(data) == 0 || expectChangeCipherSpec {
   791  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   792  		}
   793  		c.hand.Write(data)
   794  	}
   795  
   796  	return nil
   797  }
   798  
   799  // retryReadRecord recurses into readRecordOrCCS to drop a non-advancing record, like
   800  // a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
   801  func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
   802  	c.retryCount++
   803  	if c.retryCount > maxUselessRecords {
   804  		_ = c.sendAlert(alertUnexpectedMessage)
   805  		return c.in.setErrorLocked(errors.New("gmtls: too many ignored records"))
   806  	}
   807  	return c.readRecordOrCCS(expectChangeCipherSpec)
   808  }
   809  
   810  // atLeastReader reads from R, stopping with EOF once at least N bytes have been
   811  // read. It is different from an io.LimitedReader in that it doesn't cut short
   812  // the last Read call, and in that it considers an early EOF an error.
   813  type atLeastReader struct {
   814  	R io.Reader
   815  	N int64
   816  }
   817  
   818  func (r *atLeastReader) Read(p []byte) (int, error) {
   819  	if r.N <= 0 {
   820  		return 0, io.EOF
   821  	}
   822  	n, err := r.R.Read(p)
   823  	r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
   824  	if r.N > 0 && err == io.EOF {
   825  		return n, io.ErrUnexpectedEOF
   826  	}
   827  	if r.N <= 0 && err == nil {
   828  		return n, io.EOF
   829  	}
   830  	return n, err
   831  }
   832  
   833  // readFromUntil reads from r into c.rawInput until c.rawInput contains
   834  // at least n bytes or else returns an error.
   835  func (c *Conn) readFromUntil(r io.Reader, n int) error {
   836  	if c.rawInput.Len() >= n {
   837  		return nil
   838  	}
   839  	needs := n - c.rawInput.Len()
   840  	// There might be extra input waiting on the wire. Make a best effort
   841  	// attempt to fetch it so that it can be used in (*Conn).Read to
   842  	// "predict" closeNotify alerts.
   843  	c.rawInput.Grow(needs + bytes.MinRead)
   844  	_, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
   845  	return err
   846  }
   847  
   848  // sendAlert sends a TLS alert message.
   849  func (c *Conn) sendAlertLocked(err alert) error {
   850  	switch err {
   851  	case alertNoRenegotiation, alertCloseNotify:
   852  		c.tmp[0] = alertLevelWarning
   853  	default:
   854  		c.tmp[0] = alertLevelError
   855  	}
   856  	c.tmp[1] = byte(err)
   857  
   858  	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   859  	if err == alertCloseNotify {
   860  		// closeNotify is a special case in that it isn't an error.
   861  		return writeErr
   862  	}
   863  
   864  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   865  }
   866  
   867  // sendAlert sends a TLS alert message.
   868  func (c *Conn) sendAlert(err alert) error {
   869  	c.out.Lock()
   870  	defer c.out.Unlock()
   871  	return c.sendAlertLocked(err)
   872  }
   873  
   874  const (
   875  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   876  	// size (MSS). A constant is used, rather than querying the kernel for
   877  	// the actual MSS, to avoid complexity. The value here is the IPv6
   878  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   879  	// bytes) and a TCP header with timestamps (32 bytes).
   880  	tcpMSSEstimate = 1208
   881  
   882  	// recordSizeBoostThreshold is the number of bytes of application data
   883  	// sent after which the TLS record size will be increased to the
   884  	// maximum.
   885  	recordSizeBoostThreshold = 128 * 1024
   886  )
   887  
   888  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   889  // next application data record. There is the following trade-off:
   890  //
   891  //   - For latency-sensitive applications, such as web browsing, each TLS
   892  //     record should fit in one TCP segment.
   893  //   - For throughput-sensitive applications, such as large file transfers,
   894  //     larger TLS records better amortize framing and encryption overheads.
   895  //
   896  // A simple heuristic that works well in practice is to use small records for
   897  // the first 1MB of data, then use larger records for subsequent data, and
   898  // reset back to smaller records after the connection becomes idle. See "High
   899  // Performance Web Networking", Chapter 4, or:
   900  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   901  //
   902  // In the interests of simplicity and determinism, this code does not attempt
   903  // to reset the record size once the connection is idle, however.
   904  func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
   905  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   906  		return maxPlaintext
   907  	}
   908  
   909  	if c.bytesSent >= recordSizeBoostThreshold {
   910  		return maxPlaintext
   911  	}
   912  
   913  	// Subtract TLS overheads to get the maximum payload size.
   914  	payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
   915  	if c.out.cipher != nil {
   916  		switch ciph := c.out.cipher.(type) {
   917  		case cipher.Stream:
   918  			payloadBytes -= c.out.mac.Size()
   919  		case cipher.AEAD:
   920  			payloadBytes -= ciph.Overhead()
   921  		case cbcMode:
   922  			blockSize := ciph.BlockSize()
   923  			// The payload must fit in a multiple of blockSize, with
   924  			// room for at least one padding byte.
   925  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   926  			// The MAC is appended before padding so affects the
   927  			// payload size directly.
   928  			payloadBytes -= c.out.mac.Size()
   929  		default:
   930  			panic("unknown cipher type")
   931  		}
   932  	}
   933  	if c.vers == VersionTLS13 || c.vers == VersionGMSSL {
   934  		payloadBytes-- // encrypted ContentType
   935  	}
   936  
   937  	// Allow packet growth in arithmetic progression up to max.
   938  	pkt := c.packetsSent
   939  	c.packetsSent++
   940  	if pkt > 1000 {
   941  		return maxPlaintext // avoid overflow in multiply below
   942  	}
   943  
   944  	n := payloadBytes * int(pkt+1)
   945  	if n > maxPlaintext {
   946  		n = maxPlaintext
   947  	}
   948  	return n
   949  }
   950  
   951  func (c *Conn) write(data []byte) (int, error) {
   952  	if c.buffering {
   953  		c.sendBuf = append(c.sendBuf, data...)
   954  		return len(data), nil
   955  	}
   956  
   957  	n, err := c.conn.Write(data)
   958  	c.bytesSent += int64(n)
   959  	return n, err
   960  }
   961  
   962  func (c *Conn) flush() (int, error) {
   963  	if len(c.sendBuf) == 0 {
   964  		return 0, nil
   965  	}
   966  
   967  	n, err := c.conn.Write(c.sendBuf)
   968  	c.bytesSent += int64(n)
   969  	c.sendBuf = nil
   970  	c.buffering = false
   971  	return n, err
   972  }
   973  
   974  // outBufPool pools the record-sized scratch buffers used by writeRecordLocked.
   975  var outBufPool = sync.Pool{
   976  	New: func() interface{} {
   977  		return new([]byte)
   978  	},
   979  }
   980  
   981  // writeRecordLocked writes a TLS record with the given type and payload to the
   982  // connection and updates the record layer state.
   983  func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   984  	outBufPtr := outBufPool.Get().(*[]byte)
   985  	outBuf := *outBufPtr
   986  	defer func() {
   987  		// You might be tempted to simplify this by just passing &outBuf to Put,
   988  		// but that would make the local copy of the outBuf slice header escape
   989  		// to the heap, causing an allocation. Instead, we keep around the
   990  		// pointer to the slice header returned by Get, which is already on the
   991  		// heap, and overwrite and return that.
   992  		*outBufPtr = outBuf
   993  		outBufPool.Put(outBufPtr)
   994  	}()
   995  
   996  	var n int
   997  	for len(data) > 0 {
   998  		m := len(data)
   999  		if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
  1000  			m = maxPayload
  1001  		}
  1002  
  1003  		_, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen)
  1004  		outBuf[0] = byte(typ)
  1005  		vers := c.vers
  1006  		if vers == 0 {
  1007  			// Some TLS servers fail if the record version is
  1008  			// greater than TLS 1.0 for the initial ClientHello.
  1009  			vers = VersionTLS10
  1010  		} else if vers == VersionTLS13 || vers == VersionGMSSL {
  1011  			// 出于兼容性考虑,将tls1.3与gmssl改为tls1.2,对应的信息将在扩展信息中展现。
  1012  			// TLS 1.3 froze the record layer version to 1.2.
  1013  			// See RFC 8446, Section 5.1.
  1014  			vers = VersionTLS12
  1015  		}
  1016  		outBuf[1] = byte(vers >> 8)
  1017  		outBuf[2] = byte(vers)
  1018  		outBuf[3] = byte(m >> 8)
  1019  		outBuf[4] = byte(m)
  1020  
  1021  		var err error
  1022  		outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand())
  1023  		if err != nil {
  1024  			return n, err
  1025  		}
  1026  		if _, err := c.write(outBuf); err != nil {
  1027  			return n, err
  1028  		}
  1029  		n += m
  1030  		data = data[m:]
  1031  	}
  1032  	// tls1.3发出recordTypeChangeCipherSpec是为了兼容性对应,并不需要执行changeCipherSpec。
  1033  	// GMSSL暂时与tls1.3采用相同的对应
  1034  	if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 && c.vers != VersionGMSSL {
  1035  		if err := c.out.changeCipherSpec(); err != nil {
  1036  			return n, c.sendAlertLocked(err.(alert))
  1037  		}
  1038  	}
  1039  
  1040  	return n, nil
  1041  }
  1042  
  1043  // 向tls连接写入一条消息
  1044  // writeRecord writes a TLS record with the given type and payload to the
  1045  // connection and updates the record layer state.
  1046  func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
  1047  	c.out.Lock()
  1048  	defer c.out.Unlock()
  1049  
  1050  	return c.writeRecordLocked(typ, data)
  1051  }
  1052  
  1053  // 从tls连接读取下一条握手消息
  1054  // readHandshake reads the next handshake message from
  1055  // the record layer.
  1056  func (c *Conn) readHandshake() (interface{}, error) {
  1057  	for c.hand.Len() < 4 {
  1058  		if err := c.readRecord(); err != nil {
  1059  			return nil, err
  1060  		}
  1061  	}
  1062  
  1063  	data := c.hand.Bytes()
  1064  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
  1065  	if n > maxHandshake {
  1066  		err := c.sendAlertLocked(alertInternalError)
  1067  		if err != nil {
  1068  			return nil, err
  1069  		}
  1070  		return nil, c.in.setErrorLocked(fmt.Errorf("gmtls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
  1071  	}
  1072  	for c.hand.Len() < 4+n {
  1073  		if err := c.readRecord(); err != nil {
  1074  			return nil, err
  1075  		}
  1076  	}
  1077  	data = c.hand.Next(4 + n)
  1078  	var m handshakeMessage
  1079  	switch data[0] {
  1080  	case typeHelloRequest:
  1081  		m = new(helloRequestMsg)
  1082  	case typeClientHello:
  1083  		m = new(clientHelloMsg)
  1084  	case typeServerHello:
  1085  		m = new(serverHelloMsg)
  1086  	case typeNewSessionTicket:
  1087  		// GMSSL暂时采用tls1.3的处理
  1088  		if c.vers == VersionTLS13 || c.vers == VersionGMSSL {
  1089  			m = new(newSessionTicketMsgTLS13)
  1090  		} else {
  1091  			m = new(newSessionTicketMsg)
  1092  		}
  1093  	case typeCertificate:
  1094  		// GMSSL暂时采用tls1.3的处理
  1095  		if c.vers == VersionTLS13 || c.vers == VersionGMSSL {
  1096  			m = new(certificateMsgTLS13)
  1097  		} else {
  1098  			m = new(certificateMsg)
  1099  		}
  1100  	case typeCertificateRequest:
  1101  		// GMSSL暂时采用tls1.3的处理
  1102  		if c.vers == VersionTLS13 || c.vers == VersionGMSSL {
  1103  			m = new(certificateRequestMsgTLS13)
  1104  		} else {
  1105  			m = &certificateRequestMsg{
  1106  				hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1107  			}
  1108  		}
  1109  	case typeCertificateStatus:
  1110  		m = new(certificateStatusMsg)
  1111  	case typeServerKeyExchange:
  1112  		m = new(serverKeyExchangeMsg)
  1113  	case typeServerHelloDone:
  1114  		m = new(serverHelloDoneMsg)
  1115  	case typeClientKeyExchange:
  1116  		m = new(clientKeyExchangeMsg)
  1117  	case typeCertificateVerify:
  1118  		m = &certificateVerifyMsg{
  1119  			// GMSSL暂时采用tls1.3的处理
  1120  			hasSignatureAlgorithm: c.vers >= VersionTLS12 || c.vers == VersionGMSSL,
  1121  		}
  1122  	case typeFinished:
  1123  		m = new(finishedMsg)
  1124  	case typeEncryptedExtensions:
  1125  		m = new(encryptedExtensionsMsg)
  1126  	case typeEndOfEarlyData:
  1127  		m = new(endOfEarlyDataMsg)
  1128  	case typeKeyUpdate:
  1129  		m = new(keyUpdateMsg)
  1130  	default:
  1131  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1132  	}
  1133  
  1134  	// The handshake message unmarshalers
  1135  	// expect to be able to keep references to data,
  1136  	// so pass in a fresh copy that won't be overwritten.
  1137  	data = append([]byte(nil), data...)
  1138  
  1139  	if !m.unmarshal(data) {
  1140  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1141  	}
  1142  	return m, nil
  1143  }
  1144  
  1145  var (
  1146  	errShutdown = errors.New("gmtls: protocol is shutdown")
  1147  )
  1148  
  1149  // Write writes data to the connection.
  1150  //
  1151  // As Write calls Handshake, in order to prevent indefinite blocking a deadline
  1152  // must be set for both Read and Write before Write is called when the handshake
  1153  // has not yet completed. See SetDeadline, SetReadDeadline, and
  1154  // SetWriteDeadline.
  1155  func (c *Conn) Write(b []byte) (int, error) {
  1156  	// interlock with Close below
  1157  	for {
  1158  		x := atomic.LoadInt32(&c.activeCall)
  1159  		if x&1 != 0 {
  1160  			return 0, net.ErrClosed
  1161  		}
  1162  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  1163  			break
  1164  		}
  1165  	}
  1166  	defer atomic.AddInt32(&c.activeCall, -2)
  1167  
  1168  	if err := c.Handshake(); err != nil {
  1169  		return 0, err
  1170  	}
  1171  
  1172  	c.out.Lock()
  1173  	defer c.out.Unlock()
  1174  
  1175  	if err := c.out.err; err != nil {
  1176  		return 0, err
  1177  	}
  1178  
  1179  	if !c.handshakeComplete() {
  1180  		return 0, alertInternalError
  1181  	}
  1182  
  1183  	if c.closeNotifySent {
  1184  		return 0, errShutdown
  1185  	}
  1186  
  1187  	// TLS 1.0 is susceptible to a chosen-plaintext
  1188  	// attack when using block mode ciphers due to predictable IVs.
  1189  	// This can be prevented by splitting each Application Data
  1190  	// record into two records, effectively randomizing the IV.
  1191  	//
  1192  	// https://www.openssl.org/~bodo/tls-cbc.txt
  1193  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1194  	// https://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1195  
  1196  	var m int
  1197  	if len(b) > 1 && c.vers == VersionTLS10 {
  1198  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1199  			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1200  			if err != nil {
  1201  				return n, c.out.setErrorLocked(err)
  1202  			}
  1203  			m, b = 1, b[1:]
  1204  		}
  1205  	}
  1206  
  1207  	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1208  	return n + m, c.out.setErrorLocked(err)
  1209  }
  1210  
  1211  // handleRenegotiation processes a HelloRequest handshake message.
  1212  func (c *Conn) handleRenegotiation() error {
  1213  	if c.vers == VersionTLS13 || c.vers == VersionGMSSL {
  1214  		return errors.New("gmtls: internal error: unexpected renegotiation")
  1215  	}
  1216  
  1217  	msg, err := c.readHandshake()
  1218  	if err != nil {
  1219  		return err
  1220  	}
  1221  
  1222  	helloReq, ok := msg.(*helloRequestMsg)
  1223  	if !ok {
  1224  		_ = c.sendAlert(alertUnexpectedMessage)
  1225  		return unexpectedMessageError(helloReq, msg)
  1226  	}
  1227  
  1228  	if !c.isClient {
  1229  		return c.sendAlert(alertNoRenegotiation)
  1230  	}
  1231  
  1232  	switch c.config.Renegotiation {
  1233  	case RenegotiateNever:
  1234  		return c.sendAlert(alertNoRenegotiation)
  1235  	case RenegotiateOnceAsClient:
  1236  		if c.handshakes > 1 {
  1237  			return c.sendAlert(alertNoRenegotiation)
  1238  		}
  1239  	case RenegotiateFreelyAsClient:
  1240  		// Ok.
  1241  	default:
  1242  		_ = c.sendAlert(alertInternalError)
  1243  		return errors.New("gmtls: unknown Renegotiation value")
  1244  	}
  1245  
  1246  	c.handshakeMutex.Lock()
  1247  	defer c.handshakeMutex.Unlock()
  1248  
  1249  	atomic.StoreUint32(&c.handshakeStatus, 0)
  1250  	if c.handshakeErr = c.clientHandshake(context.Background()); c.handshakeErr == nil {
  1251  		c.handshakes++
  1252  	}
  1253  	return c.handshakeErr
  1254  }
  1255  
  1256  // 处理握手完成后到达的握手消息。
  1257  //
  1258  //	比如服务端发出的 newSessionTicketMsgTLS13 或 keyUpdateMsg。
  1259  //
  1260  // handlePostHandshakeMessage processes a handshake message arrived after the
  1261  // handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
  1262  func (c *Conn) handlePostHandshakeMessage() error {
  1263  	if c.vers != VersionTLS13 && c.vers != VersionGMSSL {
  1264  		return c.handleRenegotiation()
  1265  	}
  1266  
  1267  	msg, err := c.readHandshake()
  1268  	if err != nil {
  1269  		return err
  1270  	}
  1271  
  1272  	c.retryCount++
  1273  	if c.retryCount > maxUselessRecords {
  1274  		_ = c.sendAlert(alertUnexpectedMessage)
  1275  		return c.in.setErrorLocked(errors.New("gmtls: too many non-advancing records"))
  1276  	}
  1277  
  1278  	switch msg := msg.(type) {
  1279  	case *newSessionTicketMsgTLS13:
  1280  		fmt.Println("===== 客户端接收到 newSessionTicketMsgTLS13")
  1281  		return c.handleNewSessionTicket(msg)
  1282  	case *keyUpdateMsg:
  1283  		fmt.Println("===== 客户端/服务端接收到 keyUpdateMsg")
  1284  		return c.handleKeyUpdate(msg)
  1285  	default:
  1286  		_ = c.sendAlert(alertUnexpectedMessage)
  1287  		return fmt.Errorf("gmtls: received unexpected handshake message of type %T", msg)
  1288  	}
  1289  }
  1290  
  1291  // 发起keyUpdateMsg, 或处理接收到的keyUpdateMsg
  1292  func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
  1293  	cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
  1294  	if cipherSuite == nil {
  1295  		return c.in.setErrorLocked(c.sendAlert(alertInternalError))
  1296  	}
  1297  	// 派生新的对方的通信密钥并设置到连接通道in
  1298  	newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
  1299  	c.in.setTrafficSecret(cipherSuite, newSecret)
  1300  	// 作为keyUpdate发起方(updateRequested == true),通知tls通信对方更新会话密钥
  1301  	if keyUpdate.updateRequested {
  1302  		c.out.Lock()
  1303  		defer c.out.Unlock()
  1304  		// 创建一个新的keyUpdateMsg,此时updateRequested默认为false
  1305  		msg := &keyUpdateMsg{}
  1306  		// 发送 keyUpdateMsg
  1307  		_, err := c.writeRecordLocked(recordTypeHandshake, msg.marshal())
  1308  		if err != nil {
  1309  			// Surface the error at the next write.
  1310  			err := c.out.setErrorLocked(err)
  1311  			if err != nil {
  1312  				return err
  1313  			}
  1314  			return nil
  1315  		}
  1316  		fmt.Println("===== 客户端/服务端发出 keyUpdateMsg")
  1317  		// 发出 keyUpdateMsg 之后才能派生新的己方通信密钥并设置到连接out通道
  1318  		newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
  1319  		c.out.setTrafficSecret(cipherSuite, newSecret)
  1320  	}
  1321  	return nil
  1322  }
  1323  
  1324  // Read reads data from the connection.
  1325  //
  1326  // As Read calls Handshake, in order to prevent indefinite blocking a deadline
  1327  // must be set for both Read and Write before Read is called when the handshake
  1328  // has not yet completed. See SetDeadline, SetReadDeadline, and
  1329  // SetWriteDeadline.
  1330  func (c *Conn) Read(b []byte) (int, error) {
  1331  	//fmt.Println("===== tls连接读取到一条消息")
  1332  	if err := c.Handshake(); err != nil {
  1333  		log.Fatal(err)
  1334  		return 0, err
  1335  	}
  1336  	if len(b) == 0 {
  1337  		// Put this after Handshake, in case people were calling
  1338  		// Read(nil) for the side effect of the Handshake.
  1339  		return 0, nil
  1340  	}
  1341  
  1342  	c.in.Lock()
  1343  	defer c.in.Unlock()
  1344  
  1345  	for c.input.Len() == 0 {
  1346  		if err := c.readRecord(); err != nil {
  1347  			return 0, err
  1348  		}
  1349  		for c.hand.Len() > 0 {
  1350  			if err := c.handlePostHandshakeMessage(); err != nil {
  1351  				return 0, err
  1352  			}
  1353  		}
  1354  	}
  1355  
  1356  	n, _ := c.input.Read(b)
  1357  
  1358  	// If a close-notify alert is waiting, read it so that we can return (n,
  1359  	// EOF) instead of (n, nil), to signal to the HTTP response reading
  1360  	// goroutine that the connection is now closed. This eliminates a race
  1361  	// where the HTTP response reading goroutine would otherwise not observe
  1362  	// the EOF until its next read, by which time a client goroutine might
  1363  	// have already tried to reuse the HTTP connection for a new request.
  1364  	// See https://golang.org/cl/76400046 and https://golang.org/issue/3514
  1365  	if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
  1366  		recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
  1367  		if err := c.readRecord(); err != nil {
  1368  			return n, err // will be io.EOF on closeNotify
  1369  		}
  1370  	}
  1371  
  1372  	return n, nil
  1373  }
  1374  
  1375  // Close closes the connection.
  1376  func (c *Conn) Close() error {
  1377  	// Interlock with Conn.Write above.
  1378  	var x int32
  1379  	for {
  1380  		x = atomic.LoadInt32(&c.activeCall)
  1381  		if x&1 != 0 {
  1382  			return net.ErrClosed
  1383  		}
  1384  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1385  			break
  1386  		}
  1387  	}
  1388  	if x != 0 {
  1389  		// io.Writer and io.Closer should not be used concurrently.
  1390  		// If Close is called while a Write is currently in-flight,
  1391  		// interpret that as a sign that this Close is really just
  1392  		// being used to break the Write and/or clean up resources and
  1393  		// avoid sending the alertCloseNotify, which may block
  1394  		// waiting on handshakeMutex or the c.out mutex.
  1395  		return c.conn.Close()
  1396  	}
  1397  
  1398  	var alertErr error
  1399  	if c.handshakeComplete() {
  1400  		if err := c.closeNotify(); err != nil {
  1401  			alertErr = fmt.Errorf("gmtls: failed to send closeNotify alert (but connection was closed anyway): %w", err)
  1402  		}
  1403  	}
  1404  
  1405  	if err := c.conn.Close(); err != nil {
  1406  		return err
  1407  	}
  1408  	return alertErr
  1409  }
  1410  
  1411  var errEarlyCloseWrite = errors.New("gmtls: CloseWrite called before handshake complete")
  1412  
  1413  // CloseWrite shuts down the writing side of the connection. It should only be
  1414  // called once the handshake has completed and does not call CloseWrite on the
  1415  // underlying connection. Most callers should just use Close.
  1416  func (c *Conn) CloseWrite() error {
  1417  	if !c.handshakeComplete() {
  1418  		return errEarlyCloseWrite
  1419  	}
  1420  
  1421  	return c.closeNotify()
  1422  }
  1423  
  1424  func (c *Conn) closeNotify() error {
  1425  	c.out.Lock()
  1426  	defer c.out.Unlock()
  1427  
  1428  	if !c.closeNotifySent {
  1429  		// Set a Write Deadline to prevent possibly blocking forever.
  1430  		err := c.SetWriteDeadline(time.Now().Add(time.Second * 5))
  1431  		if err != nil {
  1432  			return err
  1433  		}
  1434  		c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1435  		c.closeNotifySent = true
  1436  		// Any subsequent writes will fail.
  1437  		err = c.SetWriteDeadline(time.Now())
  1438  		if err != nil {
  1439  			return err
  1440  		}
  1441  	}
  1442  	return c.closeNotifyErr
  1443  }
  1444  
  1445  // Handshake runs the client or server handshake
  1446  // protocol if it has not yet been run.
  1447  //
  1448  // Most uses of this package need not call Handshake explicitly: the
  1449  // first Read or Write will call it automatically.
  1450  //
  1451  // For control over canceling or setting a timeout on a handshake, use
  1452  // HandshakeContext or the Dialer's DialContext method instead.
  1453  func (c *Conn) Handshake() error {
  1454  	return c.HandshakeContext(context.Background())
  1455  }
  1456  
  1457  // HandshakeContext runs the client or server handshake
  1458  // protocol if it has not yet been run.
  1459  //
  1460  // The provided Context must be non-nil. If the context is canceled before
  1461  // the handshake is complete, the handshake is interrupted and an error is returned.
  1462  // Once the handshake has completed, cancellation of the context will not affect the
  1463  // connection.
  1464  //
  1465  // Most uses of this package need not call HandshakeContext explicitly: the
  1466  // first Read or Write will call it automatically.
  1467  func (c *Conn) HandshakeContext(ctx context.Context) error {
  1468  	// Delegate to unexported method for named return
  1469  	// without confusing documented signature.
  1470  	return c.handshakeContext(ctx)
  1471  }
  1472  
  1473  // 根据上下文环境执行握手
  1474  func (c *Conn) handshakeContext(ctx context.Context) (ret error) {
  1475  	handshakeCtx, cancel := context.WithCancel(ctx)
  1476  	// Note: defer this before starting the "interrupter" goroutine
  1477  	// so that we can tell the difference between the input being canceled and
  1478  	// this cancellation. In the former case, we need to close the connection.
  1479  	defer cancel()
  1480  
  1481  	// Start the "interrupter" goroutine, if this context might be canceled.
  1482  	// (The background context cannot).
  1483  	//
  1484  	// The interrupter goroutine waits for the input context to be done and
  1485  	// closes the connection if this happens before the function returns.
  1486  	if ctx.Done() != nil {
  1487  		done := make(chan struct{})
  1488  		interruptRes := make(chan error, 1)
  1489  		defer func() {
  1490  			close(done)
  1491  			if ctxErr := <-interruptRes; ctxErr != nil {
  1492  				// Return context error to user.
  1493  				ret = ctxErr
  1494  			}
  1495  		}()
  1496  		go func() {
  1497  			select {
  1498  			case <-handshakeCtx.Done():
  1499  				// Close the connection, discarding the error
  1500  				_ = c.conn.Close()
  1501  				interruptRes <- handshakeCtx.Err()
  1502  			case <-done:
  1503  				interruptRes <- nil
  1504  			}
  1505  		}()
  1506  	}
  1507  
  1508  	c.handshakeMutex.Lock()
  1509  	defer c.handshakeMutex.Unlock()
  1510  
  1511  	if err := c.handshakeErr; err != nil {
  1512  		return err
  1513  	}
  1514  	if c.handshakeComplete() {
  1515  		return nil
  1516  	}
  1517  
  1518  	c.in.Lock()
  1519  	defer c.in.Unlock()
  1520  	// 调用握手函数
  1521  	c.handshakeErr = c.handshakeFn(handshakeCtx)
  1522  	if c.handshakeErr == nil {
  1523  		c.handshakes++
  1524  	} else {
  1525  		// If an error occurred during the handshake try to flush the
  1526  		// alert that might be left in the buffer.
  1527  		_, err := c.flush()
  1528  		if err != nil {
  1529  			return err
  1530  		}
  1531  	}
  1532  
  1533  	if c.handshakeErr == nil && !c.handshakeComplete() {
  1534  		c.handshakeErr = errors.New("gmtls: internal error: handshake should have had a result")
  1535  	}
  1536  
  1537  	return c.handshakeErr
  1538  }
  1539  
  1540  // ConnectionState returns basic TLS details about the connection.
  1541  func (c *Conn) ConnectionState() ConnectionState {
  1542  	c.handshakeMutex.Lock()
  1543  	defer c.handshakeMutex.Unlock()
  1544  	return c.connectionStateLocked()
  1545  }
  1546  
  1547  func (c *Conn) connectionStateLocked() ConnectionState {
  1548  	var state ConnectionState
  1549  	state.HandshakeComplete = c.handshakeComplete()
  1550  	state.Version = c.vers
  1551  	state.NegotiatedProtocol = c.clientProtocol
  1552  	state.DidResume = c.didResume
  1553  	state.NegotiatedProtocolIsMutual = true
  1554  	state.ServerName = c.serverName
  1555  	state.CipherSuite = c.cipherSuite
  1556  	state.PeerCertificates = c.peerCertificates
  1557  	state.VerifiedChains = c.verifiedChains
  1558  	state.SignedCertificateTimestamps = c.scts
  1559  	state.OCSPResponse = c.ocspResponse
  1560  	if !c.didResume && c.vers != VersionTLS13 && c.vers != VersionGMSSL {
  1561  		if c.clientFinishedIsFirst {
  1562  			state.TLSUnique = c.clientFinished[:]
  1563  		} else {
  1564  			state.TLSUnique = c.serverFinished[:]
  1565  		}
  1566  	}
  1567  	if c.config.Renegotiation != RenegotiateNever {
  1568  		state.ekm = noExportedKeyingMaterial
  1569  	} else {
  1570  		state.ekm = c.ekm
  1571  	}
  1572  	return state
  1573  }
  1574  
  1575  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1576  // any. (Only valid for client connections.)
  1577  func (c *Conn) OCSPResponse() []byte {
  1578  	c.handshakeMutex.Lock()
  1579  	defer c.handshakeMutex.Unlock()
  1580  
  1581  	return c.ocspResponse
  1582  }
  1583  
  1584  // VerifyHostname checks that the peer certificate chain is valid for
  1585  // connecting to host. If so, it returns nil; if not, it returns an error
  1586  // describing the problem.
  1587  func (c *Conn) VerifyHostname(host string) error {
  1588  	c.handshakeMutex.Lock()
  1589  	defer c.handshakeMutex.Unlock()
  1590  	if !c.isClient {
  1591  		return errors.New("gmtls: VerifyHostname called on TLS server connection")
  1592  	}
  1593  	if !c.handshakeComplete() {
  1594  		return errors.New("gmtls: handshake has not yet been performed")
  1595  	}
  1596  	if len(c.verifiedChains) == 0 {
  1597  		return errors.New("gmtls: handshake did not verify certificate chain")
  1598  	}
  1599  	return c.peerCertificates[0].VerifyHostname(host)
  1600  }
  1601  
  1602  func (c *Conn) handshakeComplete() bool {
  1603  	return atomic.LoadUint32(&c.handshakeStatus) == 1
  1604  }