gitee.com/ks-custle/core-gm@v0.0.0-20230922171213-b83bdd97b62c/internal/trace/gc.go (about) 1 // Copyright 2017 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package trace 6 7 import ( 8 "container/heap" 9 "math" 10 "sort" 11 "strings" 12 "time" 13 ) 14 15 // MutatorUtil is a change in mutator utilization at a particular 16 // time. Mutator utilization functions are represented as a 17 // time-ordered []MutatorUtil. 18 type MutatorUtil struct { 19 Time int64 20 // Util is the mean mutator utilization starting at Time. This 21 // is in the range [0, 1]. 22 Util float64 23 } 24 25 // UtilFlags controls the behavior of MutatorUtilization. 26 type UtilFlags int 27 28 const ( 29 // UtilSTW means utilization should account for STW events. 30 UtilSTW UtilFlags = 1 << iota 31 // UtilBackground means utilization should account for 32 // background mark workers. 33 UtilBackground 34 // UtilAssist means utilization should account for mark 35 // assists. 36 UtilAssist 37 // UtilSweep means utilization should account for sweeping. 38 UtilSweep 39 40 // UtilPerProc means each P should be given a separate 41 // utilization function. Otherwise, there is a single function 42 // and each P is given a fraction of the utilization. 43 UtilPerProc 44 ) 45 46 // MutatorUtilization returns a set of mutator utilization functions 47 // for the given trace. Each function will always end with 0 48 // utilization. The bounds of each function are implicit in the first 49 // and last event; outside of these bounds each function is undefined. 50 // 51 // If the UtilPerProc flag is not given, this always returns a single 52 // utilization function. Otherwise, it returns one function per P. 53 func MutatorUtilization(events []*Event, flags UtilFlags) [][]MutatorUtil { 54 if len(events) == 0 { 55 return nil 56 } 57 58 type perP struct { 59 // gc > 0 indicates that GC is active on this P. 60 gc int 61 // series the logical series number for this P. This 62 // is necessary because Ps may be removed and then 63 // re-added, and then the new P needs a new series. 64 series int 65 } 66 ps := []perP{} 67 stw := 0 68 69 out := [][]MutatorUtil{} 70 assists := map[uint64]bool{} 71 block := map[uint64]*Event{} 72 bgMark := map[uint64]bool{} 73 74 for _, ev := range events { 75 switch ev.Type { 76 case EvGomaxprocs: 77 gomaxprocs := int(ev.Args[0]) 78 if len(ps) > gomaxprocs { 79 if flags&UtilPerProc != 0 { 80 // End each P's series. 81 for _, p := range ps[gomaxprocs:] { 82 out[p.series] = addUtil(out[p.series], MutatorUtil{ev.Ts, 0}) 83 } 84 } 85 ps = ps[:gomaxprocs] 86 } 87 for len(ps) < gomaxprocs { 88 // Start new P's series. 89 series := 0 90 if flags&UtilPerProc != 0 || len(out) == 0 { 91 series = len(out) 92 out = append(out, []MutatorUtil{{ev.Ts, 1}}) 93 } 94 ps = append(ps, perP{series: series}) 95 } 96 case EvGCSTWStart: 97 if flags&UtilSTW != 0 { 98 stw++ 99 } 100 case EvGCSTWDone: 101 if flags&UtilSTW != 0 { 102 stw-- 103 } 104 case EvGCMarkAssistStart: 105 if flags&UtilAssist != 0 { 106 ps[ev.P].gc++ 107 assists[ev.G] = true 108 } 109 case EvGCMarkAssistDone: 110 if flags&UtilAssist != 0 { 111 ps[ev.P].gc-- 112 delete(assists, ev.G) 113 } 114 case EvGCSweepStart: 115 if flags&UtilSweep != 0 { 116 ps[ev.P].gc++ 117 } 118 case EvGCSweepDone: 119 if flags&UtilSweep != 0 { 120 ps[ev.P].gc-- 121 } 122 case EvGoStartLabel: 123 if flags&UtilBackground != 0 && strings.HasPrefix(ev.SArgs[0], "GC ") && ev.SArgs[0] != "GC (idle)" { 124 // Background mark worker. 125 // 126 // If we're in per-proc mode, we don't 127 // count dedicated workers because 128 // they kick all of the goroutines off 129 // that P, so don't directly 130 // contribute to goroutine latency. 131 if !(flags&UtilPerProc != 0 && ev.SArgs[0] == "GC (dedicated)") { 132 bgMark[ev.G] = true 133 ps[ev.P].gc++ 134 } 135 } 136 fallthrough 137 case EvGoStart: 138 if assists[ev.G] { 139 // Unblocked during assist. 140 ps[ev.P].gc++ 141 } 142 block[ev.G] = ev.Link 143 default: 144 if ev != block[ev.G] { 145 continue 146 } 147 148 if assists[ev.G] { 149 // Blocked during assist. 150 ps[ev.P].gc-- 151 } 152 if bgMark[ev.G] { 153 // Background mark worker done. 154 ps[ev.P].gc-- 155 delete(bgMark, ev.G) 156 } 157 delete(block, ev.G) 158 } 159 160 if flags&UtilPerProc == 0 { 161 // Compute the current average utilization. 162 if len(ps) == 0 { 163 continue 164 } 165 gcPs := 0 166 if stw > 0 { 167 gcPs = len(ps) 168 } else { 169 for i := range ps { 170 if ps[i].gc > 0 { 171 gcPs++ 172 } 173 } 174 } 175 mu := MutatorUtil{ev.Ts, 1 - float64(gcPs)/float64(len(ps))} 176 177 // Record the utilization change. (Since 178 // len(ps) == len(out), we know len(out) > 0.) 179 out[0] = addUtil(out[0], mu) 180 } else { 181 // Check for per-P utilization changes. 182 for i := range ps { 183 p := &ps[i] 184 util := 1.0 185 if stw > 0 || p.gc > 0 { 186 util = 0.0 187 } 188 out[p.series] = addUtil(out[p.series], MutatorUtil{ev.Ts, util}) 189 } 190 } 191 } 192 193 // Add final 0 utilization event to any remaining series. This 194 // is important to mark the end of the trace. The exact value 195 // shouldn't matter since no window should extend beyond this, 196 // but using 0 is symmetric with the start of the trace. 197 mu := MutatorUtil{events[len(events)-1].Ts, 0} 198 for i := range ps { 199 out[ps[i].series] = addUtil(out[ps[i].series], mu) 200 } 201 return out 202 } 203 204 func addUtil(util []MutatorUtil, mu MutatorUtil) []MutatorUtil { 205 if len(util) > 0 { 206 if mu.Util == util[len(util)-1].Util { 207 // No change. 208 return util 209 } 210 if mu.Time == util[len(util)-1].Time { 211 // Take the lowest utilization at a time stamp. 212 if mu.Util < util[len(util)-1].Util { 213 util[len(util)-1] = mu 214 } 215 return util 216 } 217 } 218 return append(util, mu) 219 } 220 221 // totalUtil is total utilization, measured in nanoseconds. This is a 222 // separate type primarily to distinguish it from mean utilization, 223 // which is also a float64. 224 type totalUtil float64 225 226 func totalUtilOf(meanUtil float64, dur int64) totalUtil { 227 return totalUtil(meanUtil * float64(dur)) 228 } 229 230 // mean returns the mean utilization over dur. 231 func (u totalUtil) mean(dur time.Duration) float64 { 232 return float64(u) / float64(dur) 233 } 234 235 // An MMUCurve is the minimum mutator utilization curve across 236 // multiple window sizes. 237 type MMUCurve struct { 238 series []mmuSeries 239 } 240 241 type mmuSeries struct { 242 util []MutatorUtil 243 // sums[j] is the cumulative sum of util[:j]. 244 sums []totalUtil 245 // bands summarizes util in non-overlapping bands of duration 246 // bandDur. 247 bands []mmuBand 248 // bandDur is the duration of each band. 249 bandDur int64 250 } 251 252 type mmuBand struct { 253 // minUtil is the minimum instantaneous mutator utilization in 254 // this band. 255 minUtil float64 256 // cumUtil is the cumulative total mutator utilization between 257 // time 0 and the left edge of this band. 258 cumUtil totalUtil 259 260 // integrator is the integrator for the left edge of this 261 // band. 262 integrator integrator 263 } 264 265 // NewMMUCurve returns an MMU curve for the given mutator utilization 266 // function. 267 func NewMMUCurve(utils [][]MutatorUtil) *MMUCurve { 268 series := make([]mmuSeries, len(utils)) 269 for i, util := range utils { 270 series[i] = newMMUSeries(util) 271 } 272 return &MMUCurve{series} 273 } 274 275 // bandsPerSeries is the number of bands to divide each series into. 276 // This is only changed by tests. 277 var bandsPerSeries = 1000 278 279 func newMMUSeries(util []MutatorUtil) mmuSeries { 280 // Compute cumulative sum. 281 sums := make([]totalUtil, len(util)) 282 var prev MutatorUtil 283 var sum totalUtil 284 for j, u := range util { 285 sum += totalUtilOf(prev.Util, u.Time-prev.Time) 286 sums[j] = sum 287 prev = u 288 } 289 290 // Divide the utilization curve up into equal size 291 // non-overlapping "bands" and compute a summary for each of 292 // these bands. 293 // 294 // Compute the duration of each band. 295 numBands := bandsPerSeries 296 if numBands > len(util) { 297 // There's no point in having lots of bands if there 298 // aren't many events. 299 numBands = len(util) 300 } 301 dur := util[len(util)-1].Time - util[0].Time 302 bandDur := (dur + int64(numBands) - 1) / int64(numBands) 303 if bandDur < 1 { 304 bandDur = 1 305 } 306 // Compute the bands. There are numBands+1 bands in order to 307 // record the final cumulative sum. 308 bands := make([]mmuBand, numBands+1) 309 s := mmuSeries{util, sums, bands, bandDur} 310 leftSum := integrator{&s, 0} 311 for i := range bands { 312 startTime, endTime := s.bandTime(i) 313 cumUtil := leftSum.advance(startTime) 314 predIdx := leftSum.pos 315 minUtil := 1.0 316 for i := predIdx; i < len(util) && util[i].Time < endTime; i++ { 317 minUtil = math.Min(minUtil, util[i].Util) 318 } 319 bands[i] = mmuBand{minUtil, cumUtil, leftSum} 320 } 321 322 return s 323 } 324 325 func (s *mmuSeries) bandTime(i int) (start, end int64) { 326 start = int64(i)*s.bandDur + s.util[0].Time 327 end = start + s.bandDur 328 return 329 } 330 331 type bandUtil struct { 332 // Utilization series index 333 series int 334 // Band index 335 i int 336 // Lower bound of mutator utilization for all windows 337 // with a left edge in this band. 338 utilBound float64 339 } 340 341 type bandUtilHeap []bandUtil 342 343 func (h bandUtilHeap) Len() int { 344 return len(h) 345 } 346 347 func (h bandUtilHeap) Less(i, j int) bool { 348 return h[i].utilBound < h[j].utilBound 349 } 350 351 func (h bandUtilHeap) Swap(i, j int) { 352 h[i], h[j] = h[j], h[i] 353 } 354 355 func (h *bandUtilHeap) Push(x interface{}) { 356 *h = append(*h, x.(bandUtil)) 357 } 358 359 func (h *bandUtilHeap) Pop() interface{} { 360 x := (*h)[len(*h)-1] 361 *h = (*h)[:len(*h)-1] 362 return x 363 } 364 365 // UtilWindow is a specific window at Time. 366 type UtilWindow struct { 367 Time int64 368 // MutatorUtil is the mean mutator utilization in this window. 369 MutatorUtil float64 370 } 371 372 type utilHeap []UtilWindow 373 374 func (h utilHeap) Len() int { 375 return len(h) 376 } 377 378 func (h utilHeap) Less(i, j int) bool { 379 if h[i].MutatorUtil != h[j].MutatorUtil { 380 return h[i].MutatorUtil > h[j].MutatorUtil 381 } 382 return h[i].Time > h[j].Time 383 } 384 385 func (h utilHeap) Swap(i, j int) { 386 h[i], h[j] = h[j], h[i] 387 } 388 389 func (h *utilHeap) Push(x interface{}) { 390 *h = append(*h, x.(UtilWindow)) 391 } 392 393 func (h *utilHeap) Pop() interface{} { 394 x := (*h)[len(*h)-1] 395 *h = (*h)[:len(*h)-1] 396 return x 397 } 398 399 // An accumulator takes a windowed mutator utilization function and 400 // tracks various statistics for that function. 401 type accumulator struct { 402 mmu float64 403 404 // bound is the mutator utilization bound where adding any 405 // mutator utilization above this bound cannot affect the 406 // accumulated statistics. 407 bound float64 408 409 // Worst N window tracking 410 nWorst int 411 wHeap utilHeap 412 413 // Mutator utilization distribution tracking 414 mud *mud 415 // preciseMass is the distribution mass that must be precise 416 // before accumulation is stopped. 417 preciseMass float64 418 // lastTime and lastMU are the previous point added to the 419 // windowed mutator utilization function. 420 lastTime int64 421 lastMU float64 422 } 423 424 // resetTime declares a discontinuity in the windowed mutator 425 // utilization function by resetting the current time. 426 func (acc *accumulator) resetTime() { 427 // This only matters for distribution collection, since that's 428 // the only thing that depends on the progression of the 429 // windowed mutator utilization function. 430 acc.lastTime = math.MaxInt64 431 } 432 433 // addMU adds a point to the windowed mutator utilization function at 434 // (time, mu). This must be called for monotonically increasing values 435 // of time. 436 // 437 // It returns true if further calls to addMU would be pointless. 438 func (acc *accumulator) addMU(time int64, mu float64, window time.Duration) bool { 439 if mu < acc.mmu { 440 acc.mmu = mu 441 } 442 acc.bound = acc.mmu 443 444 if acc.nWorst == 0 { 445 // If the minimum has reached zero, it can't go any 446 // lower, so we can stop early. 447 return mu == 0 448 } 449 450 // Consider adding this window to the n worst. 451 if len(acc.wHeap) < acc.nWorst || mu < acc.wHeap[0].MutatorUtil { 452 // This window is lower than the K'th worst window. 453 // 454 // Check if there's any overlapping window 455 // already in the heap and keep whichever is 456 // worse. 457 for i, ui := range acc.wHeap { 458 if time+int64(window) > ui.Time && ui.Time+int64(window) > time { 459 if ui.MutatorUtil <= mu { 460 // Keep the first window. 461 goto keep 462 } else { 463 // Replace it with this window. 464 heap.Remove(&acc.wHeap, i) 465 break 466 } 467 } 468 } 469 470 heap.Push(&acc.wHeap, UtilWindow{time, mu}) 471 if len(acc.wHeap) > acc.nWorst { 472 heap.Pop(&acc.wHeap) 473 } 474 keep: 475 } 476 477 if len(acc.wHeap) < acc.nWorst { 478 // We don't have N windows yet, so keep accumulating. 479 acc.bound = 1.0 480 } else { 481 // Anything above the least worst window has no effect. 482 acc.bound = math.Max(acc.bound, acc.wHeap[0].MutatorUtil) 483 } 484 485 if acc.mud != nil { 486 if acc.lastTime != math.MaxInt64 { 487 // Update distribution. 488 acc.mud.add(acc.lastMU, mu, float64(time-acc.lastTime)) 489 } 490 acc.lastTime, acc.lastMU = time, mu 491 if _, mudBound, ok := acc.mud.approxInvCumulativeSum(); ok { 492 acc.bound = math.Max(acc.bound, mudBound) 493 } else { 494 // We haven't accumulated enough total precise 495 // mass yet to even reach our goal, so keep 496 // accumulating. 497 acc.bound = 1 498 } 499 // It's not worth checking percentiles every time, so 500 // just keep accumulating this band. 501 return false 502 } 503 504 // If we've found enough 0 utilizations, we can stop immediately. 505 return len(acc.wHeap) == acc.nWorst && acc.wHeap[0].MutatorUtil == 0 506 } 507 508 // MMU returns the minimum mutator utilization for the given time 509 // window. This is the minimum utilization for all windows of this 510 // duration across the execution. The returned value is in the range 511 // [0, 1]. 512 func (c *MMUCurve) MMU(window time.Duration) (mmu float64) { 513 acc := accumulator{mmu: 1.0, bound: 1.0} 514 c.mmu(window, &acc) 515 return acc.mmu 516 } 517 518 // Examples returns n specific examples of the lowest mutator 519 // utilization for the given window size. The returned windows will be 520 // disjoint (otherwise there would be a huge number of 521 // mostly-overlapping windows at the single lowest point). There are 522 // no guarantees on which set of disjoint windows this returns. 523 func (c *MMUCurve) Examples(window time.Duration, n int) (worst []UtilWindow) { 524 acc := accumulator{mmu: 1.0, bound: 1.0, nWorst: n} 525 c.mmu(window, &acc) 526 sort.Sort(sort.Reverse(acc.wHeap)) 527 return ([]UtilWindow)(acc.wHeap) 528 } 529 530 // MUD returns mutator utilization distribution quantiles for the 531 // given window size. 532 // 533 // The mutator utilization distribution is the distribution of mean 534 // mutator utilization across all windows of the given window size in 535 // the trace. 536 // 537 // The minimum mutator utilization is the minimum (0th percentile) of 538 // this distribution. (However, if only the minimum is desired, it's 539 // more efficient to use the MMU method.) 540 func (c *MMUCurve) MUD(window time.Duration, quantiles []float64) []float64 { 541 if len(quantiles) == 0 { 542 return []float64{} 543 } 544 545 // Each unrefined band contributes a known total mass to the 546 // distribution (bandDur except at the end), but in an unknown 547 // way. However, we know that all the mass it contributes must 548 // be at or above its worst-case mean mutator utilization. 549 // 550 // Hence, we refine bands until the highest desired 551 // distribution quantile is less than the next worst-case mean 552 // mutator utilization. At this point, all further 553 // contributions to the distribution must be beyond the 554 // desired quantile and hence cannot affect it. 555 // 556 // First, find the highest desired distribution quantile. 557 maxQ := quantiles[0] 558 for _, q := range quantiles { 559 if q > maxQ { 560 maxQ = q 561 } 562 } 563 // The distribution's mass is in units of time (it's not 564 // normalized because this would make it more annoying to 565 // account for future contributions of unrefined bands). The 566 // total final mass will be the duration of the trace itself 567 // minus the window size. Using this, we can compute the mass 568 // corresponding to quantile maxQ. 569 var duration int64 570 for _, s := range c.series { 571 duration1 := s.util[len(s.util)-1].Time - s.util[0].Time 572 if duration1 >= int64(window) { 573 duration += duration1 - int64(window) 574 } 575 } 576 qMass := float64(duration) * maxQ 577 578 // Accumulate the MUD until we have precise information for 579 // everything to the left of qMass. 580 acc := accumulator{mmu: 1.0, bound: 1.0, preciseMass: qMass, mud: new(mud)} 581 acc.mud.setTrackMass(qMass) 582 c.mmu(window, &acc) 583 584 // Evaluate the quantiles on the accumulated MUD. 585 out := make([]float64, len(quantiles)) 586 for i := range out { 587 mu, _ := acc.mud.invCumulativeSum(float64(duration) * quantiles[i]) 588 if math.IsNaN(mu) { 589 // There are a few legitimate ways this can 590 // happen: 591 // 592 // 1. If the window is the full trace 593 // duration, then the windowed MU function is 594 // only defined at a single point, so the MU 595 // distribution is not well-defined. 596 // 597 // 2. If there are no events, then the MU 598 // distribution has no mass. 599 // 600 // Either way, all of the quantiles will have 601 // converged toward the MMU at this point. 602 mu = acc.mmu 603 } 604 out[i] = mu 605 } 606 return out 607 } 608 609 func (c *MMUCurve) mmu(window time.Duration, acc *accumulator) { 610 if window <= 0 { 611 acc.mmu = 0 612 return 613 } 614 615 var bandU bandUtilHeap 616 windows := make([]time.Duration, len(c.series)) 617 for i, s := range c.series { 618 windows[i] = window 619 if max := time.Duration(s.util[len(s.util)-1].Time - s.util[0].Time); window > max { 620 windows[i] = max 621 } 622 623 bandU1 := bandUtilHeap(s.mkBandUtil(i, windows[i])) 624 if bandU == nil { 625 bandU = bandU1 626 } else { 627 bandU = append(bandU, bandU1...) 628 } 629 } 630 631 // Process bands from lowest utilization bound to highest. 632 heap.Init(&bandU) 633 634 // Refine each band into a precise window and MMU until 635 // refining the next lowest band can no longer affect the MMU 636 // or windows. 637 for len(bandU) > 0 && bandU[0].utilBound < acc.bound { 638 i := bandU[0].series 639 c.series[i].bandMMU(bandU[0].i, windows[i], acc) 640 heap.Pop(&bandU) 641 } 642 } 643 644 func (c *mmuSeries) mkBandUtil(series int, window time.Duration) []bandUtil { 645 // For each band, compute the worst-possible total mutator 646 // utilization for all windows that start in that band. 647 648 // minBands is the minimum number of bands a window can span 649 // and maxBands is the maximum number of bands a window can 650 // span in any alignment. 651 minBands := int((int64(window) + c.bandDur - 1) / c.bandDur) 652 maxBands := int((int64(window) + 2*(c.bandDur-1)) / c.bandDur) 653 if window > 1 && maxBands < 2 { 654 panic("maxBands < 2") 655 } 656 tailDur := int64(window) % c.bandDur 657 nUtil := len(c.bands) - maxBands + 1 658 if nUtil < 0 { 659 nUtil = 0 660 } 661 bandU := make([]bandUtil, nUtil) 662 for i := range bandU { 663 // To compute the worst-case MU, we assume the minimum 664 // for any bands that are only partially overlapped by 665 // some window and the mean for any bands that are 666 // completely covered by all windows. 667 var util totalUtil 668 669 // Find the lowest and second lowest of the partial 670 // bands. 671 l := c.bands[i].minUtil 672 r1 := c.bands[i+minBands-1].minUtil 673 r2 := c.bands[i+maxBands-1].minUtil 674 minBand := math.Min(l, math.Min(r1, r2)) 675 // Assume the worst window maximally overlaps the 676 // worst minimum and then the rest overlaps the second 677 // worst minimum. 678 if minBands == 1 { 679 util += totalUtilOf(minBand, int64(window)) 680 } else { 681 util += totalUtilOf(minBand, c.bandDur) 682 midBand := 0.0 683 switch { 684 case minBand == l: 685 midBand = math.Min(r1, r2) 686 case minBand == r1: 687 midBand = math.Min(l, r2) 688 case minBand == r2: 689 midBand = math.Min(l, r1) 690 } 691 util += totalUtilOf(midBand, tailDur) 692 } 693 694 // Add the total mean MU of bands that are completely 695 // overlapped by all windows. 696 if minBands > 2 { 697 util += c.bands[i+minBands-1].cumUtil - c.bands[i+1].cumUtil 698 } 699 700 bandU[i] = bandUtil{series, i, util.mean(window)} 701 } 702 703 return bandU 704 } 705 706 // bandMMU computes the precise minimum mutator utilization for 707 // windows with a left edge in band bandIdx. 708 func (c *mmuSeries) bandMMU(bandIdx int, window time.Duration, acc *accumulator) { 709 util := c.util 710 711 // We think of the mutator utilization over time as the 712 // box-filtered utilization function, which we call the 713 // "windowed mutator utilization function". The resulting 714 // function is continuous and piecewise linear (unless 715 // window==0, which we handle elsewhere), where the boundaries 716 // between segments occur when either edge of the window 717 // encounters a change in the instantaneous mutator 718 // utilization function. Hence, the minimum of this function 719 // will always occur when one of the edges of the window 720 // aligns with a utilization change, so these are the only 721 // points we need to consider. 722 // 723 // We compute the mutator utilization function incrementally 724 // by tracking the integral from t=0 to the left edge of the 725 // window and to the right edge of the window. 726 left := c.bands[bandIdx].integrator 727 right := left 728 time, endTime := c.bandTime(bandIdx) 729 if utilEnd := util[len(util)-1].Time - int64(window); utilEnd < endTime { 730 endTime = utilEnd 731 } 732 acc.resetTime() 733 for { 734 // Advance edges to time and time+window. 735 mu := (right.advance(time+int64(window)) - left.advance(time)).mean(window) 736 if acc.addMU(time, mu, window) { 737 break 738 } 739 if time == endTime { 740 break 741 } 742 743 // The maximum slope of the windowed mutator 744 // utilization function is 1/window, so we can always 745 // advance the time by at least (mu - mmu) * window 746 // without dropping below mmu. 747 minTime := time + int64((mu-acc.bound)*float64(window)) 748 749 // Advance the window to the next time where either 750 // the left or right edge of the window encounters a 751 // change in the utilization curve. 752 if t1, t2 := left.next(time), right.next(time+int64(window))-int64(window); t1 < t2 { 753 time = t1 754 } else { 755 time = t2 756 } 757 if time < minTime { 758 time = minTime 759 } 760 if time >= endTime { 761 // For MMUs we could stop here, but for MUDs 762 // it's important that we span the entire 763 // band. 764 time = endTime 765 } 766 } 767 } 768 769 // An integrator tracks a position in a utilization function and 770 // integrates it. 771 type integrator struct { 772 u *mmuSeries 773 // pos is the index in u.util of the current time's non-strict 774 // predecessor. 775 pos int 776 } 777 778 // advance returns the integral of the utilization function from 0 to 779 // time. advance must be called on monotonically increasing values of 780 // times. 781 func (in *integrator) advance(time int64) totalUtil { 782 util, pos := in.u.util, in.pos 783 // Advance pos until pos+1 is time's strict successor (making 784 // pos time's non-strict predecessor). 785 // 786 // Very often, this will be nearby, so we optimize that case, 787 // but it may be arbitrarily far away, so we handled that 788 // efficiently, too. 789 const maxSeq = 8 790 if pos+maxSeq < len(util) && util[pos+maxSeq].Time > time { 791 // Nearby. Use a linear scan. 792 for pos+1 < len(util) && util[pos+1].Time <= time { 793 pos++ 794 } 795 } else { 796 // Far. Binary search for time's strict successor. 797 l, r := pos, len(util) 798 for l < r { 799 h := int(uint(l+r) >> 1) 800 if util[h].Time <= time { 801 l = h + 1 802 } else { 803 r = h 804 } 805 } 806 pos = l - 1 // Non-strict predecessor. 807 } 808 in.pos = pos 809 var partial totalUtil 810 if time != util[pos].Time { 811 partial = totalUtilOf(util[pos].Util, time-util[pos].Time) 812 } 813 return in.u.sums[pos] + partial 814 } 815 816 // next returns the smallest time t' > time of a change in the 817 // utilization function. 818 func (in *integrator) next(time int64) int64 { 819 for _, u := range in.u.util[in.pos:] { 820 if u.Time > time { 821 return u.Time 822 } 823 } 824 return 1<<63 - 1 825 }