gitee.com/lh-her-team/common@v1.5.1/crypto/hibe/hibe_amd64/hibe/bn256/gfp6.go (about) 1 package bn256 2 3 // For details of the algorithms used, see "Multiplication and Squaring on 4 // Pairing-Friendly Fields, Devegili et al. 5 // http://eprint.iacr.org/2006/471.pdf. 6 7 // gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ 8 // and ξ=i+9. 9 type gfP6 struct { 10 x, y, z gfP2 // value is xτ² + yτ + z 11 } 12 13 func (e *gfP6) String() string { 14 return "(" + e.x.String() + ", " + e.y.String() + ", " + e.z.String() + ")" 15 } 16 17 func (e *gfP6) Set(a *gfP6) *gfP6 { 18 e.x.Set(&a.x) 19 e.y.Set(&a.y) 20 e.z.Set(&a.z) 21 return e 22 } 23 24 func (e *gfP6) SetZero() *gfP6 { 25 e.x.SetZero() 26 e.y.SetZero() 27 e.z.SetZero() 28 return e 29 } 30 31 func (e *gfP6) SetOne() *gfP6 { 32 e.x.SetZero() 33 e.y.SetZero() 34 e.z.SetOne() 35 return e 36 } 37 38 func (e *gfP6) IsZero() bool { 39 return e.x.IsZero() && e.y.IsZero() && e.z.IsZero() 40 } 41 42 func (e *gfP6) IsOne() bool { 43 return e.x.IsZero() && e.y.IsZero() && e.z.IsOne() 44 } 45 46 func (e *gfP6) Neg(a *gfP6) *gfP6 { 47 e.x.Neg(&a.x) 48 e.y.Neg(&a.y) 49 e.z.Neg(&a.z) 50 return e 51 } 52 53 func (e *gfP6) Frobenius(a *gfP6) *gfP6 { 54 e.x.Conjugate(&a.x) 55 e.y.Conjugate(&a.y) 56 e.z.Conjugate(&a.z) 57 e.x.Mul(&e.x, xiTo2PMinus2Over3) 58 e.y.Mul(&e.y, xiToPMinus1Over3) 59 return e 60 } 61 62 // FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z 63 func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 { 64 // τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3) 65 e.x.MulScalar(&a.x, xiTo2PSquaredMinus2Over3) 66 // τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3) 67 e.y.MulScalar(&a.y, xiToPSquaredMinus1Over3) 68 e.z.Set(&a.z) 69 return e 70 } 71 72 func (e *gfP6) FrobeniusP4(a *gfP6) *gfP6 { 73 e.x.MulScalar(&a.x, xiToPSquaredMinus1Over3) 74 e.y.MulScalar(&a.y, xiTo2PSquaredMinus2Over3) 75 e.z.Set(&a.z) 76 return e 77 } 78 79 func (e *gfP6) Add(a, b *gfP6) *gfP6 { 80 e.x.Add(&a.x, &b.x) 81 e.y.Add(&a.y, &b.y) 82 e.z.Add(&a.z, &b.z) 83 return e 84 } 85 86 func (e *gfP6) Sub(a, b *gfP6) *gfP6 { 87 e.x.Sub(&a.x, &b.x) 88 e.y.Sub(&a.y, &b.y) 89 e.z.Sub(&a.z, &b.z) 90 return e 91 } 92 93 func (e *gfP6) Mul(a, b *gfP6) *gfP6 { 94 // "Multiplication and Squaring on Pairing-Friendly Fields" 95 // Section 4, Karatsuba method. 96 // http://eprint.iacr.org/2006/471.pdf 97 v0 := (&gfP2{}).Mul(&a.z, &b.z) 98 v1 := (&gfP2{}).Mul(&a.y, &b.y) 99 v2 := (&gfP2{}).Mul(&a.x, &b.x) 100 t0 := (&gfP2{}).Add(&a.x, &a.y) 101 t1 := (&gfP2{}).Add(&b.x, &b.y) 102 tz := (&gfP2{}).Mul(t0, t1) 103 tz.Sub(tz, v1).Sub(tz, v2).MulXi(tz).Add(tz, v0) 104 t0.Add(&a.y, &a.z) 105 t1.Add(&b.y, &b.z) 106 ty := (&gfP2{}).Mul(t0, t1) 107 t0.MulXi(v2) 108 ty.Sub(ty, v0).Sub(ty, v1).Add(ty, t0) 109 t0.Add(&a.x, &a.z) 110 t1.Add(&b.x, &b.z) 111 tx := (&gfP2{}).Mul(t0, t1) 112 tx.Sub(tx, v0).Add(tx, v1).Sub(tx, v2) 113 e.x.Set(tx) 114 e.y.Set(ty) 115 e.z.Set(tz) 116 return e 117 } 118 119 func (e *gfP6) MulScalar(a *gfP6, b *gfP2) *gfP6 { 120 e.x.Mul(&a.x, b) 121 e.y.Mul(&a.y, b) 122 e.z.Mul(&a.z, b) 123 return e 124 } 125 126 func (e *gfP6) MulGFP(a *gfP6, b *gfP) *gfP6 { 127 e.x.MulScalar(&a.x, b) 128 e.y.MulScalar(&a.y, b) 129 e.z.MulScalar(&a.z, b) 130 return e 131 } 132 133 // MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ 134 func (e *gfP6) MulTau(a *gfP6) *gfP6 { 135 tz := (&gfP2{}).MulXi(&a.x) 136 ty := (&gfP2{}).Set(&a.y) 137 e.y.Set(&a.z) 138 e.x.Set(ty) 139 e.z.Set(tz) 140 return e 141 } 142 143 func (e *gfP6) Square(a *gfP6) *gfP6 { 144 v0 := (&gfP2{}).Square(&a.z) 145 v1 := (&gfP2{}).Square(&a.y) 146 v2 := (&gfP2{}).Square(&a.x) 147 c0 := (&gfP2{}).Add(&a.x, &a.y) 148 c0.Square(c0).Sub(c0, v1).Sub(c0, v2).MulXi(c0).Add(c0, v0) 149 c1 := (&gfP2{}).Add(&a.y, &a.z) 150 c1.Square(c1).Sub(c1, v0).Sub(c1, v1) 151 xiV2 := (&gfP2{}).MulXi(v2) 152 c1.Add(c1, xiV2) 153 c2 := (&gfP2{}).Add(&a.x, &a.z) 154 c2.Square(c2).Sub(c2, v0).Add(c2, v1).Sub(c2, v2) 155 e.x.Set(c2) 156 e.y.Set(c1) 157 e.z.Set(c0) 158 return e 159 } 160 161 func (e *gfP6) Invert(a *gfP6) *gfP6 { 162 // See "Implementing cryptographic pairings", M. Scott, section 3.2. 163 // ftp://136.206.11.249/pub/crypto/pairings.pdf 164 165 // Here we can give a short explanation of how it works: let j be a cubic root of 166 // unity in GF(p²) so that 1+j+j²=0. 167 // Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z) 168 // = (xτ² + yτ + z)(Cτ²+Bτ+A) 169 // = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm). 170 // 171 // On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z) 172 // = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy) 173 // 174 // So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz) 175 t1 := (&gfP2{}).Mul(&a.x, &a.y) 176 t1.MulXi(t1) 177 A := (&gfP2{}).Square(&a.z) 178 A.Sub(A, t1) 179 B := (&gfP2{}).Square(&a.x) 180 B.MulXi(B) 181 t1.Mul(&a.y, &a.z) 182 B.Sub(B, t1) 183 C := (&gfP2{}).Square(&a.y) 184 t1.Mul(&a.x, &a.z) 185 C.Sub(C, t1) 186 F := (&gfP2{}).Mul(C, &a.y) 187 F.MulXi(F) 188 t1.Mul(A, &a.z) 189 F.Add(F, t1) 190 t1.Mul(B, &a.x).MulXi(t1) 191 F.Add(F, t1) 192 F.Invert(F) 193 e.x.Mul(C, F) 194 e.y.Mul(B, F) 195 e.z.Mul(A, F) 196 return e 197 }