gitee.com/liu-zhao234568/cntest@v1.0.0/core/state/sync_test.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package state 18 19 import ( 20 "bytes" 21 "math/big" 22 "testing" 23 24 "gitee.com/liu-zhao234568/cntest/common" 25 "gitee.com/liu-zhao234568/cntest/core/rawdb" 26 "gitee.com/liu-zhao234568/cntest/crypto" 27 "gitee.com/liu-zhao234568/cntest/ethdb" 28 "gitee.com/liu-zhao234568/cntest/ethdb/memorydb" 29 "gitee.com/liu-zhao234568/cntest/rlp" 30 "gitee.com/liu-zhao234568/cntest/trie" 31 ) 32 33 // testAccount is the data associated with an account used by the state tests. 34 type testAccount struct { 35 address common.Address 36 balance *big.Int 37 nonce uint64 38 code []byte 39 } 40 41 // makeTestState create a sample test state to test node-wise reconstruction. 42 func makeTestState() (Database, common.Hash, []*testAccount) { 43 // Create an empty state 44 db := NewDatabase(rawdb.NewMemoryDatabase()) 45 state, _ := New(common.Hash{}, db, nil) 46 47 // Fill it with some arbitrary data 48 var accounts []*testAccount 49 for i := byte(0); i < 96; i++ { 50 obj := state.GetOrNewStateObject(common.BytesToAddress([]byte{i})) 51 acc := &testAccount{address: common.BytesToAddress([]byte{i})} 52 53 obj.AddBalance(big.NewInt(int64(11 * i))) 54 acc.balance = big.NewInt(int64(11 * i)) 55 56 obj.SetNonce(uint64(42 * i)) 57 acc.nonce = uint64(42 * i) 58 59 if i%3 == 0 { 60 obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i}) 61 acc.code = []byte{i, i, i, i, i} 62 } 63 if i%5 == 0 { 64 for j := byte(0); j < 5; j++ { 65 hash := crypto.Keccak256Hash([]byte{i, i, i, i, i, j, j}) 66 obj.SetState(db, hash, hash) 67 } 68 } 69 state.updateStateObject(obj) 70 accounts = append(accounts, acc) 71 } 72 root, _ := state.Commit(false) 73 74 // Return the generated state 75 return db, root, accounts 76 } 77 78 // checkStateAccounts cross references a reconstructed state with an expected 79 // account array. 80 func checkStateAccounts(t *testing.T, db ethdb.Database, root common.Hash, accounts []*testAccount) { 81 // Check root availability and state contents 82 state, err := New(root, NewDatabase(db), nil) 83 if err != nil { 84 t.Fatalf("failed to create state trie at %x: %v", root, err) 85 } 86 if err := checkStateConsistency(db, root); err != nil { 87 t.Fatalf("inconsistent state trie at %x: %v", root, err) 88 } 89 for i, acc := range accounts { 90 if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 { 91 t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance) 92 } 93 if nonce := state.GetNonce(acc.address); nonce != acc.nonce { 94 t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce) 95 } 96 if code := state.GetCode(acc.address); !bytes.Equal(code, acc.code) { 97 t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code) 98 } 99 } 100 } 101 102 // checkTrieConsistency checks that all nodes in a (sub-)trie are indeed present. 103 func checkTrieConsistency(db ethdb.Database, root common.Hash) error { 104 if v, _ := db.Get(root[:]); v == nil { 105 return nil // Consider a non existent state consistent. 106 } 107 trie, err := trie.New(root, trie.NewDatabase(db)) 108 if err != nil { 109 return err 110 } 111 it := trie.NodeIterator(nil) 112 for it.Next(true) { 113 } 114 return it.Error() 115 } 116 117 // checkStateConsistency checks that all data of a state root is present. 118 func checkStateConsistency(db ethdb.Database, root common.Hash) error { 119 // Create and iterate a state trie rooted in a sub-node 120 if _, err := db.Get(root.Bytes()); err != nil { 121 return nil // Consider a non existent state consistent. 122 } 123 state, err := New(root, NewDatabase(db), nil) 124 if err != nil { 125 return err 126 } 127 it := NewNodeIterator(state) 128 for it.Next() { 129 } 130 return it.Error 131 } 132 133 // Tests that an empty state is not scheduled for syncing. 134 func TestEmptyStateSync(t *testing.T) { 135 empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") 136 sync := NewStateSync(empty, rawdb.NewMemoryDatabase(), trie.NewSyncBloom(1, memorydb.New()), nil) 137 if nodes, paths, codes := sync.Missing(1); len(nodes) != 0 || len(paths) != 0 || len(codes) != 0 { 138 t.Errorf(" content requested for empty state: %v, %v, %v", nodes, paths, codes) 139 } 140 } 141 142 // Tests that given a root hash, a state can sync iteratively on a single thread, 143 // requesting retrieval tasks and returning all of them in one go. 144 func TestIterativeStateSyncIndividual(t *testing.T) { 145 testIterativeStateSync(t, 1, false, false) 146 } 147 func TestIterativeStateSyncBatched(t *testing.T) { 148 testIterativeStateSync(t, 100, false, false) 149 } 150 func TestIterativeStateSyncIndividualFromDisk(t *testing.T) { 151 testIterativeStateSync(t, 1, true, false) 152 } 153 func TestIterativeStateSyncBatchedFromDisk(t *testing.T) { 154 testIterativeStateSync(t, 100, true, false) 155 } 156 func TestIterativeStateSyncIndividualByPath(t *testing.T) { 157 testIterativeStateSync(t, 1, false, true) 158 } 159 func TestIterativeStateSyncBatchedByPath(t *testing.T) { 160 testIterativeStateSync(t, 100, false, true) 161 } 162 163 func testIterativeStateSync(t *testing.T, count int, commit bool, bypath bool) { 164 // Create a random state to copy 165 srcDb, srcRoot, srcAccounts := makeTestState() 166 if commit { 167 srcDb.TrieDB().Commit(srcRoot, false, nil) 168 } 169 srcTrie, _ := trie.New(srcRoot, srcDb.TrieDB()) 170 171 // Create a destination state and sync with the scheduler 172 dstDb := rawdb.NewMemoryDatabase() 173 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb), nil) 174 175 nodes, paths, codes := sched.Missing(count) 176 var ( 177 hashQueue []common.Hash 178 pathQueue []trie.SyncPath 179 ) 180 if !bypath { 181 hashQueue = append(append(hashQueue[:0], nodes...), codes...) 182 } else { 183 hashQueue = append(hashQueue[:0], codes...) 184 pathQueue = append(pathQueue[:0], paths...) 185 } 186 for len(hashQueue)+len(pathQueue) > 0 { 187 results := make([]trie.SyncResult, len(hashQueue)+len(pathQueue)) 188 for i, hash := range hashQueue { 189 data, err := srcDb.TrieDB().Node(hash) 190 if err != nil { 191 data, err = srcDb.ContractCode(common.Hash{}, hash) 192 } 193 if err != nil { 194 t.Fatalf("failed to retrieve node data for hash %x", hash) 195 } 196 results[i] = trie.SyncResult{Hash: hash, Data: data} 197 } 198 for i, path := range pathQueue { 199 if len(path) == 1 { 200 data, _, err := srcTrie.TryGetNode(path[0]) 201 if err != nil { 202 t.Fatalf("failed to retrieve node data for path %x: %v", path, err) 203 } 204 results[len(hashQueue)+i] = trie.SyncResult{Hash: crypto.Keccak256Hash(data), Data: data} 205 } else { 206 var acc Account 207 if err := rlp.DecodeBytes(srcTrie.Get(path[0]), &acc); err != nil { 208 t.Fatalf("failed to decode account on path %x: %v", path, err) 209 } 210 stTrie, err := trie.New(acc.Root, srcDb.TrieDB()) 211 if err != nil { 212 t.Fatalf("failed to retriev storage trie for path %x: %v", path, err) 213 } 214 data, _, err := stTrie.TryGetNode(path[1]) 215 if err != nil { 216 t.Fatalf("failed to retrieve node data for path %x: %v", path, err) 217 } 218 results[len(hashQueue)+i] = trie.SyncResult{Hash: crypto.Keccak256Hash(data), Data: data} 219 } 220 } 221 for _, result := range results { 222 if err := sched.Process(result); err != nil { 223 t.Errorf("failed to process result %v", err) 224 } 225 } 226 batch := dstDb.NewBatch() 227 if err := sched.Commit(batch); err != nil { 228 t.Fatalf("failed to commit data: %v", err) 229 } 230 batch.Write() 231 232 nodes, paths, codes = sched.Missing(count) 233 if !bypath { 234 hashQueue = append(append(hashQueue[:0], nodes...), codes...) 235 } else { 236 hashQueue = append(hashQueue[:0], codes...) 237 pathQueue = append(pathQueue[:0], paths...) 238 } 239 } 240 // Cross check that the two states are in sync 241 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 242 } 243 244 // Tests that the trie scheduler can correctly reconstruct the state even if only 245 // partial results are returned, and the others sent only later. 246 func TestIterativeDelayedStateSync(t *testing.T) { 247 // Create a random state to copy 248 srcDb, srcRoot, srcAccounts := makeTestState() 249 250 // Create a destination state and sync with the scheduler 251 dstDb := rawdb.NewMemoryDatabase() 252 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb), nil) 253 254 nodes, _, codes := sched.Missing(0) 255 queue := append(append([]common.Hash{}, nodes...), codes...) 256 257 for len(queue) > 0 { 258 // Sync only half of the scheduled nodes 259 results := make([]trie.SyncResult, len(queue)/2+1) 260 for i, hash := range queue[:len(results)] { 261 data, err := srcDb.TrieDB().Node(hash) 262 if err != nil { 263 data, err = srcDb.ContractCode(common.Hash{}, hash) 264 } 265 if err != nil { 266 t.Fatalf("failed to retrieve node data for %x", hash) 267 } 268 results[i] = trie.SyncResult{Hash: hash, Data: data} 269 } 270 for _, result := range results { 271 if err := sched.Process(result); err != nil { 272 t.Fatalf("failed to process result %v", err) 273 } 274 } 275 batch := dstDb.NewBatch() 276 if err := sched.Commit(batch); err != nil { 277 t.Fatalf("failed to commit data: %v", err) 278 } 279 batch.Write() 280 281 nodes, _, codes = sched.Missing(0) 282 queue = append(append(queue[len(results):], nodes...), codes...) 283 } 284 // Cross check that the two states are in sync 285 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 286 } 287 288 // Tests that given a root hash, a trie can sync iteratively on a single thread, 289 // requesting retrieval tasks and returning all of them in one go, however in a 290 // random order. 291 func TestIterativeRandomStateSyncIndividual(t *testing.T) { testIterativeRandomStateSync(t, 1) } 292 func TestIterativeRandomStateSyncBatched(t *testing.T) { testIterativeRandomStateSync(t, 100) } 293 294 func testIterativeRandomStateSync(t *testing.T, count int) { 295 // Create a random state to copy 296 srcDb, srcRoot, srcAccounts := makeTestState() 297 298 // Create a destination state and sync with the scheduler 299 dstDb := rawdb.NewMemoryDatabase() 300 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb), nil) 301 302 queue := make(map[common.Hash]struct{}) 303 nodes, _, codes := sched.Missing(count) 304 for _, hash := range append(nodes, codes...) { 305 queue[hash] = struct{}{} 306 } 307 for len(queue) > 0 { 308 // Fetch all the queued nodes in a random order 309 results := make([]trie.SyncResult, 0, len(queue)) 310 for hash := range queue { 311 data, err := srcDb.TrieDB().Node(hash) 312 if err != nil { 313 data, err = srcDb.ContractCode(common.Hash{}, hash) 314 } 315 if err != nil { 316 t.Fatalf("failed to retrieve node data for %x", hash) 317 } 318 results = append(results, trie.SyncResult{Hash: hash, Data: data}) 319 } 320 // Feed the retrieved results back and queue new tasks 321 for _, result := range results { 322 if err := sched.Process(result); err != nil { 323 t.Fatalf("failed to process result %v", err) 324 } 325 } 326 batch := dstDb.NewBatch() 327 if err := sched.Commit(batch); err != nil { 328 t.Fatalf("failed to commit data: %v", err) 329 } 330 batch.Write() 331 332 queue = make(map[common.Hash]struct{}) 333 nodes, _, codes = sched.Missing(count) 334 for _, hash := range append(nodes, codes...) { 335 queue[hash] = struct{}{} 336 } 337 } 338 // Cross check that the two states are in sync 339 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 340 } 341 342 // Tests that the trie scheduler can correctly reconstruct the state even if only 343 // partial results are returned (Even those randomly), others sent only later. 344 func TestIterativeRandomDelayedStateSync(t *testing.T) { 345 // Create a random state to copy 346 srcDb, srcRoot, srcAccounts := makeTestState() 347 348 // Create a destination state and sync with the scheduler 349 dstDb := rawdb.NewMemoryDatabase() 350 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb), nil) 351 352 queue := make(map[common.Hash]struct{}) 353 nodes, _, codes := sched.Missing(0) 354 for _, hash := range append(nodes, codes...) { 355 queue[hash] = struct{}{} 356 } 357 for len(queue) > 0 { 358 // Sync only half of the scheduled nodes, even those in random order 359 results := make([]trie.SyncResult, 0, len(queue)/2+1) 360 for hash := range queue { 361 delete(queue, hash) 362 363 data, err := srcDb.TrieDB().Node(hash) 364 if err != nil { 365 data, err = srcDb.ContractCode(common.Hash{}, hash) 366 } 367 if err != nil { 368 t.Fatalf("failed to retrieve node data for %x", hash) 369 } 370 results = append(results, trie.SyncResult{Hash: hash, Data: data}) 371 372 if len(results) >= cap(results) { 373 break 374 } 375 } 376 // Feed the retrieved results back and queue new tasks 377 for _, result := range results { 378 if err := sched.Process(result); err != nil { 379 t.Fatalf("failed to process result %v", err) 380 } 381 } 382 batch := dstDb.NewBatch() 383 if err := sched.Commit(batch); err != nil { 384 t.Fatalf("failed to commit data: %v", err) 385 } 386 batch.Write() 387 for _, result := range results { 388 delete(queue, result.Hash) 389 } 390 nodes, _, codes = sched.Missing(0) 391 for _, hash := range append(nodes, codes...) { 392 queue[hash] = struct{}{} 393 } 394 } 395 // Cross check that the two states are in sync 396 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 397 } 398 399 // Tests that at any point in time during a sync, only complete sub-tries are in 400 // the database. 401 func TestIncompleteStateSync(t *testing.T) { 402 // Create a random state to copy 403 srcDb, srcRoot, srcAccounts := makeTestState() 404 405 // isCodeLookup to save some hashing 406 var isCode = make(map[common.Hash]struct{}) 407 for _, acc := range srcAccounts { 408 if len(acc.code) > 0 { 409 isCode[crypto.Keccak256Hash(acc.code)] = struct{}{} 410 } 411 } 412 isCode[common.BytesToHash(emptyCodeHash)] = struct{}{} 413 checkTrieConsistency(srcDb.TrieDB().DiskDB().(ethdb.Database), srcRoot) 414 415 // Create a destination state and sync with the scheduler 416 dstDb := rawdb.NewMemoryDatabase() 417 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb), nil) 418 419 var added []common.Hash 420 421 nodes, _, codes := sched.Missing(1) 422 queue := append(append([]common.Hash{}, nodes...), codes...) 423 424 for len(queue) > 0 { 425 // Fetch a batch of state nodes 426 results := make([]trie.SyncResult, len(queue)) 427 for i, hash := range queue { 428 data, err := srcDb.TrieDB().Node(hash) 429 if err != nil { 430 data, err = srcDb.ContractCode(common.Hash{}, hash) 431 } 432 if err != nil { 433 t.Fatalf("failed to retrieve node data for %x", hash) 434 } 435 results[i] = trie.SyncResult{Hash: hash, Data: data} 436 } 437 // Process each of the state nodes 438 for _, result := range results { 439 if err := sched.Process(result); err != nil { 440 t.Fatalf("failed to process result %v", err) 441 } 442 } 443 batch := dstDb.NewBatch() 444 if err := sched.Commit(batch); err != nil { 445 t.Fatalf("failed to commit data: %v", err) 446 } 447 batch.Write() 448 for _, result := range results { 449 added = append(added, result.Hash) 450 // Check that all known sub-tries added so far are complete or missing entirely. 451 if _, ok := isCode[result.Hash]; ok { 452 continue 453 } 454 // Can't use checkStateConsistency here because subtrie keys may have odd 455 // length and crash in LeafKey. 456 if err := checkTrieConsistency(dstDb, result.Hash); err != nil { 457 t.Fatalf("state inconsistent: %v", err) 458 } 459 } 460 // Fetch the next batch to retrieve 461 nodes, _, codes = sched.Missing(1) 462 queue = append(append(queue[:0], nodes...), codes...) 463 } 464 // Sanity check that removing any node from the database is detected 465 for _, node := range added[1:] { 466 var ( 467 key = node.Bytes() 468 _, code = isCode[node] 469 val []byte 470 ) 471 if code { 472 val = rawdb.ReadCode(dstDb, node) 473 rawdb.DeleteCode(dstDb, node) 474 } else { 475 val = rawdb.ReadTrieNode(dstDb, node) 476 rawdb.DeleteTrieNode(dstDb, node) 477 } 478 if err := checkStateConsistency(dstDb, added[0]); err == nil { 479 t.Fatalf("trie inconsistency not caught, missing: %x", key) 480 } 481 if code { 482 rawdb.WriteCode(dstDb, node, val) 483 } else { 484 rawdb.WriteTrieNode(dstDb, node, val) 485 } 486 } 487 }