gitee.com/liu-zhao234568/cntest@v1.0.0/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "math/big" 24 25 "gitee.com/liu-zhao234568/cntest/common" 26 "gitee.com/liu-zhao234568/cntest/common/math" 27 "gitee.com/liu-zhao234568/cntest/crypto" 28 "gitee.com/liu-zhao234568/cntest/crypto/blake2b" 29 "gitee.com/liu-zhao234568/cntest/crypto/bls12381" 30 "gitee.com/liu-zhao234568/cntest/crypto/bn256" 31 "gitee.com/liu-zhao234568/cntest/params" 32 33 //lint:ignore SA1019 Needed for precompile 34 "golang.org/x/crypto/ripemd160" 35 ) 36 37 // PrecompiledContract is the basic interface for native Go contracts. The implementation 38 // requires a deterministic gas count based on the input size of the Run method of the 39 // contract. 40 type PrecompiledContract interface { 41 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 42 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 43 } 44 45 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 46 // contracts used in the Frontier and Homestead releases. 47 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 48 common.BytesToAddress([]byte{1}): &ecrecover{}, 49 common.BytesToAddress([]byte{2}): &sha256hash{}, 50 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 51 common.BytesToAddress([]byte{4}): &dataCopy{}, 52 } 53 54 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 55 // contracts used in the Byzantium release. 56 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 57 common.BytesToAddress([]byte{1}): &ecrecover{}, 58 common.BytesToAddress([]byte{2}): &sha256hash{}, 59 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 60 common.BytesToAddress([]byte{4}): &dataCopy{}, 61 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 62 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 63 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 64 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 65 } 66 67 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 68 // contracts used in the Istanbul release. 69 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 70 common.BytesToAddress([]byte{1}): &ecrecover{}, 71 common.BytesToAddress([]byte{2}): &sha256hash{}, 72 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 73 common.BytesToAddress([]byte{4}): &dataCopy{}, 74 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 75 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 76 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 77 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 78 common.BytesToAddress([]byte{9}): &blake2F{}, 79 } 80 81 // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum 82 // contracts used in the Berlin release. 83 var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{ 84 common.BytesToAddress([]byte{1}): &ecrecover{}, 85 common.BytesToAddress([]byte{2}): &sha256hash{}, 86 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 87 common.BytesToAddress([]byte{4}): &dataCopy{}, 88 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true}, 89 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 90 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 91 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 92 common.BytesToAddress([]byte{9}): &blake2F{}, 93 } 94 95 // PrecompiledContractsBLS contains the set of pre-compiled Ethereum 96 // contracts specified in EIP-2537. These are exported for testing purposes. 97 var PrecompiledContractsBLS = map[common.Address]PrecompiledContract{ 98 common.BytesToAddress([]byte{10}): &bls12381G1Add{}, 99 common.BytesToAddress([]byte{11}): &bls12381G1Mul{}, 100 common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{}, 101 common.BytesToAddress([]byte{13}): &bls12381G2Add{}, 102 common.BytesToAddress([]byte{14}): &bls12381G2Mul{}, 103 common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{}, 104 common.BytesToAddress([]byte{16}): &bls12381Pairing{}, 105 common.BytesToAddress([]byte{17}): &bls12381MapG1{}, 106 common.BytesToAddress([]byte{18}): &bls12381MapG2{}, 107 } 108 109 var ( 110 PrecompiledAddressesBerlin []common.Address 111 PrecompiledAddressesIstanbul []common.Address 112 PrecompiledAddressesByzantium []common.Address 113 PrecompiledAddressesHomestead []common.Address 114 ) 115 116 func init() { 117 for k := range PrecompiledContractsHomestead { 118 PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k) 119 } 120 for k := range PrecompiledContractsByzantium { 121 PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k) 122 } 123 for k := range PrecompiledContractsIstanbul { 124 PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k) 125 } 126 for k := range PrecompiledContractsBerlin { 127 PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k) 128 } 129 } 130 131 // ActivePrecompiles returns the precompiles enabled with the current configuration. 132 func ActivePrecompiles(rules params.Rules) []common.Address { 133 switch { 134 case rules.IsBerlin: 135 return PrecompiledAddressesBerlin 136 case rules.IsIstanbul: 137 return PrecompiledAddressesIstanbul 138 case rules.IsByzantium: 139 return PrecompiledAddressesByzantium 140 default: 141 return PrecompiledAddressesHomestead 142 } 143 } 144 145 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 146 // It returns 147 // - the returned bytes, 148 // - the _remaining_ gas, 149 // - any error that occurred 150 func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) { 151 gasCost := p.RequiredGas(input) 152 if suppliedGas < gasCost { 153 return nil, 0, ErrOutOfGas 154 } 155 suppliedGas -= gasCost 156 output, err := p.Run(input) 157 return output, suppliedGas, err 158 } 159 160 // ECRECOVER implemented as a native contract. 161 type ecrecover struct{} 162 163 func (c *ecrecover) RequiredGas(input []byte) uint64 { 164 return params.EcrecoverGas 165 } 166 167 func (c *ecrecover) Run(input []byte) ([]byte, error) { 168 const ecRecoverInputLength = 128 169 170 input = common.RightPadBytes(input, ecRecoverInputLength) 171 // "input" is (hash, v, r, s), each 32 bytes 172 // but for ecrecover we want (r, s, v) 173 174 r := new(big.Int).SetBytes(input[64:96]) 175 s := new(big.Int).SetBytes(input[96:128]) 176 v := input[63] - 27 177 178 // tighter sig s values input homestead only apply to tx sigs 179 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 180 return nil, nil 181 } 182 // We must make sure not to modify the 'input', so placing the 'v' along with 183 // the signature needs to be done on a new allocation 184 sig := make([]byte, 65) 185 copy(sig, input[64:128]) 186 sig[64] = v 187 // v needs to be at the end for libsecp256k1 188 pubKey, err := crypto.Ecrecover(input[:32], sig) 189 // make sure the public key is a valid one 190 if err != nil { 191 return nil, nil 192 } 193 194 // the first byte of pubkey is bitcoin heritage 195 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 196 } 197 198 // SHA256 implemented as a native contract. 199 type sha256hash struct{} 200 201 // RequiredGas returns the gas required to execute the pre-compiled contract. 202 // 203 // This method does not require any overflow checking as the input size gas costs 204 // required for anything significant is so high it's impossible to pay for. 205 func (c *sha256hash) RequiredGas(input []byte) uint64 { 206 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 207 } 208 func (c *sha256hash) Run(input []byte) ([]byte, error) { 209 h := sha256.Sum256(input) 210 return h[:], nil 211 } 212 213 // RIPEMD160 implemented as a native contract. 214 type ripemd160hash struct{} 215 216 // RequiredGas returns the gas required to execute the pre-compiled contract. 217 // 218 // This method does not require any overflow checking as the input size gas costs 219 // required for anything significant is so high it's impossible to pay for. 220 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 221 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 222 } 223 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 224 ripemd := ripemd160.New() 225 ripemd.Write(input) 226 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 227 } 228 229 // data copy implemented as a native contract. 230 type dataCopy struct{} 231 232 // RequiredGas returns the gas required to execute the pre-compiled contract. 233 // 234 // This method does not require any overflow checking as the input size gas costs 235 // required for anything significant is so high it's impossible to pay for. 236 func (c *dataCopy) RequiredGas(input []byte) uint64 { 237 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 238 } 239 func (c *dataCopy) Run(in []byte) ([]byte, error) { 240 return in, nil 241 } 242 243 // bigModExp implements a native big integer exponential modular operation. 244 type bigModExp struct { 245 eip2565 bool 246 } 247 248 var ( 249 big0 = big.NewInt(0) 250 big1 = big.NewInt(1) 251 big3 = big.NewInt(3) 252 big4 = big.NewInt(4) 253 big7 = big.NewInt(7) 254 big8 = big.NewInt(8) 255 big16 = big.NewInt(16) 256 big20 = big.NewInt(20) 257 big32 = big.NewInt(32) 258 big64 = big.NewInt(64) 259 big96 = big.NewInt(96) 260 big480 = big.NewInt(480) 261 big1024 = big.NewInt(1024) 262 big3072 = big.NewInt(3072) 263 big199680 = big.NewInt(199680) 264 ) 265 266 // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198 267 // 268 // def mult_complexity(x): 269 // if x <= 64: return x ** 2 270 // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072 271 // else: return x ** 2 // 16 + 480 * x - 199680 272 // 273 // where is x is max(length_of_MODULUS, length_of_BASE) 274 func modexpMultComplexity(x *big.Int) *big.Int { 275 switch { 276 case x.Cmp(big64) <= 0: 277 x.Mul(x, x) // x ** 2 278 case x.Cmp(big1024) <= 0: 279 // (x ** 2 // 4 ) + ( 96 * x - 3072) 280 x = new(big.Int).Add( 281 new(big.Int).Div(new(big.Int).Mul(x, x), big4), 282 new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072), 283 ) 284 default: 285 // (x ** 2 // 16) + (480 * x - 199680) 286 x = new(big.Int).Add( 287 new(big.Int).Div(new(big.Int).Mul(x, x), big16), 288 new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680), 289 ) 290 } 291 return x 292 } 293 294 // RequiredGas returns the gas required to execute the pre-compiled contract. 295 func (c *bigModExp) RequiredGas(input []byte) uint64 { 296 var ( 297 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 298 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 299 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 300 ) 301 if len(input) > 96 { 302 input = input[96:] 303 } else { 304 input = input[:0] 305 } 306 // Retrieve the head 32 bytes of exp for the adjusted exponent length 307 var expHead *big.Int 308 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 309 expHead = new(big.Int) 310 } else { 311 if expLen.Cmp(big32) > 0 { 312 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 313 } else { 314 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 315 } 316 } 317 // Calculate the adjusted exponent length 318 var msb int 319 if bitlen := expHead.BitLen(); bitlen > 0 { 320 msb = bitlen - 1 321 } 322 adjExpLen := new(big.Int) 323 if expLen.Cmp(big32) > 0 { 324 adjExpLen.Sub(expLen, big32) 325 adjExpLen.Mul(big8, adjExpLen) 326 } 327 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 328 // Calculate the gas cost of the operation 329 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 330 if c.eip2565 { 331 // EIP-2565 has three changes 332 // 1. Different multComplexity (inlined here) 333 // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565): 334 // 335 // def mult_complexity(x): 336 // ceiling(x/8)^2 337 // 338 //where is x is max(length_of_MODULUS, length_of_BASE) 339 gas = gas.Add(gas, big7) 340 gas = gas.Div(gas, big8) 341 gas.Mul(gas, gas) 342 343 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 344 // 2. Different divisor (`GQUADDIVISOR`) (3) 345 gas.Div(gas, big3) 346 if gas.BitLen() > 64 { 347 return math.MaxUint64 348 } 349 // 3. Minimum price of 200 gas 350 if gas.Uint64() < 200 { 351 return 200 352 } 353 return gas.Uint64() 354 } 355 gas = modexpMultComplexity(gas) 356 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 357 gas.Div(gas, big20) 358 359 if gas.BitLen() > 64 { 360 return math.MaxUint64 361 } 362 return gas.Uint64() 363 } 364 365 func (c *bigModExp) Run(input []byte) ([]byte, error) { 366 var ( 367 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 368 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 369 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 370 ) 371 if len(input) > 96 { 372 input = input[96:] 373 } else { 374 input = input[:0] 375 } 376 // Handle a special case when both the base and mod length is zero 377 if baseLen == 0 && modLen == 0 { 378 return []byte{}, nil 379 } 380 // Retrieve the operands and execute the exponentiation 381 var ( 382 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 383 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 384 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 385 ) 386 if mod.BitLen() == 0 { 387 // Modulo 0 is undefined, return zero 388 return common.LeftPadBytes([]byte{}, int(modLen)), nil 389 } 390 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 391 } 392 393 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 394 // returning it, or an error if the point is invalid. 395 func newCurvePoint(blob []byte) (*bn256.G1, error) { 396 p := new(bn256.G1) 397 if _, err := p.Unmarshal(blob); err != nil { 398 return nil, err 399 } 400 return p, nil 401 } 402 403 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 404 // returning it, or an error if the point is invalid. 405 func newTwistPoint(blob []byte) (*bn256.G2, error) { 406 p := new(bn256.G2) 407 if _, err := p.Unmarshal(blob); err != nil { 408 return nil, err 409 } 410 return p, nil 411 } 412 413 // runBn256Add implements the Bn256Add precompile, referenced by both 414 // Byzantium and Istanbul operations. 415 func runBn256Add(input []byte) ([]byte, error) { 416 x, err := newCurvePoint(getData(input, 0, 64)) 417 if err != nil { 418 return nil, err 419 } 420 y, err := newCurvePoint(getData(input, 64, 64)) 421 if err != nil { 422 return nil, err 423 } 424 res := new(bn256.G1) 425 res.Add(x, y) 426 return res.Marshal(), nil 427 } 428 429 // bn256Add implements a native elliptic curve point addition conforming to 430 // Istanbul consensus rules. 431 type bn256AddIstanbul struct{} 432 433 // RequiredGas returns the gas required to execute the pre-compiled contract. 434 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 435 return params.Bn256AddGasIstanbul 436 } 437 438 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 439 return runBn256Add(input) 440 } 441 442 // bn256AddByzantium implements a native elliptic curve point addition 443 // conforming to Byzantium consensus rules. 444 type bn256AddByzantium struct{} 445 446 // RequiredGas returns the gas required to execute the pre-compiled contract. 447 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 448 return params.Bn256AddGasByzantium 449 } 450 451 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 452 return runBn256Add(input) 453 } 454 455 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 456 // both Byzantium and Istanbul operations. 457 func runBn256ScalarMul(input []byte) ([]byte, error) { 458 p, err := newCurvePoint(getData(input, 0, 64)) 459 if err != nil { 460 return nil, err 461 } 462 res := new(bn256.G1) 463 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 464 return res.Marshal(), nil 465 } 466 467 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 468 // multiplication conforming to Istanbul consensus rules. 469 type bn256ScalarMulIstanbul struct{} 470 471 // RequiredGas returns the gas required to execute the pre-compiled contract. 472 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 473 return params.Bn256ScalarMulGasIstanbul 474 } 475 476 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 477 return runBn256ScalarMul(input) 478 } 479 480 // bn256ScalarMulByzantium implements a native elliptic curve scalar 481 // multiplication conforming to Byzantium consensus rules. 482 type bn256ScalarMulByzantium struct{} 483 484 // RequiredGas returns the gas required to execute the pre-compiled contract. 485 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 486 return params.Bn256ScalarMulGasByzantium 487 } 488 489 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 490 return runBn256ScalarMul(input) 491 } 492 493 var ( 494 // true32Byte is returned if the bn256 pairing check succeeds. 495 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 496 497 // false32Byte is returned if the bn256 pairing check fails. 498 false32Byte = make([]byte, 32) 499 500 // errBadPairingInput is returned if the bn256 pairing input is invalid. 501 errBadPairingInput = errors.New("bad elliptic curve pairing size") 502 ) 503 504 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 505 // Byzantium and Istanbul operations. 506 func runBn256Pairing(input []byte) ([]byte, error) { 507 // Handle some corner cases cheaply 508 if len(input)%192 > 0 { 509 return nil, errBadPairingInput 510 } 511 // Convert the input into a set of coordinates 512 var ( 513 cs []*bn256.G1 514 ts []*bn256.G2 515 ) 516 for i := 0; i < len(input); i += 192 { 517 c, err := newCurvePoint(input[i : i+64]) 518 if err != nil { 519 return nil, err 520 } 521 t, err := newTwistPoint(input[i+64 : i+192]) 522 if err != nil { 523 return nil, err 524 } 525 cs = append(cs, c) 526 ts = append(ts, t) 527 } 528 // Execute the pairing checks and return the results 529 if bn256.PairingCheck(cs, ts) { 530 return true32Byte, nil 531 } 532 return false32Byte, nil 533 } 534 535 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 536 // conforming to Istanbul consensus rules. 537 type bn256PairingIstanbul struct{} 538 539 // RequiredGas returns the gas required to execute the pre-compiled contract. 540 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 541 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 542 } 543 544 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 545 return runBn256Pairing(input) 546 } 547 548 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 549 // conforming to Byzantium consensus rules. 550 type bn256PairingByzantium struct{} 551 552 // RequiredGas returns the gas required to execute the pre-compiled contract. 553 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 554 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 555 } 556 557 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 558 return runBn256Pairing(input) 559 } 560 561 type blake2F struct{} 562 563 func (c *blake2F) RequiredGas(input []byte) uint64 { 564 // If the input is malformed, we can't calculate the gas, return 0 and let the 565 // actual call choke and fault. 566 if len(input) != blake2FInputLength { 567 return 0 568 } 569 return uint64(binary.BigEndian.Uint32(input[0:4])) 570 } 571 572 const ( 573 blake2FInputLength = 213 574 blake2FFinalBlockBytes = byte(1) 575 blake2FNonFinalBlockBytes = byte(0) 576 ) 577 578 var ( 579 errBlake2FInvalidInputLength = errors.New("invalid input length") 580 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 581 ) 582 583 func (c *blake2F) Run(input []byte) ([]byte, error) { 584 // Make sure the input is valid (correct length and final flag) 585 if len(input) != blake2FInputLength { 586 return nil, errBlake2FInvalidInputLength 587 } 588 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 589 return nil, errBlake2FInvalidFinalFlag 590 } 591 // Parse the input into the Blake2b call parameters 592 var ( 593 rounds = binary.BigEndian.Uint32(input[0:4]) 594 final = (input[212] == blake2FFinalBlockBytes) 595 596 h [8]uint64 597 m [16]uint64 598 t [2]uint64 599 ) 600 for i := 0; i < 8; i++ { 601 offset := 4 + i*8 602 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 603 } 604 for i := 0; i < 16; i++ { 605 offset := 68 + i*8 606 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 607 } 608 t[0] = binary.LittleEndian.Uint64(input[196:204]) 609 t[1] = binary.LittleEndian.Uint64(input[204:212]) 610 611 // Execute the compression function, extract and return the result 612 blake2b.F(&h, m, t, final, rounds) 613 614 output := make([]byte, 64) 615 for i := 0; i < 8; i++ { 616 offset := i * 8 617 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 618 } 619 return output, nil 620 } 621 622 var ( 623 errBLS12381InvalidInputLength = errors.New("invalid input length") 624 errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes") 625 errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup") 626 errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup") 627 ) 628 629 // bls12381G1Add implements EIP-2537 G1Add precompile. 630 type bls12381G1Add struct{} 631 632 // RequiredGas returns the gas required to execute the pre-compiled contract. 633 func (c *bls12381G1Add) RequiredGas(input []byte) uint64 { 634 return params.Bls12381G1AddGas 635 } 636 637 func (c *bls12381G1Add) Run(input []byte) ([]byte, error) { 638 // Implements EIP-2537 G1Add precompile. 639 // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each). 640 // > Output is an encoding of addition operation result - single G1 point (`128` bytes). 641 if len(input) != 256 { 642 return nil, errBLS12381InvalidInputLength 643 } 644 var err error 645 var p0, p1 *bls12381.PointG1 646 647 // Initialize G1 648 g := bls12381.NewG1() 649 650 // Decode G1 point p_0 651 if p0, err = g.DecodePoint(input[:128]); err != nil { 652 return nil, err 653 } 654 // Decode G1 point p_1 655 if p1, err = g.DecodePoint(input[128:]); err != nil { 656 return nil, err 657 } 658 659 // Compute r = p_0 + p_1 660 r := g.New() 661 g.Add(r, p0, p1) 662 663 // Encode the G1 point result into 128 bytes 664 return g.EncodePoint(r), nil 665 } 666 667 // bls12381G1Mul implements EIP-2537 G1Mul precompile. 668 type bls12381G1Mul struct{} 669 670 // RequiredGas returns the gas required to execute the pre-compiled contract. 671 func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 { 672 return params.Bls12381G1MulGas 673 } 674 675 func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) { 676 // Implements EIP-2537 G1Mul precompile. 677 // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 678 // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes). 679 if len(input) != 160 { 680 return nil, errBLS12381InvalidInputLength 681 } 682 var err error 683 var p0 *bls12381.PointG1 684 685 // Initialize G1 686 g := bls12381.NewG1() 687 688 // Decode G1 point 689 if p0, err = g.DecodePoint(input[:128]); err != nil { 690 return nil, err 691 } 692 // Decode scalar value 693 e := new(big.Int).SetBytes(input[128:]) 694 695 // Compute r = e * p_0 696 r := g.New() 697 g.MulScalar(r, p0, e) 698 699 // Encode the G1 point into 128 bytes 700 return g.EncodePoint(r), nil 701 } 702 703 // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile. 704 type bls12381G1MultiExp struct{} 705 706 // RequiredGas returns the gas required to execute the pre-compiled contract. 707 func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 { 708 // Calculate G1 point, scalar value pair length 709 k := len(input) / 160 710 if k == 0 { 711 // Return 0 gas for small input length 712 return 0 713 } 714 // Lookup discount value for G1 point, scalar value pair length 715 var discount uint64 716 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 717 discount = params.Bls12381MultiExpDiscountTable[k-1] 718 } else { 719 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 720 } 721 // Calculate gas and return the result 722 return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000 723 } 724 725 func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) { 726 // Implements EIP-2537 G1MultiExp precompile. 727 // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 728 // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes). 729 k := len(input) / 160 730 if len(input) == 0 || len(input)%160 != 0 { 731 return nil, errBLS12381InvalidInputLength 732 } 733 var err error 734 points := make([]*bls12381.PointG1, k) 735 scalars := make([]*big.Int, k) 736 737 // Initialize G1 738 g := bls12381.NewG1() 739 740 // Decode point scalar pairs 741 for i := 0; i < k; i++ { 742 off := 160 * i 743 t0, t1, t2 := off, off+128, off+160 744 // Decode G1 point 745 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 746 return nil, err 747 } 748 // Decode scalar value 749 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 750 } 751 752 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 753 r := g.New() 754 g.MultiExp(r, points, scalars) 755 756 // Encode the G1 point to 128 bytes 757 return g.EncodePoint(r), nil 758 } 759 760 // bls12381G2Add implements EIP-2537 G2Add precompile. 761 type bls12381G2Add struct{} 762 763 // RequiredGas returns the gas required to execute the pre-compiled contract. 764 func (c *bls12381G2Add) RequiredGas(input []byte) uint64 { 765 return params.Bls12381G2AddGas 766 } 767 768 func (c *bls12381G2Add) Run(input []byte) ([]byte, error) { 769 // Implements EIP-2537 G2Add precompile. 770 // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each). 771 // > Output is an encoding of addition operation result - single G2 point (`256` bytes). 772 if len(input) != 512 { 773 return nil, errBLS12381InvalidInputLength 774 } 775 var err error 776 var p0, p1 *bls12381.PointG2 777 778 // Initialize G2 779 g := bls12381.NewG2() 780 r := g.New() 781 782 // Decode G2 point p_0 783 if p0, err = g.DecodePoint(input[:256]); err != nil { 784 return nil, err 785 } 786 // Decode G2 point p_1 787 if p1, err = g.DecodePoint(input[256:]); err != nil { 788 return nil, err 789 } 790 791 // Compute r = p_0 + p_1 792 g.Add(r, p0, p1) 793 794 // Encode the G2 point into 256 bytes 795 return g.EncodePoint(r), nil 796 } 797 798 // bls12381G2Mul implements EIP-2537 G2Mul precompile. 799 type bls12381G2Mul struct{} 800 801 // RequiredGas returns the gas required to execute the pre-compiled contract. 802 func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 { 803 return params.Bls12381G2MulGas 804 } 805 806 func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) { 807 // Implements EIP-2537 G2MUL precompile logic. 808 // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 809 // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes). 810 if len(input) != 288 { 811 return nil, errBLS12381InvalidInputLength 812 } 813 var err error 814 var p0 *bls12381.PointG2 815 816 // Initialize G2 817 g := bls12381.NewG2() 818 819 // Decode G2 point 820 if p0, err = g.DecodePoint(input[:256]); err != nil { 821 return nil, err 822 } 823 // Decode scalar value 824 e := new(big.Int).SetBytes(input[256:]) 825 826 // Compute r = e * p_0 827 r := g.New() 828 g.MulScalar(r, p0, e) 829 830 // Encode the G2 point into 256 bytes 831 return g.EncodePoint(r), nil 832 } 833 834 // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile. 835 type bls12381G2MultiExp struct{} 836 837 // RequiredGas returns the gas required to execute the pre-compiled contract. 838 func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 { 839 // Calculate G2 point, scalar value pair length 840 k := len(input) / 288 841 if k == 0 { 842 // Return 0 gas for small input length 843 return 0 844 } 845 // Lookup discount value for G2 point, scalar value pair length 846 var discount uint64 847 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 848 discount = params.Bls12381MultiExpDiscountTable[k-1] 849 } else { 850 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 851 } 852 // Calculate gas and return the result 853 return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000 854 } 855 856 func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) { 857 // Implements EIP-2537 G2MultiExp precompile logic 858 // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 859 // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes). 860 k := len(input) / 288 861 if len(input) == 0 || len(input)%288 != 0 { 862 return nil, errBLS12381InvalidInputLength 863 } 864 var err error 865 points := make([]*bls12381.PointG2, k) 866 scalars := make([]*big.Int, k) 867 868 // Initialize G2 869 g := bls12381.NewG2() 870 871 // Decode point scalar pairs 872 for i := 0; i < k; i++ { 873 off := 288 * i 874 t0, t1, t2 := off, off+256, off+288 875 // Decode G1 point 876 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 877 return nil, err 878 } 879 // Decode scalar value 880 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 881 } 882 883 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 884 r := g.New() 885 g.MultiExp(r, points, scalars) 886 887 // Encode the G2 point to 256 bytes. 888 return g.EncodePoint(r), nil 889 } 890 891 // bls12381Pairing implements EIP-2537 Pairing precompile. 892 type bls12381Pairing struct{} 893 894 // RequiredGas returns the gas required to execute the pre-compiled contract. 895 func (c *bls12381Pairing) RequiredGas(input []byte) uint64 { 896 return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas 897 } 898 899 func (c *bls12381Pairing) Run(input []byte) ([]byte, error) { 900 // Implements EIP-2537 Pairing precompile logic. 901 // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure: 902 // > - `128` bytes of G1 point encoding 903 // > - `256` bytes of G2 point encoding 904 // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise 905 // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively). 906 k := len(input) / 384 907 if len(input) == 0 || len(input)%384 != 0 { 908 return nil, errBLS12381InvalidInputLength 909 } 910 911 // Initialize BLS12-381 pairing engine 912 e := bls12381.NewPairingEngine() 913 g1, g2 := e.G1, e.G2 914 915 // Decode pairs 916 for i := 0; i < k; i++ { 917 off := 384 * i 918 t0, t1, t2 := off, off+128, off+384 919 920 // Decode G1 point 921 p1, err := g1.DecodePoint(input[t0:t1]) 922 if err != nil { 923 return nil, err 924 } 925 // Decode G2 point 926 p2, err := g2.DecodePoint(input[t1:t2]) 927 if err != nil { 928 return nil, err 929 } 930 931 // 'point is on curve' check already done, 932 // Here we need to apply subgroup checks. 933 if !g1.InCorrectSubgroup(p1) { 934 return nil, errBLS12381G1PointSubgroup 935 } 936 if !g2.InCorrectSubgroup(p2) { 937 return nil, errBLS12381G2PointSubgroup 938 } 939 940 // Update pairing engine with G1 and G2 ponits 941 e.AddPair(p1, p2) 942 } 943 // Prepare 32 byte output 944 out := make([]byte, 32) 945 946 // Compute pairing and set the result 947 if e.Check() { 948 out[31] = 1 949 } 950 return out, nil 951 } 952 953 // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element. 954 // Removes top 16 bytes of 64 byte input. 955 func decodeBLS12381FieldElement(in []byte) ([]byte, error) { 956 if len(in) != 64 { 957 return nil, errors.New("invalid field element length") 958 } 959 // check top bytes 960 for i := 0; i < 16; i++ { 961 if in[i] != byte(0x00) { 962 return nil, errBLS12381InvalidFieldElementTopBytes 963 } 964 } 965 out := make([]byte, 48) 966 copy(out[:], in[16:]) 967 return out, nil 968 } 969 970 // bls12381MapG1 implements EIP-2537 MapG1 precompile. 971 type bls12381MapG1 struct{} 972 973 // RequiredGas returns the gas required to execute the pre-compiled contract. 974 func (c *bls12381MapG1) RequiredGas(input []byte) uint64 { 975 return params.Bls12381MapG1Gas 976 } 977 978 func (c *bls12381MapG1) Run(input []byte) ([]byte, error) { 979 // Implements EIP-2537 Map_To_G1 precompile. 980 // > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field. 981 // > Output of this call is `128` bytes and is G1 point following respective encoding rules. 982 if len(input) != 64 { 983 return nil, errBLS12381InvalidInputLength 984 } 985 986 // Decode input field element 987 fe, err := decodeBLS12381FieldElement(input) 988 if err != nil { 989 return nil, err 990 } 991 992 // Initialize G1 993 g := bls12381.NewG1() 994 995 // Compute mapping 996 r, err := g.MapToCurve(fe) 997 if err != nil { 998 return nil, err 999 } 1000 1001 // Encode the G1 point to 128 bytes 1002 return g.EncodePoint(r), nil 1003 } 1004 1005 // bls12381MapG2 implements EIP-2537 MapG2 precompile. 1006 type bls12381MapG2 struct{} 1007 1008 // RequiredGas returns the gas required to execute the pre-compiled contract. 1009 func (c *bls12381MapG2) RequiredGas(input []byte) uint64 { 1010 return params.Bls12381MapG2Gas 1011 } 1012 1013 func (c *bls12381MapG2) Run(input []byte) ([]byte, error) { 1014 // Implements EIP-2537 Map_FP2_TO_G2 precompile logic. 1015 // > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field. 1016 // > Output of this call is `256` bytes and is G2 point following respective encoding rules. 1017 if len(input) != 128 { 1018 return nil, errBLS12381InvalidInputLength 1019 } 1020 1021 // Decode input field element 1022 fe := make([]byte, 96) 1023 c0, err := decodeBLS12381FieldElement(input[:64]) 1024 if err != nil { 1025 return nil, err 1026 } 1027 copy(fe[48:], c0) 1028 c1, err := decodeBLS12381FieldElement(input[64:]) 1029 if err != nil { 1030 return nil, err 1031 } 1032 copy(fe[:48], c1) 1033 1034 // Initialize G2 1035 g := bls12381.NewG2() 1036 1037 // Compute mapping 1038 r, err := g.MapToCurve(fe) 1039 if err != nil { 1040 return nil, err 1041 } 1042 1043 // Encode the G2 point to 256 bytes 1044 return g.EncodePoint(r), nil 1045 }