gitee.com/liu-zhao234568/cntest@v1.0.0/eth/sync.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package eth
    18  
    19  import (
    20  	"math/big"
    21  	"math/rand"
    22  	"sync/atomic"
    23  	"time"
    24  
    25  	"gitee.com/liu-zhao234568/cntest/common"
    26  	"gitee.com/liu-zhao234568/cntest/core/rawdb"
    27  	"gitee.com/liu-zhao234568/cntest/core/types"
    28  	"gitee.com/liu-zhao234568/cntest/eth/downloader"
    29  	"gitee.com/liu-zhao234568/cntest/eth/protocols/eth"
    30  	"gitee.com/liu-zhao234568/cntest/log"
    31  	"gitee.com/liu-zhao234568/cntest/p2p/enode"
    32  )
    33  
    34  const (
    35  	forceSyncCycle      = 10 * time.Second // Time interval to force syncs, even if few peers are available
    36  	defaultMinSyncPeers = 5                // Amount of peers desired to start syncing
    37  
    38  	// This is the target size for the packs of transactions sent by txsyncLoop64.
    39  	// A pack can get larger than this if a single transactions exceeds this size.
    40  	txsyncPackSize = 100 * 1024
    41  )
    42  
    43  type txsync struct {
    44  	p   *eth.Peer
    45  	txs []*types.Transaction
    46  }
    47  
    48  // syncTransactions starts sending all currently pending transactions to the given peer.
    49  func (h *handler) syncTransactions(p *eth.Peer) {
    50  	// Assemble the set of transaction to broadcast or announce to the remote
    51  	// peer. Fun fact, this is quite an expensive operation as it needs to sort
    52  	// the transactions if the sorting is not cached yet. However, with a random
    53  	// order, insertions could overflow the non-executable queues and get dropped.
    54  	//
    55  	// TODO(karalabe): Figure out if we could get away with random order somehow
    56  	var txs types.Transactions
    57  	pending, _ := h.txpool.Pending(false)
    58  	for _, batch := range pending {
    59  		txs = append(txs, batch...)
    60  	}
    61  	if len(txs) == 0 {
    62  		return
    63  	}
    64  	// The eth/65 protocol introduces proper transaction announcements, so instead
    65  	// of dripping transactions across multiple peers, just send the entire list as
    66  	// an announcement and let the remote side decide what they need (likely nothing).
    67  	if p.Version() >= eth.ETH65 {
    68  		hashes := make([]common.Hash, len(txs))
    69  		for i, tx := range txs {
    70  			hashes[i] = tx.Hash()
    71  		}
    72  		p.AsyncSendPooledTransactionHashes(hashes)
    73  		return
    74  	}
    75  	// Out of luck, peer is running legacy protocols, drop the txs over
    76  	select {
    77  	case h.txsyncCh <- &txsync{p: p, txs: txs}:
    78  	case <-h.quitSync:
    79  	}
    80  }
    81  
    82  // txsyncLoop64 takes care of the initial transaction sync for each new
    83  // connection. When a new peer appears, we relay all currently pending
    84  // transactions. In order to minimise egress bandwidth usage, we send
    85  // the transactions in small packs to one peer at a time.
    86  func (h *handler) txsyncLoop64() {
    87  	defer h.wg.Done()
    88  
    89  	var (
    90  		pending = make(map[enode.ID]*txsync)
    91  		sending = false               // whether a send is active
    92  		pack    = new(txsync)         // the pack that is being sent
    93  		done    = make(chan error, 1) // result of the send
    94  	)
    95  
    96  	// send starts a sending a pack of transactions from the sync.
    97  	send := func(s *txsync) {
    98  		if s.p.Version() >= eth.ETH65 {
    99  			panic("initial transaction syncer running on eth/65+")
   100  		}
   101  		// Fill pack with transactions up to the target size.
   102  		size := common.StorageSize(0)
   103  		pack.p = s.p
   104  		pack.txs = pack.txs[:0]
   105  		for i := 0; i < len(s.txs) && size < txsyncPackSize; i++ {
   106  			pack.txs = append(pack.txs, s.txs[i])
   107  			size += s.txs[i].Size()
   108  		}
   109  		// Remove the transactions that will be sent.
   110  		s.txs = s.txs[:copy(s.txs, s.txs[len(pack.txs):])]
   111  		if len(s.txs) == 0 {
   112  			delete(pending, s.p.Peer.ID())
   113  		}
   114  		// Send the pack in the background.
   115  		s.p.Log().Trace("Sending batch of transactions", "count", len(pack.txs), "bytes", size)
   116  		sending = true
   117  		go func() { done <- pack.p.SendTransactions(pack.txs) }()
   118  	}
   119  	// pick chooses the next pending sync.
   120  	pick := func() *txsync {
   121  		if len(pending) == 0 {
   122  			return nil
   123  		}
   124  		n := rand.Intn(len(pending)) + 1
   125  		for _, s := range pending {
   126  			if n--; n == 0 {
   127  				return s
   128  			}
   129  		}
   130  		return nil
   131  	}
   132  
   133  	for {
   134  		select {
   135  		case s := <-h.txsyncCh:
   136  			pending[s.p.Peer.ID()] = s
   137  			if !sending {
   138  				send(s)
   139  			}
   140  		case err := <-done:
   141  			sending = false
   142  			// Stop tracking peers that cause send failures.
   143  			if err != nil {
   144  				pack.p.Log().Debug("Transaction send failed", "err", err)
   145  				delete(pending, pack.p.Peer.ID())
   146  			}
   147  			// Schedule the next send.
   148  			if s := pick(); s != nil {
   149  				send(s)
   150  			}
   151  		case <-h.quitSync:
   152  			return
   153  		}
   154  	}
   155  }
   156  
   157  // chainSyncer coordinates blockchain sync components.
   158  type chainSyncer struct {
   159  	handler     *handler
   160  	force       *time.Timer
   161  	forced      bool // true when force timer fired
   162  	peerEventCh chan struct{}
   163  	doneCh      chan error // non-nil when sync is running
   164  }
   165  
   166  // chainSyncOp is a scheduled sync operation.
   167  type chainSyncOp struct {
   168  	mode downloader.SyncMode
   169  	peer *eth.Peer
   170  	td   *big.Int
   171  	head common.Hash
   172  }
   173  
   174  // newChainSyncer creates a chainSyncer.
   175  func newChainSyncer(handler *handler) *chainSyncer {
   176  	return &chainSyncer{
   177  		handler:     handler,
   178  		peerEventCh: make(chan struct{}),
   179  	}
   180  }
   181  
   182  // handlePeerEvent notifies the syncer about a change in the peer set.
   183  // This is called for new peers and every time a peer announces a new
   184  // chain head.
   185  func (cs *chainSyncer) handlePeerEvent(peer *eth.Peer) bool {
   186  	select {
   187  	case cs.peerEventCh <- struct{}{}:
   188  		return true
   189  	case <-cs.handler.quitSync:
   190  		return false
   191  	}
   192  }
   193  
   194  // loop runs in its own goroutine and launches the sync when necessary.
   195  func (cs *chainSyncer) loop() {
   196  	defer cs.handler.wg.Done()
   197  
   198  	cs.handler.blockFetcher.Start()
   199  	cs.handler.txFetcher.Start()
   200  	defer cs.handler.blockFetcher.Stop()
   201  	defer cs.handler.txFetcher.Stop()
   202  	defer cs.handler.downloader.Terminate()
   203  
   204  	// The force timer lowers the peer count threshold down to one when it fires.
   205  	// This ensures we'll always start sync even if there aren't enough peers.
   206  	cs.force = time.NewTimer(forceSyncCycle)
   207  	defer cs.force.Stop()
   208  
   209  	for {
   210  		if op := cs.nextSyncOp(); op != nil {
   211  			cs.startSync(op)
   212  		}
   213  		select {
   214  		case <-cs.peerEventCh:
   215  			// Peer information changed, recheck.
   216  		case <-cs.doneCh:
   217  			cs.doneCh = nil
   218  			cs.force.Reset(forceSyncCycle)
   219  			cs.forced = false
   220  		case <-cs.force.C:
   221  			cs.forced = true
   222  
   223  		case <-cs.handler.quitSync:
   224  			// Disable all insertion on the blockchain. This needs to happen before
   225  			// terminating the downloader because the downloader waits for blockchain
   226  			// inserts, and these can take a long time to finish.
   227  			cs.handler.chain.StopInsert()
   228  			cs.handler.downloader.Terminate()
   229  			if cs.doneCh != nil {
   230  				<-cs.doneCh
   231  			}
   232  			return
   233  		}
   234  	}
   235  }
   236  
   237  // nextSyncOp determines whether sync is required at this time.
   238  func (cs *chainSyncer) nextSyncOp() *chainSyncOp {
   239  	if cs.doneCh != nil {
   240  		return nil // Sync already running.
   241  	}
   242  
   243  	// Ensure we're at minimum peer count.
   244  	minPeers := defaultMinSyncPeers
   245  	if cs.forced {
   246  		minPeers = 1
   247  	} else if minPeers > cs.handler.maxPeers {
   248  		minPeers = cs.handler.maxPeers
   249  	}
   250  	if cs.handler.peers.len() < minPeers {
   251  		return nil
   252  	}
   253  	// We have enough peers, check TD
   254  	peer := cs.handler.peers.peerWithHighestTD()
   255  	if peer == nil {
   256  		return nil
   257  	}
   258  	mode, ourTD := cs.modeAndLocalHead()
   259  	if mode == downloader.FastSync && atomic.LoadUint32(&cs.handler.snapSync) == 1 {
   260  		// Fast sync via the snap protocol
   261  		mode = downloader.SnapSync
   262  	}
   263  	op := peerToSyncOp(mode, peer)
   264  	if op.td.Cmp(ourTD) <= 0 {
   265  		return nil // We're in sync.
   266  	}
   267  	return op
   268  }
   269  
   270  func peerToSyncOp(mode downloader.SyncMode, p *eth.Peer) *chainSyncOp {
   271  	peerHead, peerTD := p.Head()
   272  	return &chainSyncOp{mode: mode, peer: p, td: peerTD, head: peerHead}
   273  }
   274  
   275  func (cs *chainSyncer) modeAndLocalHead() (downloader.SyncMode, *big.Int) {
   276  	// If we're in fast sync mode, return that directly
   277  	if atomic.LoadUint32(&cs.handler.fastSync) == 1 {
   278  		block := cs.handler.chain.CurrentFastBlock()
   279  		td := cs.handler.chain.GetTdByHash(block.Hash())
   280  		return downloader.FastSync, td
   281  	}
   282  	// We are probably in full sync, but we might have rewound to before the
   283  	// fast sync pivot, check if we should reenable
   284  	if pivot := rawdb.ReadLastPivotNumber(cs.handler.database); pivot != nil {
   285  		if head := cs.handler.chain.CurrentBlock(); head.NumberU64() < *pivot {
   286  			block := cs.handler.chain.CurrentFastBlock()
   287  			td := cs.handler.chain.GetTdByHash(block.Hash())
   288  			return downloader.FastSync, td
   289  		}
   290  	}
   291  	// Nope, we're really full syncing
   292  	head := cs.handler.chain.CurrentBlock()
   293  	td := cs.handler.chain.GetTd(head.Hash(), head.NumberU64())
   294  	return downloader.FullSync, td
   295  }
   296  
   297  // startSync launches doSync in a new goroutine.
   298  func (cs *chainSyncer) startSync(op *chainSyncOp) {
   299  	cs.doneCh = make(chan error, 1)
   300  	go func() { cs.doneCh <- cs.handler.doSync(op) }()
   301  }
   302  
   303  // doSync synchronizes the local blockchain with a remote peer.
   304  func (h *handler) doSync(op *chainSyncOp) error {
   305  	if op.mode == downloader.FastSync || op.mode == downloader.SnapSync {
   306  		// Before launch the fast sync, we have to ensure user uses the same
   307  		// txlookup limit.
   308  		// The main concern here is: during the fast sync Geth won't index the
   309  		// block(generate tx indices) before the HEAD-limit. But if user changes
   310  		// the limit in the next fast sync(e.g. user kill Geth manually and
   311  		// restart) then it will be hard for Geth to figure out the oldest block
   312  		// has been indexed. So here for the user-experience wise, it's non-optimal
   313  		// that user can't change limit during the fast sync. If changed, Geth
   314  		// will just blindly use the original one.
   315  		limit := h.chain.TxLookupLimit()
   316  		if stored := rawdb.ReadFastTxLookupLimit(h.database); stored == nil {
   317  			rawdb.WriteFastTxLookupLimit(h.database, limit)
   318  		} else if *stored != limit {
   319  			h.chain.SetTxLookupLimit(*stored)
   320  			log.Warn("Update txLookup limit", "provided", limit, "updated", *stored)
   321  		}
   322  	}
   323  	// Run the sync cycle, and disable fast sync if we're past the pivot block
   324  	err := h.downloader.Synchronise(op.peer.ID(), op.head, op.td, op.mode)
   325  	if err != nil {
   326  		return err
   327  	}
   328  	if atomic.LoadUint32(&h.fastSync) == 1 {
   329  		log.Info("Fast sync complete, auto disabling")
   330  		atomic.StoreUint32(&h.fastSync, 0)
   331  	}
   332  	if atomic.LoadUint32(&h.snapSync) == 1 {
   333  		log.Info("Snap sync complete, auto disabling")
   334  		atomic.StoreUint32(&h.snapSync, 0)
   335  	}
   336  	// If we've successfully finished a sync cycle and passed any required checkpoint,
   337  	// enable accepting transactions from the network.
   338  	head := h.chain.CurrentBlock()
   339  	if head.NumberU64() >= h.checkpointNumber {
   340  		// Checkpoint passed, sanity check the timestamp to have a fallback mechanism
   341  		// for non-checkpointed (number = 0) private networks.
   342  		if head.Time() >= uint64(time.Now().AddDate(0, -1, 0).Unix()) {
   343  			atomic.StoreUint32(&h.acceptTxs, 1)
   344  		}
   345  	}
   346  	if head.NumberU64() > 0 {
   347  		// We've completed a sync cycle, notify all peers of new state. This path is
   348  		// essential in star-topology networks where a gateway node needs to notify
   349  		// all its out-of-date peers of the availability of a new block. This failure
   350  		// scenario will most often crop up in private and hackathon networks with
   351  		// degenerate connectivity, but it should be healthy for the mainnet too to
   352  		// more reliably update peers or the local TD state.
   353  		h.BroadcastBlock(head, false)
   354  	}
   355  	return nil
   356  }