gitee.com/liu-zhao234568/cntest@v1.0.0/signer/core/signed_data.go (about)

     1  // Copyright 2019 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package core
    18  
    19  import (
    20  	"bytes"
    21  	"context"
    22  	"errors"
    23  	"fmt"
    24  	"math/big"
    25  	"mime"
    26  	"reflect"
    27  	"regexp"
    28  	"sort"
    29  	"strconv"
    30  	"strings"
    31  	"unicode"
    32  
    33  	"gitee.com/liu-zhao234568/cntest/accounts"
    34  	"gitee.com/liu-zhao234568/cntest/common"
    35  	"gitee.com/liu-zhao234568/cntest/common/hexutil"
    36  	"gitee.com/liu-zhao234568/cntest/common/math"
    37  	"gitee.com/liu-zhao234568/cntest/consensus/clique"
    38  	"gitee.com/liu-zhao234568/cntest/core/types"
    39  	"gitee.com/liu-zhao234568/cntest/crypto"
    40  	"gitee.com/liu-zhao234568/cntest/rlp"
    41  )
    42  
    43  type SigFormat struct {
    44  	Mime        string
    45  	ByteVersion byte
    46  }
    47  
    48  var (
    49  	IntendedValidator = SigFormat{
    50  		accounts.MimetypeDataWithValidator,
    51  		0x00,
    52  	}
    53  	DataTyped = SigFormat{
    54  		accounts.MimetypeTypedData,
    55  		0x01,
    56  	}
    57  	ApplicationClique = SigFormat{
    58  		accounts.MimetypeClique,
    59  		0x02,
    60  	}
    61  	TextPlain = SigFormat{
    62  		accounts.MimetypeTextPlain,
    63  		0x45,
    64  	}
    65  )
    66  
    67  type ValidatorData struct {
    68  	Address common.Address
    69  	Message hexutil.Bytes
    70  }
    71  
    72  type TypedData struct {
    73  	Types       Types            `json:"types"`
    74  	PrimaryType string           `json:"primaryType"`
    75  	Domain      TypedDataDomain  `json:"domain"`
    76  	Message     TypedDataMessage `json:"message"`
    77  }
    78  
    79  type Type struct {
    80  	Name string `json:"name"`
    81  	Type string `json:"type"`
    82  }
    83  
    84  func (t *Type) isArray() bool {
    85  	return strings.HasSuffix(t.Type, "[]")
    86  }
    87  
    88  // typeName returns the canonical name of the type. If the type is 'Person[]', then
    89  // this method returns 'Person'
    90  func (t *Type) typeName() string {
    91  	if strings.HasSuffix(t.Type, "[]") {
    92  		return strings.TrimSuffix(t.Type, "[]")
    93  	}
    94  	return t.Type
    95  }
    96  
    97  func (t *Type) isReferenceType() bool {
    98  	if len(t.Type) == 0 {
    99  		return false
   100  	}
   101  	// Reference types must have a leading uppercase character
   102  	return unicode.IsUpper([]rune(t.Type)[0])
   103  }
   104  
   105  type Types map[string][]Type
   106  
   107  type TypePriority struct {
   108  	Type  string
   109  	Value uint
   110  }
   111  
   112  type TypedDataMessage = map[string]interface{}
   113  
   114  type TypedDataDomain struct {
   115  	Name              string                `json:"name"`
   116  	Version           string                `json:"version"`
   117  	ChainId           *math.HexOrDecimal256 `json:"chainId"`
   118  	VerifyingContract string                `json:"verifyingContract"`
   119  	Salt              string                `json:"salt"`
   120  }
   121  
   122  var typedDataReferenceTypeRegexp = regexp.MustCompile(`^[A-Z](\w*)(\[\])?$`)
   123  
   124  // sign receives a request and produces a signature
   125  //
   126  // Note, the produced signature conforms to the secp256k1 curve R, S and V values,
   127  // where the V value will be 27 or 28 for legacy reasons, if legacyV==true.
   128  func (api *SignerAPI) sign(req *SignDataRequest, legacyV bool) (hexutil.Bytes, error) {
   129  	// We make the request prior to looking up if we actually have the account, to prevent
   130  	// account-enumeration via the API
   131  	res, err := api.UI.ApproveSignData(req)
   132  	if err != nil {
   133  		return nil, err
   134  	}
   135  	if !res.Approved {
   136  		return nil, ErrRequestDenied
   137  	}
   138  	// Look up the wallet containing the requested signer
   139  	account := accounts.Account{Address: req.Address.Address()}
   140  	wallet, err := api.am.Find(account)
   141  	if err != nil {
   142  		return nil, err
   143  	}
   144  	pw, err := api.lookupOrQueryPassword(account.Address,
   145  		"Password for signing",
   146  		fmt.Sprintf("Please enter password for signing data with account %s", account.Address.Hex()))
   147  	if err != nil {
   148  		return nil, err
   149  	}
   150  	// Sign the data with the wallet
   151  	signature, err := wallet.SignDataWithPassphrase(account, pw, req.ContentType, req.Rawdata)
   152  	if err != nil {
   153  		return nil, err
   154  	}
   155  	if legacyV {
   156  		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
   157  	}
   158  	return signature, nil
   159  }
   160  
   161  // SignData signs the hash of the provided data, but does so differently
   162  // depending on the content-type specified.
   163  //
   164  // Different types of validation occur.
   165  func (api *SignerAPI) SignData(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (hexutil.Bytes, error) {
   166  	var req, transformV, err = api.determineSignatureFormat(ctx, contentType, addr, data)
   167  	if err != nil {
   168  		return nil, err
   169  	}
   170  	signature, err := api.sign(req, transformV)
   171  	if err != nil {
   172  		api.UI.ShowError(err.Error())
   173  		return nil, err
   174  	}
   175  	return signature, nil
   176  }
   177  
   178  // determineSignatureFormat determines which signature method should be used based upon the mime type
   179  // In the cases where it matters ensure that the charset is handled. The charset
   180  // resides in the 'params' returned as the second returnvalue from mime.ParseMediaType
   181  // charset, ok := params["charset"]
   182  // As it is now, we accept any charset and just treat it as 'raw'.
   183  // This method returns the mimetype for signing along with the request
   184  func (api *SignerAPI) determineSignatureFormat(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (*SignDataRequest, bool, error) {
   185  	var (
   186  		req          *SignDataRequest
   187  		useEthereumV = true // Default to use V = 27 or 28, the legacy Ethereum format
   188  	)
   189  	mediaType, _, err := mime.ParseMediaType(contentType)
   190  	if err != nil {
   191  		return nil, useEthereumV, err
   192  	}
   193  
   194  	switch mediaType {
   195  	case IntendedValidator.Mime:
   196  		// Data with an intended validator
   197  		validatorData, err := UnmarshalValidatorData(data)
   198  		if err != nil {
   199  			return nil, useEthereumV, err
   200  		}
   201  		sighash, msg := SignTextValidator(validatorData)
   202  		messages := []*NameValueType{
   203  			{
   204  				Name:  "This is a request to sign data intended for a particular validator (see EIP 191 version 0)",
   205  				Typ:   "description",
   206  				Value: "",
   207  			},
   208  			{
   209  				Name:  "Intended validator address",
   210  				Typ:   "address",
   211  				Value: validatorData.Address.String(),
   212  			},
   213  			{
   214  				Name:  "Application-specific data",
   215  				Typ:   "hexdata",
   216  				Value: validatorData.Message,
   217  			},
   218  			{
   219  				Name:  "Full message for signing",
   220  				Typ:   "hexdata",
   221  				Value: fmt.Sprintf("0x%x", msg),
   222  			},
   223  		}
   224  		req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
   225  	case ApplicationClique.Mime:
   226  		// Clique is the Ethereum PoA standard
   227  		stringData, ok := data.(string)
   228  		if !ok {
   229  			return nil, useEthereumV, fmt.Errorf("input for %v must be an hex-encoded string", ApplicationClique.Mime)
   230  		}
   231  		cliqueData, err := hexutil.Decode(stringData)
   232  		if err != nil {
   233  			return nil, useEthereumV, err
   234  		}
   235  		header := &types.Header{}
   236  		if err := rlp.DecodeBytes(cliqueData, header); err != nil {
   237  			return nil, useEthereumV, err
   238  		}
   239  		// The incoming clique header is already truncated, sent to us with a extradata already shortened
   240  		if len(header.Extra) < 65 {
   241  			// Need to add it back, to get a suitable length for hashing
   242  			newExtra := make([]byte, len(header.Extra)+65)
   243  			copy(newExtra, header.Extra)
   244  			header.Extra = newExtra
   245  		}
   246  		// Get back the rlp data, encoded by us
   247  		sighash, cliqueRlp, err := cliqueHeaderHashAndRlp(header)
   248  		if err != nil {
   249  			return nil, useEthereumV, err
   250  		}
   251  		messages := []*NameValueType{
   252  			{
   253  				Name:  "Clique header",
   254  				Typ:   "clique",
   255  				Value: fmt.Sprintf("clique header %d [0x%x]", header.Number, header.Hash()),
   256  			},
   257  		}
   258  		// Clique uses V on the form 0 or 1
   259  		useEthereumV = false
   260  		req = &SignDataRequest{ContentType: mediaType, Rawdata: cliqueRlp, Messages: messages, Hash: sighash}
   261  	default: // also case TextPlain.Mime:
   262  		// Calculates an Ethereum ECDSA signature for:
   263  		// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   264  		// We expect it to be a string
   265  		if stringData, ok := data.(string); !ok {
   266  			return nil, useEthereumV, fmt.Errorf("input for text/plain must be an hex-encoded string")
   267  		} else {
   268  			if textData, err := hexutil.Decode(stringData); err != nil {
   269  				return nil, useEthereumV, err
   270  			} else {
   271  				sighash, msg := accounts.TextAndHash(textData)
   272  				messages := []*NameValueType{
   273  					{
   274  						Name:  "message",
   275  						Typ:   accounts.MimetypeTextPlain,
   276  						Value: msg,
   277  					},
   278  				}
   279  				req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
   280  			}
   281  		}
   282  	}
   283  	req.Address = addr
   284  	req.Meta = MetadataFromContext(ctx)
   285  	return req, useEthereumV, nil
   286  }
   287  
   288  // SignTextWithValidator signs the given message which can be further recovered
   289  // with the given validator.
   290  // hash = keccak256("\x19\x00"${address}${data}).
   291  func SignTextValidator(validatorData ValidatorData) (hexutil.Bytes, string) {
   292  	msg := fmt.Sprintf("\x19\x00%s%s", string(validatorData.Address.Bytes()), string(validatorData.Message))
   293  	return crypto.Keccak256([]byte(msg)), msg
   294  }
   295  
   296  // cliqueHeaderHashAndRlp returns the hash which is used as input for the proof-of-authority
   297  // signing. It is the hash of the entire header apart from the 65 byte signature
   298  // contained at the end of the extra data.
   299  //
   300  // The method requires the extra data to be at least 65 bytes -- the original implementation
   301  // in clique.go panics if this is the case, thus it's been reimplemented here to avoid the panic
   302  // and simply return an error instead
   303  func cliqueHeaderHashAndRlp(header *types.Header) (hash, rlp []byte, err error) {
   304  	if len(header.Extra) < 65 {
   305  		err = fmt.Errorf("clique header extradata too short, %d < 65", len(header.Extra))
   306  		return
   307  	}
   308  	rlp = clique.CliqueRLP(header)
   309  	hash = clique.SealHash(header).Bytes()
   310  	return hash, rlp, err
   311  }
   312  
   313  // SignTypedData signs EIP-712 conformant typed data
   314  // hash = keccak256("\x19${byteVersion}${domainSeparator}${hashStruct(message)}")
   315  // It returns
   316  // - the signature,
   317  // - and/or any error
   318  func (api *SignerAPI) SignTypedData(ctx context.Context, addr common.MixedcaseAddress, typedData TypedData) (hexutil.Bytes, error) {
   319  	signature, _, err := api.signTypedData(ctx, addr, typedData, nil)
   320  	return signature, err
   321  }
   322  
   323  // signTypedData is identical to the capitalized version, except that it also returns the hash (preimage)
   324  // - the signature preimage (hash)
   325  func (api *SignerAPI) signTypedData(ctx context.Context, addr common.MixedcaseAddress,
   326  	typedData TypedData, validationMessages *ValidationMessages) (hexutil.Bytes, hexutil.Bytes, error) {
   327  	domainSeparator, err := typedData.HashStruct("EIP712Domain", typedData.Domain.Map())
   328  	if err != nil {
   329  		return nil, nil, err
   330  	}
   331  	typedDataHash, err := typedData.HashStruct(typedData.PrimaryType, typedData.Message)
   332  	if err != nil {
   333  		return nil, nil, err
   334  	}
   335  	rawData := []byte(fmt.Sprintf("\x19\x01%s%s", string(domainSeparator), string(typedDataHash)))
   336  	sighash := crypto.Keccak256(rawData)
   337  	messages, err := typedData.Format()
   338  	if err != nil {
   339  		return nil, nil, err
   340  	}
   341  	req := &SignDataRequest{
   342  		ContentType: DataTyped.Mime,
   343  		Rawdata:     rawData,
   344  		Messages:    messages,
   345  		Hash:        sighash,
   346  		Address:     addr}
   347  	if validationMessages != nil {
   348  		req.Callinfo = validationMessages.Messages
   349  	}
   350  	signature, err := api.sign(req, true)
   351  	if err != nil {
   352  		api.UI.ShowError(err.Error())
   353  		return nil, nil, err
   354  	}
   355  	return signature, sighash, nil
   356  }
   357  
   358  // HashStruct generates a keccak256 hash of the encoding of the provided data
   359  func (typedData *TypedData) HashStruct(primaryType string, data TypedDataMessage) (hexutil.Bytes, error) {
   360  	encodedData, err := typedData.EncodeData(primaryType, data, 1)
   361  	if err != nil {
   362  		return nil, err
   363  	}
   364  	return crypto.Keccak256(encodedData), nil
   365  }
   366  
   367  // Dependencies returns an array of custom types ordered by their hierarchical reference tree
   368  func (typedData *TypedData) Dependencies(primaryType string, found []string) []string {
   369  	includes := func(arr []string, str string) bool {
   370  		for _, obj := range arr {
   371  			if obj == str {
   372  				return true
   373  			}
   374  		}
   375  		return false
   376  	}
   377  
   378  	if includes(found, primaryType) {
   379  		return found
   380  	}
   381  	if typedData.Types[primaryType] == nil {
   382  		return found
   383  	}
   384  	found = append(found, primaryType)
   385  	for _, field := range typedData.Types[primaryType] {
   386  		for _, dep := range typedData.Dependencies(field.Type, found) {
   387  			if !includes(found, dep) {
   388  				found = append(found, dep)
   389  			}
   390  		}
   391  	}
   392  	return found
   393  }
   394  
   395  // EncodeType generates the following encoding:
   396  // `name ‖ "(" ‖ member₁ ‖ "," ‖ member₂ ‖ "," ‖ … ‖ memberₙ ")"`
   397  //
   398  // each member is written as `type ‖ " " ‖ name` encodings cascade down and are sorted by name
   399  func (typedData *TypedData) EncodeType(primaryType string) hexutil.Bytes {
   400  	// Get dependencies primary first, then alphabetical
   401  	deps := typedData.Dependencies(primaryType, []string{})
   402  	if len(deps) > 0 {
   403  		slicedDeps := deps[1:]
   404  		sort.Strings(slicedDeps)
   405  		deps = append([]string{primaryType}, slicedDeps...)
   406  	}
   407  
   408  	// Format as a string with fields
   409  	var buffer bytes.Buffer
   410  	for _, dep := range deps {
   411  		buffer.WriteString(dep)
   412  		buffer.WriteString("(")
   413  		for _, obj := range typedData.Types[dep] {
   414  			buffer.WriteString(obj.Type)
   415  			buffer.WriteString(" ")
   416  			buffer.WriteString(obj.Name)
   417  			buffer.WriteString(",")
   418  		}
   419  		buffer.Truncate(buffer.Len() - 1)
   420  		buffer.WriteString(")")
   421  	}
   422  	return buffer.Bytes()
   423  }
   424  
   425  // TypeHash creates the keccak256 hash  of the data
   426  func (typedData *TypedData) TypeHash(primaryType string) hexutil.Bytes {
   427  	return crypto.Keccak256(typedData.EncodeType(primaryType))
   428  }
   429  
   430  // EncodeData generates the following encoding:
   431  // `enc(value₁) ‖ enc(value₂) ‖ … ‖ enc(valueₙ)`
   432  //
   433  // each encoded member is 32-byte long
   434  func (typedData *TypedData) EncodeData(primaryType string, data map[string]interface{}, depth int) (hexutil.Bytes, error) {
   435  	if err := typedData.validate(); err != nil {
   436  		return nil, err
   437  	}
   438  
   439  	buffer := bytes.Buffer{}
   440  
   441  	// Verify extra data
   442  	if exp, got := len(typedData.Types[primaryType]), len(data); exp < got {
   443  		return nil, fmt.Errorf("there is extra data provided in the message (%d < %d)", exp, got)
   444  	}
   445  
   446  	// Add typehash
   447  	buffer.Write(typedData.TypeHash(primaryType))
   448  
   449  	// Add field contents. Structs and arrays have special handlers.
   450  	for _, field := range typedData.Types[primaryType] {
   451  		encType := field.Type
   452  		encValue := data[field.Name]
   453  		if encType[len(encType)-1:] == "]" {
   454  			arrayValue, ok := encValue.([]interface{})
   455  			if !ok {
   456  				return nil, dataMismatchError(encType, encValue)
   457  			}
   458  
   459  			arrayBuffer := bytes.Buffer{}
   460  			parsedType := strings.Split(encType, "[")[0]
   461  			for _, item := range arrayValue {
   462  				if typedData.Types[parsedType] != nil {
   463  					mapValue, ok := item.(map[string]interface{})
   464  					if !ok {
   465  						return nil, dataMismatchError(parsedType, item)
   466  					}
   467  					encodedData, err := typedData.EncodeData(parsedType, mapValue, depth+1)
   468  					if err != nil {
   469  						return nil, err
   470  					}
   471  					arrayBuffer.Write(encodedData)
   472  				} else {
   473  					bytesValue, err := typedData.EncodePrimitiveValue(parsedType, item, depth)
   474  					if err != nil {
   475  						return nil, err
   476  					}
   477  					arrayBuffer.Write(bytesValue)
   478  				}
   479  			}
   480  
   481  			buffer.Write(crypto.Keccak256(arrayBuffer.Bytes()))
   482  		} else if typedData.Types[field.Type] != nil {
   483  			mapValue, ok := encValue.(map[string]interface{})
   484  			if !ok {
   485  				return nil, dataMismatchError(encType, encValue)
   486  			}
   487  			encodedData, err := typedData.EncodeData(field.Type, mapValue, depth+1)
   488  			if err != nil {
   489  				return nil, err
   490  			}
   491  			buffer.Write(crypto.Keccak256(encodedData))
   492  		} else {
   493  			byteValue, err := typedData.EncodePrimitiveValue(encType, encValue, depth)
   494  			if err != nil {
   495  				return nil, err
   496  			}
   497  			buffer.Write(byteValue)
   498  		}
   499  	}
   500  	return buffer.Bytes(), nil
   501  }
   502  
   503  // Attempt to parse bytes in different formats: byte array, hex string, hexutil.Bytes.
   504  func parseBytes(encType interface{}) ([]byte, bool) {
   505  	switch v := encType.(type) {
   506  	case []byte:
   507  		return v, true
   508  	case hexutil.Bytes:
   509  		return v, true
   510  	case string:
   511  		bytes, err := hexutil.Decode(v)
   512  		if err != nil {
   513  			return nil, false
   514  		}
   515  		return bytes, true
   516  	default:
   517  		return nil, false
   518  	}
   519  }
   520  
   521  func parseInteger(encType string, encValue interface{}) (*big.Int, error) {
   522  	var (
   523  		length int
   524  		signed = strings.HasPrefix(encType, "int")
   525  		b      *big.Int
   526  	)
   527  	if encType == "int" || encType == "uint" {
   528  		length = 256
   529  	} else {
   530  		lengthStr := ""
   531  		if strings.HasPrefix(encType, "uint") {
   532  			lengthStr = strings.TrimPrefix(encType, "uint")
   533  		} else {
   534  			lengthStr = strings.TrimPrefix(encType, "int")
   535  		}
   536  		atoiSize, err := strconv.Atoi(lengthStr)
   537  		if err != nil {
   538  			return nil, fmt.Errorf("invalid size on integer: %v", lengthStr)
   539  		}
   540  		length = atoiSize
   541  	}
   542  	switch v := encValue.(type) {
   543  	case *math.HexOrDecimal256:
   544  		b = (*big.Int)(v)
   545  	case string:
   546  		var hexIntValue math.HexOrDecimal256
   547  		if err := hexIntValue.UnmarshalText([]byte(v)); err != nil {
   548  			return nil, err
   549  		}
   550  		b = (*big.Int)(&hexIntValue)
   551  	case float64:
   552  		// JSON parses non-strings as float64. Fail if we cannot
   553  		// convert it losslessly
   554  		if float64(int64(v)) == v {
   555  			b = big.NewInt(int64(v))
   556  		} else {
   557  			return nil, fmt.Errorf("invalid float value %v for type %v", v, encType)
   558  		}
   559  	}
   560  	if b == nil {
   561  		return nil, fmt.Errorf("invalid integer value %v/%v for type %v", encValue, reflect.TypeOf(encValue), encType)
   562  	}
   563  	if b.BitLen() > length {
   564  		return nil, fmt.Errorf("integer larger than '%v'", encType)
   565  	}
   566  	if !signed && b.Sign() == -1 {
   567  		return nil, fmt.Errorf("invalid negative value for unsigned type %v", encType)
   568  	}
   569  	return b, nil
   570  }
   571  
   572  // EncodePrimitiveValue deals with the primitive values found
   573  // while searching through the typed data
   574  func (typedData *TypedData) EncodePrimitiveValue(encType string, encValue interface{}, depth int) ([]byte, error) {
   575  	switch encType {
   576  	case "address":
   577  		stringValue, ok := encValue.(string)
   578  		if !ok || !common.IsHexAddress(stringValue) {
   579  			return nil, dataMismatchError(encType, encValue)
   580  		}
   581  		retval := make([]byte, 32)
   582  		copy(retval[12:], common.HexToAddress(stringValue).Bytes())
   583  		return retval, nil
   584  	case "bool":
   585  		boolValue, ok := encValue.(bool)
   586  		if !ok {
   587  			return nil, dataMismatchError(encType, encValue)
   588  		}
   589  		if boolValue {
   590  			return math.PaddedBigBytes(common.Big1, 32), nil
   591  		}
   592  		return math.PaddedBigBytes(common.Big0, 32), nil
   593  	case "string":
   594  		strVal, ok := encValue.(string)
   595  		if !ok {
   596  			return nil, dataMismatchError(encType, encValue)
   597  		}
   598  		return crypto.Keccak256([]byte(strVal)), nil
   599  	case "bytes":
   600  		bytesValue, ok := parseBytes(encValue)
   601  		if !ok {
   602  			return nil, dataMismatchError(encType, encValue)
   603  		}
   604  		return crypto.Keccak256(bytesValue), nil
   605  	}
   606  	if strings.HasPrefix(encType, "bytes") {
   607  		lengthStr := strings.TrimPrefix(encType, "bytes")
   608  		length, err := strconv.Atoi(lengthStr)
   609  		if err != nil {
   610  			return nil, fmt.Errorf("invalid size on bytes: %v", lengthStr)
   611  		}
   612  		if length < 0 || length > 32 {
   613  			return nil, fmt.Errorf("invalid size on bytes: %d", length)
   614  		}
   615  		if byteValue, ok := parseBytes(encValue); !ok || len(byteValue) != length {
   616  			return nil, dataMismatchError(encType, encValue)
   617  		} else {
   618  			// Right-pad the bits
   619  			dst := make([]byte, 32)
   620  			copy(dst, byteValue)
   621  			return dst, nil
   622  		}
   623  	}
   624  	if strings.HasPrefix(encType, "int") || strings.HasPrefix(encType, "uint") {
   625  		b, err := parseInteger(encType, encValue)
   626  		if err != nil {
   627  			return nil, err
   628  		}
   629  		return math.U256Bytes(b), nil
   630  	}
   631  	return nil, fmt.Errorf("unrecognized type '%s'", encType)
   632  
   633  }
   634  
   635  // dataMismatchError generates an error for a mismatch between
   636  // the provided type and data
   637  func dataMismatchError(encType string, encValue interface{}) error {
   638  	return fmt.Errorf("provided data '%v' doesn't match type '%s'", encValue, encType)
   639  }
   640  
   641  // EcRecover recovers the address associated with the given sig.
   642  // Only compatible with `text/plain`
   643  func (api *SignerAPI) EcRecover(ctx context.Context, data hexutil.Bytes, sig hexutil.Bytes) (common.Address, error) {
   644  	// Returns the address for the Account that was used to create the signature.
   645  	//
   646  	// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
   647  	// the address of:
   648  	// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   649  	// addr = ecrecover(hash, signature)
   650  	//
   651  	// Note, the signature must conform to the secp256k1 curve R, S and V values, where
   652  	// the V value must be be 27 or 28 for legacy reasons.
   653  	//
   654  	// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
   655  	if len(sig) != 65 {
   656  		return common.Address{}, fmt.Errorf("signature must be 65 bytes long")
   657  	}
   658  	if sig[64] != 27 && sig[64] != 28 {
   659  		return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
   660  	}
   661  	sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
   662  	hash := accounts.TextHash(data)
   663  	rpk, err := crypto.SigToPub(hash, sig)
   664  	if err != nil {
   665  		return common.Address{}, err
   666  	}
   667  	return crypto.PubkeyToAddress(*rpk), nil
   668  }
   669  
   670  // UnmarshalValidatorData converts the bytes input to typed data
   671  func UnmarshalValidatorData(data interface{}) (ValidatorData, error) {
   672  	raw, ok := data.(map[string]interface{})
   673  	if !ok {
   674  		return ValidatorData{}, errors.New("validator input is not a map[string]interface{}")
   675  	}
   676  	addr, ok := raw["address"].(string)
   677  	if !ok {
   678  		return ValidatorData{}, errors.New("validator address is not sent as a string")
   679  	}
   680  	addrBytes, err := hexutil.Decode(addr)
   681  	if err != nil {
   682  		return ValidatorData{}, err
   683  	}
   684  	if !ok || len(addrBytes) == 0 {
   685  		return ValidatorData{}, errors.New("validator address is undefined")
   686  	}
   687  
   688  	message, ok := raw["message"].(string)
   689  	if !ok {
   690  		return ValidatorData{}, errors.New("message is not sent as a string")
   691  	}
   692  	messageBytes, err := hexutil.Decode(message)
   693  	if err != nil {
   694  		return ValidatorData{}, err
   695  	}
   696  	if !ok || len(messageBytes) == 0 {
   697  		return ValidatorData{}, errors.New("message is undefined")
   698  	}
   699  
   700  	return ValidatorData{
   701  		Address: common.BytesToAddress(addrBytes),
   702  		Message: messageBytes,
   703  	}, nil
   704  }
   705  
   706  // validate makes sure the types are sound
   707  func (typedData *TypedData) validate() error {
   708  	if err := typedData.Types.validate(); err != nil {
   709  		return err
   710  	}
   711  	if err := typedData.Domain.validate(); err != nil {
   712  		return err
   713  	}
   714  	return nil
   715  }
   716  
   717  // Map generates a map version of the typed data
   718  func (typedData *TypedData) Map() map[string]interface{} {
   719  	dataMap := map[string]interface{}{
   720  		"types":       typedData.Types,
   721  		"domain":      typedData.Domain.Map(),
   722  		"primaryType": typedData.PrimaryType,
   723  		"message":     typedData.Message,
   724  	}
   725  	return dataMap
   726  }
   727  
   728  // Format returns a representation of typedData, which can be easily displayed by a user-interface
   729  // without in-depth knowledge about 712 rules
   730  func (typedData *TypedData) Format() ([]*NameValueType, error) {
   731  	domain, err := typedData.formatData("EIP712Domain", typedData.Domain.Map())
   732  	if err != nil {
   733  		return nil, err
   734  	}
   735  	ptype, err := typedData.formatData(typedData.PrimaryType, typedData.Message)
   736  	if err != nil {
   737  		return nil, err
   738  	}
   739  	var nvts []*NameValueType
   740  	nvts = append(nvts, &NameValueType{
   741  		Name:  "EIP712Domain",
   742  		Value: domain,
   743  		Typ:   "domain",
   744  	})
   745  	nvts = append(nvts, &NameValueType{
   746  		Name:  typedData.PrimaryType,
   747  		Value: ptype,
   748  		Typ:   "primary type",
   749  	})
   750  	return nvts, nil
   751  }
   752  
   753  func (typedData *TypedData) formatData(primaryType string, data map[string]interface{}) ([]*NameValueType, error) {
   754  	var output []*NameValueType
   755  
   756  	// Add field contents. Structs and arrays have special handlers.
   757  	for _, field := range typedData.Types[primaryType] {
   758  		encName := field.Name
   759  		encValue := data[encName]
   760  		item := &NameValueType{
   761  			Name: encName,
   762  			Typ:  field.Type,
   763  		}
   764  		if field.isArray() {
   765  			arrayValue, _ := encValue.([]interface{})
   766  			parsedType := field.typeName()
   767  			for _, v := range arrayValue {
   768  				if typedData.Types[parsedType] != nil {
   769  					mapValue, _ := v.(map[string]interface{})
   770  					mapOutput, err := typedData.formatData(parsedType, mapValue)
   771  					if err != nil {
   772  						return nil, err
   773  					}
   774  					item.Value = mapOutput
   775  				} else {
   776  					primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
   777  					if err != nil {
   778  						return nil, err
   779  					}
   780  					item.Value = primitiveOutput
   781  				}
   782  			}
   783  		} else if typedData.Types[field.Type] != nil {
   784  			if mapValue, ok := encValue.(map[string]interface{}); ok {
   785  				mapOutput, err := typedData.formatData(field.Type, mapValue)
   786  				if err != nil {
   787  					return nil, err
   788  				}
   789  				item.Value = mapOutput
   790  			} else {
   791  				item.Value = "<nil>"
   792  			}
   793  		} else {
   794  			primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
   795  			if err != nil {
   796  				return nil, err
   797  			}
   798  			item.Value = primitiveOutput
   799  		}
   800  		output = append(output, item)
   801  	}
   802  	return output, nil
   803  }
   804  
   805  func formatPrimitiveValue(encType string, encValue interface{}) (string, error) {
   806  	switch encType {
   807  	case "address":
   808  		if stringValue, ok := encValue.(string); !ok {
   809  			return "", fmt.Errorf("could not format value %v as address", encValue)
   810  		} else {
   811  			return common.HexToAddress(stringValue).String(), nil
   812  		}
   813  	case "bool":
   814  		if boolValue, ok := encValue.(bool); !ok {
   815  			return "", fmt.Errorf("could not format value %v as bool", encValue)
   816  		} else {
   817  			return fmt.Sprintf("%t", boolValue), nil
   818  		}
   819  	case "bytes", "string":
   820  		return fmt.Sprintf("%s", encValue), nil
   821  	}
   822  	if strings.HasPrefix(encType, "bytes") {
   823  		return fmt.Sprintf("%s", encValue), nil
   824  
   825  	}
   826  	if strings.HasPrefix(encType, "uint") || strings.HasPrefix(encType, "int") {
   827  		if b, err := parseInteger(encType, encValue); err != nil {
   828  			return "", err
   829  		} else {
   830  			return fmt.Sprintf("%d (0x%x)", b, b), nil
   831  		}
   832  	}
   833  	return "", fmt.Errorf("unhandled type %v", encType)
   834  }
   835  
   836  // NameValueType is a very simple struct with Name, Value and Type. It's meant for simple
   837  // json structures used to communicate signing-info about typed data with the UI
   838  type NameValueType struct {
   839  	Name  string      `json:"name"`
   840  	Value interface{} `json:"value"`
   841  	Typ   string      `json:"type"`
   842  }
   843  
   844  // Pprint returns a pretty-printed version of nvt
   845  func (nvt *NameValueType) Pprint(depth int) string {
   846  	output := bytes.Buffer{}
   847  	output.WriteString(strings.Repeat("\u00a0", depth*2))
   848  	output.WriteString(fmt.Sprintf("%s [%s]: ", nvt.Name, nvt.Typ))
   849  	if nvts, ok := nvt.Value.([]*NameValueType); ok {
   850  		output.WriteString("\n")
   851  		for _, next := range nvts {
   852  			sublevel := next.Pprint(depth + 1)
   853  			output.WriteString(sublevel)
   854  		}
   855  	} else {
   856  		if nvt.Value != nil {
   857  			output.WriteString(fmt.Sprintf("%q\n", nvt.Value))
   858  		} else {
   859  			output.WriteString("\n")
   860  		}
   861  	}
   862  	return output.String()
   863  }
   864  
   865  // Validate checks if the types object is conformant to the specs
   866  func (t Types) validate() error {
   867  	for typeKey, typeArr := range t {
   868  		if len(typeKey) == 0 {
   869  			return fmt.Errorf("empty type key")
   870  		}
   871  		for i, typeObj := range typeArr {
   872  			if len(typeObj.Type) == 0 {
   873  				return fmt.Errorf("type %q:%d: empty Type", typeKey, i)
   874  			}
   875  			if len(typeObj.Name) == 0 {
   876  				return fmt.Errorf("type %q:%d: empty Name", typeKey, i)
   877  			}
   878  			if typeKey == typeObj.Type {
   879  				return fmt.Errorf("type %q cannot reference itself", typeObj.Type)
   880  			}
   881  			if typeObj.isReferenceType() {
   882  				if _, exist := t[typeObj.typeName()]; !exist {
   883  					return fmt.Errorf("reference type %q is undefined", typeObj.Type)
   884  				}
   885  				if !typedDataReferenceTypeRegexp.MatchString(typeObj.Type) {
   886  					return fmt.Errorf("unknown reference type %q", typeObj.Type)
   887  				}
   888  			} else if !isPrimitiveTypeValid(typeObj.Type) {
   889  				return fmt.Errorf("unknown type %q", typeObj.Type)
   890  			}
   891  		}
   892  	}
   893  	return nil
   894  }
   895  
   896  // Checks if the primitive value is valid
   897  func isPrimitiveTypeValid(primitiveType string) bool {
   898  	if primitiveType == "address" ||
   899  		primitiveType == "address[]" ||
   900  		primitiveType == "bool" ||
   901  		primitiveType == "bool[]" ||
   902  		primitiveType == "string" ||
   903  		primitiveType == "string[]" {
   904  		return true
   905  	}
   906  	if primitiveType == "bytes" ||
   907  		primitiveType == "bytes[]" ||
   908  		primitiveType == "bytes1" ||
   909  		primitiveType == "bytes1[]" ||
   910  		primitiveType == "bytes2" ||
   911  		primitiveType == "bytes2[]" ||
   912  		primitiveType == "bytes3" ||
   913  		primitiveType == "bytes3[]" ||
   914  		primitiveType == "bytes4" ||
   915  		primitiveType == "bytes4[]" ||
   916  		primitiveType == "bytes5" ||
   917  		primitiveType == "bytes5[]" ||
   918  		primitiveType == "bytes6" ||
   919  		primitiveType == "bytes6[]" ||
   920  		primitiveType == "bytes7" ||
   921  		primitiveType == "bytes7[]" ||
   922  		primitiveType == "bytes8" ||
   923  		primitiveType == "bytes8[]" ||
   924  		primitiveType == "bytes9" ||
   925  		primitiveType == "bytes9[]" ||
   926  		primitiveType == "bytes10" ||
   927  		primitiveType == "bytes10[]" ||
   928  		primitiveType == "bytes11" ||
   929  		primitiveType == "bytes11[]" ||
   930  		primitiveType == "bytes12" ||
   931  		primitiveType == "bytes12[]" ||
   932  		primitiveType == "bytes13" ||
   933  		primitiveType == "bytes13[]" ||
   934  		primitiveType == "bytes14" ||
   935  		primitiveType == "bytes14[]" ||
   936  		primitiveType == "bytes15" ||
   937  		primitiveType == "bytes15[]" ||
   938  		primitiveType == "bytes16" ||
   939  		primitiveType == "bytes16[]" ||
   940  		primitiveType == "bytes17" ||
   941  		primitiveType == "bytes17[]" ||
   942  		primitiveType == "bytes18" ||
   943  		primitiveType == "bytes18[]" ||
   944  		primitiveType == "bytes19" ||
   945  		primitiveType == "bytes19[]" ||
   946  		primitiveType == "bytes20" ||
   947  		primitiveType == "bytes20[]" ||
   948  		primitiveType == "bytes21" ||
   949  		primitiveType == "bytes21[]" ||
   950  		primitiveType == "bytes22" ||
   951  		primitiveType == "bytes22[]" ||
   952  		primitiveType == "bytes23" ||
   953  		primitiveType == "bytes23[]" ||
   954  		primitiveType == "bytes24" ||
   955  		primitiveType == "bytes24[]" ||
   956  		primitiveType == "bytes25" ||
   957  		primitiveType == "bytes25[]" ||
   958  		primitiveType == "bytes26" ||
   959  		primitiveType == "bytes26[]" ||
   960  		primitiveType == "bytes27" ||
   961  		primitiveType == "bytes27[]" ||
   962  		primitiveType == "bytes28" ||
   963  		primitiveType == "bytes28[]" ||
   964  		primitiveType == "bytes29" ||
   965  		primitiveType == "bytes29[]" ||
   966  		primitiveType == "bytes30" ||
   967  		primitiveType == "bytes30[]" ||
   968  		primitiveType == "bytes31" ||
   969  		primitiveType == "bytes31[]" ||
   970  		primitiveType == "bytes32" ||
   971  		primitiveType == "bytes32[]" {
   972  		return true
   973  	}
   974  	if primitiveType == "int" ||
   975  		primitiveType == "int[]" ||
   976  		primitiveType == "int8" ||
   977  		primitiveType == "int8[]" ||
   978  		primitiveType == "int16" ||
   979  		primitiveType == "int16[]" ||
   980  		primitiveType == "int32" ||
   981  		primitiveType == "int32[]" ||
   982  		primitiveType == "int64" ||
   983  		primitiveType == "int64[]" ||
   984  		primitiveType == "int128" ||
   985  		primitiveType == "int128[]" ||
   986  		primitiveType == "int256" ||
   987  		primitiveType == "int256[]" {
   988  		return true
   989  	}
   990  	if primitiveType == "uint" ||
   991  		primitiveType == "uint[]" ||
   992  		primitiveType == "uint8" ||
   993  		primitiveType == "uint8[]" ||
   994  		primitiveType == "uint16" ||
   995  		primitiveType == "uint16[]" ||
   996  		primitiveType == "uint32" ||
   997  		primitiveType == "uint32[]" ||
   998  		primitiveType == "uint64" ||
   999  		primitiveType == "uint64[]" ||
  1000  		primitiveType == "uint128" ||
  1001  		primitiveType == "uint128[]" ||
  1002  		primitiveType == "uint256" ||
  1003  		primitiveType == "uint256[]" {
  1004  		return true
  1005  	}
  1006  	return false
  1007  }
  1008  
  1009  // validate checks if the given domain is valid, i.e. contains at least
  1010  // the minimum viable keys and values
  1011  func (domain *TypedDataDomain) validate() error {
  1012  	if domain.ChainId == nil && len(domain.Name) == 0 && len(domain.Version) == 0 && len(domain.VerifyingContract) == 0 && len(domain.Salt) == 0 {
  1013  		return errors.New("domain is undefined")
  1014  	}
  1015  
  1016  	return nil
  1017  }
  1018  
  1019  // Map is a helper function to generate a map version of the domain
  1020  func (domain *TypedDataDomain) Map() map[string]interface{} {
  1021  	dataMap := map[string]interface{}{}
  1022  
  1023  	if domain.ChainId != nil {
  1024  		dataMap["chainId"] = domain.ChainId
  1025  	}
  1026  
  1027  	if len(domain.Name) > 0 {
  1028  		dataMap["name"] = domain.Name
  1029  	}
  1030  
  1031  	if len(domain.Version) > 0 {
  1032  		dataMap["version"] = domain.Version
  1033  	}
  1034  
  1035  	if len(domain.VerifyingContract) > 0 {
  1036  		dataMap["verifyingContract"] = domain.VerifyingContract
  1037  	}
  1038  
  1039  	if len(domain.Salt) > 0 {
  1040  		dataMap["salt"] = domain.Salt
  1041  	}
  1042  	return dataMap
  1043  }