gitee.com/lonely0422/gometalinter.git@v3.0.1-0.20190307123442-32416ab75314+incompatible/_linters/src/honnef.co/go/tools/ssa/func.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 // This file implements the Function and BasicBlock types. 8 9 import ( 10 "bytes" 11 "fmt" 12 "go/ast" 13 "go/token" 14 "go/types" 15 "io" 16 "os" 17 "strings" 18 ) 19 20 // addEdge adds a control-flow graph edge from from to to. 21 func addEdge(from, to *BasicBlock) { 22 from.Succs = append(from.Succs, to) 23 to.Preds = append(to.Preds, from) 24 } 25 26 // Parent returns the function that contains block b. 27 func (b *BasicBlock) Parent() *Function { return b.parent } 28 29 // String returns a human-readable label of this block. 30 // It is not guaranteed unique within the function. 31 // 32 func (b *BasicBlock) String() string { 33 return fmt.Sprintf("%d", b.Index) 34 } 35 36 // emit appends an instruction to the current basic block. 37 // If the instruction defines a Value, it is returned. 38 // 39 func (b *BasicBlock) emit(i Instruction) Value { 40 i.setBlock(b) 41 b.Instrs = append(b.Instrs, i) 42 v, _ := i.(Value) 43 return v 44 } 45 46 // predIndex returns the i such that b.Preds[i] == c or panics if 47 // there is none. 48 func (b *BasicBlock) predIndex(c *BasicBlock) int { 49 for i, pred := range b.Preds { 50 if pred == c { 51 return i 52 } 53 } 54 panic(fmt.Sprintf("no edge %s -> %s", c, b)) 55 } 56 57 // hasPhi returns true if b.Instrs contains φ-nodes. 58 func (b *BasicBlock) hasPhi() bool { 59 _, ok := b.Instrs[0].(*Phi) 60 return ok 61 } 62 63 func (b *BasicBlock) Phis() []Instruction { 64 return b.phis() 65 } 66 67 // phis returns the prefix of b.Instrs containing all the block's φ-nodes. 68 func (b *BasicBlock) phis() []Instruction { 69 for i, instr := range b.Instrs { 70 if _, ok := instr.(*Phi); !ok { 71 return b.Instrs[:i] 72 } 73 } 74 return nil // unreachable in well-formed blocks 75 } 76 77 // replacePred replaces all occurrences of p in b's predecessor list with q. 78 // Ordinarily there should be at most one. 79 // 80 func (b *BasicBlock) replacePred(p, q *BasicBlock) { 81 for i, pred := range b.Preds { 82 if pred == p { 83 b.Preds[i] = q 84 } 85 } 86 } 87 88 // replaceSucc replaces all occurrences of p in b's successor list with q. 89 // Ordinarily there should be at most one. 90 // 91 func (b *BasicBlock) replaceSucc(p, q *BasicBlock) { 92 for i, succ := range b.Succs { 93 if succ == p { 94 b.Succs[i] = q 95 } 96 } 97 } 98 99 func (b *BasicBlock) RemovePred(p *BasicBlock) { 100 b.removePred(p) 101 } 102 103 // removePred removes all occurrences of p in b's 104 // predecessor list and φ-nodes. 105 // Ordinarily there should be at most one. 106 // 107 func (b *BasicBlock) removePred(p *BasicBlock) { 108 phis := b.phis() 109 110 // We must preserve edge order for φ-nodes. 111 j := 0 112 for i, pred := range b.Preds { 113 if pred != p { 114 b.Preds[j] = b.Preds[i] 115 // Strike out φ-edge too. 116 for _, instr := range phis { 117 phi := instr.(*Phi) 118 phi.Edges[j] = phi.Edges[i] 119 } 120 j++ 121 } 122 } 123 // Nil out b.Preds[j:] and φ-edges[j:] to aid GC. 124 for i := j; i < len(b.Preds); i++ { 125 b.Preds[i] = nil 126 for _, instr := range phis { 127 instr.(*Phi).Edges[i] = nil 128 } 129 } 130 b.Preds = b.Preds[:j] 131 for _, instr := range phis { 132 phi := instr.(*Phi) 133 phi.Edges = phi.Edges[:j] 134 } 135 } 136 137 // Destinations associated with unlabelled for/switch/select stmts. 138 // We push/pop one of these as we enter/leave each construct and for 139 // each BranchStmt we scan for the innermost target of the right type. 140 // 141 type targets struct { 142 tail *targets // rest of stack 143 _break *BasicBlock 144 _continue *BasicBlock 145 _fallthrough *BasicBlock 146 } 147 148 // Destinations associated with a labelled block. 149 // We populate these as labels are encountered in forward gotos or 150 // labelled statements. 151 // 152 type lblock struct { 153 _goto *BasicBlock 154 _break *BasicBlock 155 _continue *BasicBlock 156 } 157 158 // labelledBlock returns the branch target associated with the 159 // specified label, creating it if needed. 160 // 161 func (f *Function) labelledBlock(label *ast.Ident) *lblock { 162 lb := f.lblocks[label.Obj] 163 if lb == nil { 164 lb = &lblock{_goto: f.newBasicBlock(label.Name)} 165 if f.lblocks == nil { 166 f.lblocks = make(map[*ast.Object]*lblock) 167 } 168 f.lblocks[label.Obj] = lb 169 } 170 return lb 171 } 172 173 // addParam adds a (non-escaping) parameter to f.Params of the 174 // specified name, type and source position. 175 // 176 func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter { 177 v := &Parameter{ 178 name: name, 179 typ: typ, 180 pos: pos, 181 parent: f, 182 } 183 f.Params = append(f.Params, v) 184 return v 185 } 186 187 func (f *Function) addParamObj(obj types.Object) *Parameter { 188 name := obj.Name() 189 if name == "" { 190 name = fmt.Sprintf("arg%d", len(f.Params)) 191 } 192 param := f.addParam(name, obj.Type(), obj.Pos()) 193 param.object = obj 194 return param 195 } 196 197 // addSpilledParam declares a parameter that is pre-spilled to the 198 // stack; the function body will load/store the spilled location. 199 // Subsequent lifting will eliminate spills where possible. 200 // 201 func (f *Function) addSpilledParam(obj types.Object) { 202 param := f.addParamObj(obj) 203 spill := &Alloc{Comment: obj.Name()} 204 spill.setType(types.NewPointer(obj.Type())) 205 spill.setPos(obj.Pos()) 206 f.objects[obj] = spill 207 f.Locals = append(f.Locals, spill) 208 f.emit(spill) 209 f.emit(&Store{Addr: spill, Val: param}) 210 } 211 212 // startBody initializes the function prior to generating SSA code for its body. 213 // Precondition: f.Type() already set. 214 // 215 func (f *Function) startBody() { 216 f.currentBlock = f.newBasicBlock("entry") 217 f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init 218 } 219 220 // createSyntacticParams populates f.Params and generates code (spills 221 // and named result locals) for all the parameters declared in the 222 // syntax. In addition it populates the f.objects mapping. 223 // 224 // Preconditions: 225 // f.startBody() was called. 226 // Postcondition: 227 // len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0) 228 // 229 func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) { 230 // Receiver (at most one inner iteration). 231 if recv != nil { 232 for _, field := range recv.List { 233 for _, n := range field.Names { 234 f.addSpilledParam(f.Pkg.info.Defs[n]) 235 } 236 // Anonymous receiver? No need to spill. 237 if field.Names == nil { 238 f.addParamObj(f.Signature.Recv()) 239 } 240 } 241 } 242 243 // Parameters. 244 if functype.Params != nil { 245 n := len(f.Params) // 1 if has recv, 0 otherwise 246 for _, field := range functype.Params.List { 247 for _, n := range field.Names { 248 f.addSpilledParam(f.Pkg.info.Defs[n]) 249 } 250 // Anonymous parameter? No need to spill. 251 if field.Names == nil { 252 f.addParamObj(f.Signature.Params().At(len(f.Params) - n)) 253 } 254 } 255 } 256 257 // Named results. 258 if functype.Results != nil { 259 for _, field := range functype.Results.List { 260 // Implicit "var" decl of locals for named results. 261 for _, n := range field.Names { 262 f.namedResults = append(f.namedResults, f.addLocalForIdent(n)) 263 } 264 } 265 } 266 } 267 268 // numberRegisters assigns numbers to all SSA registers 269 // (value-defining Instructions) in f, to aid debugging. 270 // (Non-Instruction Values are named at construction.) 271 // 272 func numberRegisters(f *Function) { 273 v := 0 274 for _, b := range f.Blocks { 275 for _, instr := range b.Instrs { 276 switch instr.(type) { 277 case Value: 278 instr.(interface { 279 setNum(int) 280 }).setNum(v) 281 v++ 282 } 283 } 284 } 285 } 286 287 // buildReferrers populates the def/use information in all non-nil 288 // Value.Referrers slice. 289 // Precondition: all such slices are initially empty. 290 func buildReferrers(f *Function) { 291 var rands []*Value 292 for _, b := range f.Blocks { 293 for _, instr := range b.Instrs { 294 rands = instr.Operands(rands[:0]) // recycle storage 295 for _, rand := range rands { 296 if r := *rand; r != nil { 297 if ref := r.Referrers(); ref != nil { 298 *ref = append(*ref, instr) 299 } 300 } 301 } 302 } 303 } 304 } 305 306 // finishBody() finalizes the function after SSA code generation of its body. 307 func (f *Function) finishBody() { 308 f.objects = nil 309 f.currentBlock = nil 310 f.lblocks = nil 311 312 // Don't pin the AST in memory (except in debug mode). 313 if n := f.syntax; n != nil && !f.debugInfo() { 314 f.syntax = extentNode{n.Pos(), n.End()} 315 } 316 317 // Remove from f.Locals any Allocs that escape to the heap. 318 j := 0 319 for _, l := range f.Locals { 320 if !l.Heap { 321 f.Locals[j] = l 322 j++ 323 } 324 } 325 // Nil out f.Locals[j:] to aid GC. 326 for i := j; i < len(f.Locals); i++ { 327 f.Locals[i] = nil 328 } 329 f.Locals = f.Locals[:j] 330 331 optimizeBlocks(f) 332 333 buildReferrers(f) 334 335 buildDomTree(f) 336 337 if f.Prog.mode&NaiveForm == 0 { 338 // For debugging pre-state of lifting pass: 339 // numberRegisters(f) 340 // f.WriteTo(os.Stderr) 341 lift(f) 342 } 343 344 f.namedResults = nil // (used by lifting) 345 346 numberRegisters(f) 347 348 if f.Prog.mode&PrintFunctions != 0 { 349 printMu.Lock() 350 f.WriteTo(os.Stdout) 351 printMu.Unlock() 352 } 353 354 if f.Prog.mode&SanityCheckFunctions != 0 { 355 mustSanityCheck(f, nil) 356 } 357 } 358 359 func (f *Function) RemoveNilBlocks() { 360 f.removeNilBlocks() 361 } 362 363 // removeNilBlocks eliminates nils from f.Blocks and updates each 364 // BasicBlock.Index. Use this after any pass that may delete blocks. 365 // 366 func (f *Function) removeNilBlocks() { 367 j := 0 368 for _, b := range f.Blocks { 369 if b != nil { 370 b.Index = j 371 f.Blocks[j] = b 372 j++ 373 } 374 } 375 // Nil out f.Blocks[j:] to aid GC. 376 for i := j; i < len(f.Blocks); i++ { 377 f.Blocks[i] = nil 378 } 379 f.Blocks = f.Blocks[:j] 380 } 381 382 // SetDebugMode sets the debug mode for package pkg. If true, all its 383 // functions will include full debug info. This greatly increases the 384 // size of the instruction stream, and causes Functions to depend upon 385 // the ASTs, potentially keeping them live in memory for longer. 386 // 387 func (pkg *Package) SetDebugMode(debug bool) { 388 // TODO(adonovan): do we want ast.File granularity? 389 pkg.debug = debug 390 } 391 392 // debugInfo reports whether debug info is wanted for this function. 393 func (f *Function) debugInfo() bool { 394 return f.Pkg != nil && f.Pkg.debug 395 } 396 397 // addNamedLocal creates a local variable, adds it to function f and 398 // returns it. Its name and type are taken from obj. Subsequent 399 // calls to f.lookup(obj) will return the same local. 400 // 401 func (f *Function) addNamedLocal(obj types.Object) *Alloc { 402 l := f.addLocal(obj.Type(), obj.Pos()) 403 l.Comment = obj.Name() 404 f.objects[obj] = l 405 return l 406 } 407 408 func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc { 409 return f.addNamedLocal(f.Pkg.info.Defs[id]) 410 } 411 412 // addLocal creates an anonymous local variable of type typ, adds it 413 // to function f and returns it. pos is the optional source location. 414 // 415 func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc { 416 v := &Alloc{} 417 v.setType(types.NewPointer(typ)) 418 v.setPos(pos) 419 f.Locals = append(f.Locals, v) 420 f.emit(v) 421 return v 422 } 423 424 // lookup returns the address of the named variable identified by obj 425 // that is local to function f or one of its enclosing functions. 426 // If escaping, the reference comes from a potentially escaping pointer 427 // expression and the referent must be heap-allocated. 428 // 429 func (f *Function) lookup(obj types.Object, escaping bool) Value { 430 if v, ok := f.objects[obj]; ok { 431 if alloc, ok := v.(*Alloc); ok && escaping { 432 alloc.Heap = true 433 } 434 return v // function-local var (address) 435 } 436 437 // Definition must be in an enclosing function; 438 // plumb it through intervening closures. 439 if f.parent == nil { 440 panic("no ssa.Value for " + obj.String()) 441 } 442 outer := f.parent.lookup(obj, true) // escaping 443 v := &FreeVar{ 444 name: obj.Name(), 445 typ: outer.Type(), 446 pos: outer.Pos(), 447 outer: outer, 448 parent: f, 449 } 450 f.objects[obj] = v 451 f.FreeVars = append(f.FreeVars, v) 452 return v 453 } 454 455 // emit emits the specified instruction to function f. 456 func (f *Function) emit(instr Instruction) Value { 457 return f.currentBlock.emit(instr) 458 } 459 460 // RelString returns the full name of this function, qualified by 461 // package name, receiver type, etc. 462 // 463 // The specific formatting rules are not guaranteed and may change. 464 // 465 // Examples: 466 // "math.IsNaN" // a package-level function 467 // "(*bytes.Buffer).Bytes" // a declared method or a wrapper 468 // "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0) 469 // "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure) 470 // "main.main$1" // an anonymous function in main 471 // "main.init#1" // a declared init function 472 // "main.init" // the synthesized package initializer 473 // 474 // When these functions are referred to from within the same package 475 // (i.e. from == f.Pkg.Object), they are rendered without the package path. 476 // For example: "IsNaN", "(*Buffer).Bytes", etc. 477 // 478 // All non-synthetic functions have distinct package-qualified names. 479 // (But two methods may have the same name "(T).f" if one is a synthetic 480 // wrapper promoting a non-exported method "f" from another package; in 481 // that case, the strings are equal but the identifiers "f" are distinct.) 482 // 483 func (f *Function) RelString(from *types.Package) string { 484 // Anonymous? 485 if f.parent != nil { 486 // An anonymous function's Name() looks like "parentName$1", 487 // but its String() should include the type/package/etc. 488 parent := f.parent.RelString(from) 489 for i, anon := range f.parent.AnonFuncs { 490 if anon == f { 491 return fmt.Sprintf("%s$%d", parent, 1+i) 492 } 493 } 494 495 return f.name // should never happen 496 } 497 498 // Method (declared or wrapper)? 499 if recv := f.Signature.Recv(); recv != nil { 500 return f.relMethod(from, recv.Type()) 501 } 502 503 // Thunk? 504 if f.method != nil { 505 return f.relMethod(from, f.method.Recv()) 506 } 507 508 // Bound? 509 if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") { 510 return f.relMethod(from, f.FreeVars[0].Type()) 511 } 512 513 // Package-level function? 514 // Prefix with package name for cross-package references only. 515 if p := f.pkg(); p != nil && p != from { 516 return fmt.Sprintf("%s.%s", p.Path(), f.name) 517 } 518 519 // Unknown. 520 return f.name 521 } 522 523 func (f *Function) relMethod(from *types.Package, recv types.Type) string { 524 return fmt.Sprintf("(%s).%s", relType(recv, from), f.name) 525 } 526 527 // writeSignature writes to buf the signature sig in declaration syntax. 528 func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) { 529 buf.WriteString("func ") 530 if recv := sig.Recv(); recv != nil { 531 buf.WriteString("(") 532 if n := params[0].Name(); n != "" { 533 buf.WriteString(n) 534 buf.WriteString(" ") 535 } 536 types.WriteType(buf, params[0].Type(), types.RelativeTo(from)) 537 buf.WriteString(") ") 538 } 539 buf.WriteString(name) 540 types.WriteSignature(buf, sig, types.RelativeTo(from)) 541 } 542 543 func (f *Function) pkg() *types.Package { 544 if f.Pkg != nil { 545 return f.Pkg.Pkg 546 } 547 return nil 548 } 549 550 var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer 551 552 func (f *Function) WriteTo(w io.Writer) (int64, error) { 553 var buf bytes.Buffer 554 WriteFunction(&buf, f) 555 n, err := w.Write(buf.Bytes()) 556 return int64(n), err 557 } 558 559 // WriteFunction writes to buf a human-readable "disassembly" of f. 560 func WriteFunction(buf *bytes.Buffer, f *Function) { 561 fmt.Fprintf(buf, "# Name: %s\n", f.String()) 562 if f.Pkg != nil { 563 fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path()) 564 } 565 if syn := f.Synthetic; syn != "" { 566 fmt.Fprintln(buf, "# Synthetic:", syn) 567 } 568 if pos := f.Pos(); pos.IsValid() { 569 fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos)) 570 } 571 572 if f.parent != nil { 573 fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name()) 574 } 575 576 if f.Recover != nil { 577 fmt.Fprintf(buf, "# Recover: %s\n", f.Recover) 578 } 579 580 from := f.pkg() 581 582 if f.FreeVars != nil { 583 buf.WriteString("# Free variables:\n") 584 for i, fv := range f.FreeVars { 585 fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from)) 586 } 587 } 588 589 if len(f.Locals) > 0 { 590 buf.WriteString("# Locals:\n") 591 for i, l := range f.Locals { 592 fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from)) 593 } 594 } 595 writeSignature(buf, from, f.Name(), f.Signature, f.Params) 596 buf.WriteString(":\n") 597 598 if f.Blocks == nil { 599 buf.WriteString("\t(external)\n") 600 } 601 602 // NB. column calculations are confused by non-ASCII 603 // characters and assume 8-space tabs. 604 const punchcard = 80 // for old time's sake. 605 const tabwidth = 8 606 for _, b := range f.Blocks { 607 if b == nil { 608 // Corrupt CFG. 609 fmt.Fprintf(buf, ".nil:\n") 610 continue 611 } 612 n, _ := fmt.Fprintf(buf, "%d:", b.Index) 613 bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs)) 614 fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg) 615 616 if false { // CFG debugging 617 fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs) 618 } 619 for _, instr := range b.Instrs { 620 buf.WriteString("\t") 621 switch v := instr.(type) { 622 case Value: 623 l := punchcard - tabwidth 624 // Left-align the instruction. 625 if name := v.Name(); name != "" { 626 n, _ := fmt.Fprintf(buf, "%s = ", name) 627 l -= n 628 } 629 n, _ := buf.WriteString(instr.String()) 630 l -= n 631 // Right-align the type if there's space. 632 if t := v.Type(); t != nil { 633 buf.WriteByte(' ') 634 ts := relType(t, from) 635 l -= len(ts) + len(" ") // (spaces before and after type) 636 if l > 0 { 637 fmt.Fprintf(buf, "%*s", l, "") 638 } 639 buf.WriteString(ts) 640 } 641 case nil: 642 // Be robust against bad transforms. 643 buf.WriteString("<deleted>") 644 default: 645 buf.WriteString(instr.String()) 646 } 647 buf.WriteString("\n") 648 } 649 } 650 fmt.Fprintf(buf, "\n") 651 } 652 653 // newBasicBlock adds to f a new basic block and returns it. It does 654 // not automatically become the current block for subsequent calls to emit. 655 // comment is an optional string for more readable debugging output. 656 // 657 func (f *Function) newBasicBlock(comment string) *BasicBlock { 658 b := &BasicBlock{ 659 Index: len(f.Blocks), 660 Comment: comment, 661 parent: f, 662 } 663 b.Succs = b.succs2[:0] 664 f.Blocks = append(f.Blocks, b) 665 return b 666 } 667 668 // NewFunction returns a new synthetic Function instance belonging to 669 // prog, with its name and signature fields set as specified. 670 // 671 // The caller is responsible for initializing the remaining fields of 672 // the function object, e.g. Pkg, Params, Blocks. 673 // 674 // It is practically impossible for clients to construct well-formed 675 // SSA functions/packages/programs directly, so we assume this is the 676 // job of the Builder alone. NewFunction exists to provide clients a 677 // little flexibility. For example, analysis tools may wish to 678 // construct fake Functions for the root of the callgraph, a fake 679 // "reflect" package, etc. 680 // 681 // TODO(adonovan): think harder about the API here. 682 // 683 func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function { 684 return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance} 685 } 686 687 type extentNode [2]token.Pos 688 689 func (n extentNode) Pos() token.Pos { return n[0] } 690 func (n extentNode) End() token.Pos { return n[1] } 691 692 // Syntax returns an ast.Node whose Pos/End methods provide the 693 // lexical extent of the function if it was defined by Go source code 694 // (f.Synthetic==""), or nil otherwise. 695 // 696 // If f was built with debug information (see Package.SetDebugRef), 697 // the result is the *ast.FuncDecl or *ast.FuncLit that declared the 698 // function. Otherwise, it is an opaque Node providing only position 699 // information; this avoids pinning the AST in memory. 700 // 701 func (f *Function) Syntax() ast.Node { return f.syntax }