gitee.com/quant1x/gox@v1.21.2/util/btree/btree.go (about) 1 // Copyright (c) 2015, Emir Pasic. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package btree implements a B tree. 6 // 7 // According to Knuth's definition, a B-tree of order m is a tree which satisfies the following properties: 8 // - Every node has at most m children. 9 // - Every non-leaf node (except root) has at least âm/2â children. 10 // - The root has at least two children if it is not a leaf node. 11 // - A non-leaf node with k children contains kâ1 keys. 12 // - All leaves appear in the same level 13 // 14 // Structure is not thread safe. 15 // 16 // References: https://en.wikipedia.org/wiki/B-tree 17 package btree 18 19 import ( 20 "bytes" 21 "fmt" 22 "gitee.com/quant1x/gox/util/internal" 23 "strings" 24 ) 25 26 func assertTreeImplementation() { 27 var _ internal.Tree = (*Tree)(nil) 28 } 29 30 // Tree holds elements of the B-tree 31 type Tree struct { 32 Root *Node // Root node 33 Comparator internal.Comparator // Key comparator 34 size int // Total number of keys in the tree 35 m int // order (maximum number of children) 36 } 37 38 // Node is a single element within the tree 39 type Node struct { 40 Parent *Node 41 Entries []*Entry // Contained keys in node 42 Children []*Node // Children nodes 43 } 44 45 // Entry represents the key-value pair contained within nodes 46 type Entry struct { 47 Key interface{} 48 Value interface{} 49 } 50 51 // NewWith instantiates a B-tree with the order (maximum number of children) and a custom key comparator. 52 func NewWith(order int, comparator internal.Comparator) *Tree { 53 if order < 3 { 54 panic("Invalid order, should be at least 3") 55 } 56 return &Tree{m: order, Comparator: comparator} 57 } 58 59 // NewWithIntComparator instantiates a B-tree with the order (maximum number of children) and the IntComparator, i.e. keys are of type int. 60 func NewWithIntComparator(order int) *Tree { 61 return NewWith(order, internal.IntComparator) 62 } 63 64 // NewWithStringComparator instantiates a B-tree with the order (maximum number of children) and the StringComparator, i.e. keys are of type string. 65 func NewWithStringComparator(order int) *Tree { 66 return NewWith(order, internal.StringComparator) 67 } 68 69 // Put inserts key-value pair node into the tree. 70 // If key already exists, then its value is updated with the new value. 71 // Key should adhere to the comparator's type assertion, otherwise method panics. 72 func (tree *Tree) Put(key interface{}, value interface{}) { 73 entry := &Entry{Key: key, Value: value} 74 75 if tree.Root == nil { 76 tree.Root = &Node{Entries: []*Entry{entry}, Children: []*Node{}} 77 tree.size++ 78 return 79 } 80 81 if tree.insert(tree.Root, entry) { 82 tree.size++ 83 } 84 } 85 86 // Get searches the node in the tree by key and returns its value or nil if key is not found in tree. 87 // Second return parameter is true if key was found, otherwise false. 88 // Key should adhere to the comparator's type assertion, otherwise method panics. 89 func (tree *Tree) Get(key interface{}) (value interface{}, found bool) { 90 node, index, found := tree.searchRecursively(tree.Root, key) 91 if found { 92 return node.Entries[index].Value, true 93 } 94 return nil, false 95 } 96 97 // Remove remove the node from the tree by key. 98 // Key should adhere to the comparator's type assertion, otherwise method panics. 99 func (tree *Tree) Remove(key interface{}) { 100 node, index, found := tree.searchRecursively(tree.Root, key) 101 if found { 102 tree.delete(node, index) 103 tree.size-- 104 } 105 } 106 107 // Empty returns true if tree does not contain any nodes 108 func (tree *Tree) Empty() bool { 109 return tree.size == 0 110 } 111 112 // Size returns number of nodes in the tree. 113 func (tree *Tree) Size() int { 114 return tree.size 115 } 116 117 // Keys returns all keys in-order 118 func (tree *Tree) Keys() []interface{} { 119 keys := make([]interface{}, tree.size) 120 it := tree.Iterator() 121 for i := 0; it.Next(); i++ { 122 keys[i] = it.Key() 123 } 124 return keys 125 } 126 127 // Values returns all values in-order based on the key. 128 func (tree *Tree) Values() []interface{} { 129 values := make([]interface{}, tree.size) 130 it := tree.Iterator() 131 for i := 0; it.Next(); i++ { 132 values[i] = it.Value() 133 } 134 return values 135 } 136 137 // Clear removes all nodes from the tree. 138 func (tree *Tree) Clear() { 139 tree.Root = nil 140 tree.size = 0 141 } 142 143 // Height returns the height of the tree. 144 func (tree *Tree) Height() int { 145 return tree.Root.height() 146 } 147 148 // Left returns the left-most (min) node or nil if tree is empty. 149 func (tree *Tree) Left() *Node { 150 return tree.left(tree.Root) 151 } 152 153 // LeftKey returns the left-most (min) key or nil if tree is empty. 154 func (tree *Tree) LeftKey() interface{} { 155 if left := tree.Left(); left != nil { 156 return left.Entries[0].Key 157 } 158 return nil 159 } 160 161 // LeftValue returns the left-most value or nil if tree is empty. 162 func (tree *Tree) LeftValue() interface{} { 163 if left := tree.Left(); left != nil { 164 return left.Entries[0].Value 165 } 166 return nil 167 } 168 169 // Right returns the right-most (max) node or nil if tree is empty. 170 func (tree *Tree) Right() *Node { 171 return tree.right(tree.Root) 172 } 173 174 // RightKey returns the right-most (max) key or nil if tree is empty. 175 func (tree *Tree) RightKey() interface{} { 176 if right := tree.Right(); right != nil { 177 return right.Entries[len(right.Entries)-1].Key 178 } 179 return nil 180 } 181 182 // RightValue returns the right-most value or nil if tree is empty. 183 func (tree *Tree) RightValue() interface{} { 184 if right := tree.Right(); right != nil { 185 return right.Entries[len(right.Entries)-1].Value 186 } 187 return nil 188 } 189 190 // String returns a string representation of container (for debugging purposes) 191 func (tree *Tree) String() string { 192 var buffer bytes.Buffer 193 if _, err := buffer.WriteString("BTree\n"); err != nil { 194 } 195 if !tree.Empty() { 196 tree.output(&buffer, tree.Root, 0, true) 197 } 198 return buffer.String() 199 } 200 201 func (entry *Entry) String() string { 202 return fmt.Sprintf("%v", entry.Key) 203 } 204 205 func (tree *Tree) output(buffer *bytes.Buffer, node *Node, level int, isTail bool) { 206 for e := 0; e < len(node.Entries)+1; e++ { 207 if e < len(node.Children) { 208 tree.output(buffer, node.Children[e], level+1, true) 209 } 210 if e < len(node.Entries) { 211 if _, err := buffer.WriteString(strings.Repeat(" ", level)); err != nil { 212 } 213 if _, err := buffer.WriteString(fmt.Sprintf("%v", node.Entries[e].Key) + "\n"); err != nil { 214 } 215 } 216 } 217 } 218 219 func (node *Node) height() int { 220 height := 0 221 for ; node != nil; node = node.Children[0] { 222 height++ 223 if len(node.Children) == 0 { 224 break 225 } 226 } 227 return height 228 } 229 230 func (tree *Tree) isLeaf(node *Node) bool { 231 return len(node.Children) == 0 232 } 233 234 func (tree *Tree) isFull(node *Node) bool { 235 return len(node.Entries) == tree.maxEntries() 236 } 237 238 func (tree *Tree) shouldSplit(node *Node) bool { 239 return len(node.Entries) > tree.maxEntries() 240 } 241 242 func (tree *Tree) maxChildren() int { 243 return tree.m 244 } 245 246 func (tree *Tree) minChildren() int { 247 return (tree.m + 1) / 2 // ceil(m/2) 248 } 249 250 func (tree *Tree) maxEntries() int { 251 return tree.maxChildren() - 1 252 } 253 254 func (tree *Tree) minEntries() int { 255 return tree.minChildren() - 1 256 } 257 258 func (tree *Tree) middle() int { 259 return (tree.m - 1) / 2 // "-1" to favor right nodes to have more keys when splitting 260 } 261 262 // search searches only within the single node among its entries 263 func (tree *Tree) search(node *Node, key interface{}) (index int, found bool) { 264 low, high := 0, len(node.Entries)-1 265 var mid int 266 for low <= high { 267 mid = (high + low) / 2 268 compare := tree.Comparator(key, node.Entries[mid].Key) 269 switch { 270 case compare > 0: 271 low = mid + 1 272 case compare < 0: 273 high = mid - 1 274 case compare == 0: 275 return mid, true 276 } 277 } 278 return low, false 279 } 280 281 // searchRecursively searches recursively down the tree starting at the startNode 282 func (tree *Tree) searchRecursively(startNode *Node, key interface{}) (node *Node, index int, found bool) { 283 if tree.Empty() { 284 return nil, -1, false 285 } 286 node = startNode 287 for { 288 index, found = tree.search(node, key) 289 if found { 290 return node, index, true 291 } 292 if tree.isLeaf(node) { 293 return nil, -1, false 294 } 295 node = node.Children[index] 296 } 297 } 298 299 func (tree *Tree) insert(node *Node, entry *Entry) (inserted bool) { 300 if tree.isLeaf(node) { 301 return tree.insertIntoLeaf(node, entry) 302 } 303 return tree.insertIntoInternal(node, entry) 304 } 305 306 func (tree *Tree) insertIntoLeaf(node *Node, entry *Entry) (inserted bool) { 307 insertPosition, found := tree.search(node, entry.Key) 308 if found { 309 node.Entries[insertPosition] = entry 310 return false 311 } 312 // Insert entry's key in the middle of the node 313 node.Entries = append(node.Entries, nil) 314 copy(node.Entries[insertPosition+1:], node.Entries[insertPosition:]) 315 node.Entries[insertPosition] = entry 316 tree.split(node) 317 return true 318 } 319 320 func (tree *Tree) insertIntoInternal(node *Node, entry *Entry) (inserted bool) { 321 insertPosition, found := tree.search(node, entry.Key) 322 if found { 323 node.Entries[insertPosition] = entry 324 return false 325 } 326 return tree.insert(node.Children[insertPosition], entry) 327 } 328 329 func (tree *Tree) split(node *Node) { 330 if !tree.shouldSplit(node) { 331 return 332 } 333 334 if node == tree.Root { 335 tree.splitRoot() 336 return 337 } 338 339 tree.splitNonRoot(node) 340 } 341 342 func (tree *Tree) splitNonRoot(node *Node) { 343 middle := tree.middle() 344 parent := node.Parent 345 346 left := &Node{Entries: append([]*Entry(nil), node.Entries[:middle]...), Parent: parent} 347 right := &Node{Entries: append([]*Entry(nil), node.Entries[middle+1:]...), Parent: parent} 348 349 // Move children from the node to be split into left and right nodes 350 if !tree.isLeaf(node) { 351 left.Children = append([]*Node(nil), node.Children[:middle+1]...) 352 right.Children = append([]*Node(nil), node.Children[middle+1:]...) 353 setParent(left.Children, left) 354 setParent(right.Children, right) 355 } 356 357 insertPosition, _ := tree.search(parent, node.Entries[middle].Key) 358 359 // Insert middle key into parent 360 parent.Entries = append(parent.Entries, nil) 361 copy(parent.Entries[insertPosition+1:], parent.Entries[insertPosition:]) 362 parent.Entries[insertPosition] = node.Entries[middle] 363 364 // Set child left of inserted key in parent to the created left node 365 parent.Children[insertPosition] = left 366 367 // Set child right of inserted key in parent to the created right node 368 parent.Children = append(parent.Children, nil) 369 copy(parent.Children[insertPosition+2:], parent.Children[insertPosition+1:]) 370 parent.Children[insertPosition+1] = right 371 372 tree.split(parent) 373 } 374 375 func (tree *Tree) splitRoot() { 376 middle := tree.middle() 377 378 left := &Node{Entries: append([]*Entry(nil), tree.Root.Entries[:middle]...)} 379 right := &Node{Entries: append([]*Entry(nil), tree.Root.Entries[middle+1:]...)} 380 381 // Move children from the node to be split into left and right nodes 382 if !tree.isLeaf(tree.Root) { 383 left.Children = append([]*Node(nil), tree.Root.Children[:middle+1]...) 384 right.Children = append([]*Node(nil), tree.Root.Children[middle+1:]...) 385 setParent(left.Children, left) 386 setParent(right.Children, right) 387 } 388 389 // Root is a node with one entry and two children (left and right) 390 newRoot := &Node{ 391 Entries: []*Entry{tree.Root.Entries[middle]}, 392 Children: []*Node{left, right}, 393 } 394 395 left.Parent = newRoot 396 right.Parent = newRoot 397 tree.Root = newRoot 398 } 399 400 func setParent(nodes []*Node, parent *Node) { 401 for _, node := range nodes { 402 node.Parent = parent 403 } 404 } 405 406 func (tree *Tree) left(node *Node) *Node { 407 if tree.Empty() { 408 return nil 409 } 410 current := node 411 for { 412 if tree.isLeaf(current) { 413 return current 414 } 415 current = current.Children[0] 416 } 417 } 418 419 func (tree *Tree) right(node *Node) *Node { 420 if tree.Empty() { 421 return nil 422 } 423 current := node 424 for { 425 if tree.isLeaf(current) { 426 return current 427 } 428 current = current.Children[len(current.Children)-1] 429 } 430 } 431 432 // leftSibling returns the node's left sibling and child index (in parent) if it exists, otherwise (nil,-1) 433 // key is any of keys in node (could even be deleted). 434 func (tree *Tree) leftSibling(node *Node, key interface{}) (*Node, int) { 435 if node.Parent != nil { 436 index, _ := tree.search(node.Parent, key) 437 index-- 438 if index >= 0 && index < len(node.Parent.Children) { 439 return node.Parent.Children[index], index 440 } 441 } 442 return nil, -1 443 } 444 445 // rightSibling returns the node's right sibling and child index (in parent) if it exists, otherwise (nil,-1) 446 // key is any of keys in node (could even be deleted). 447 func (tree *Tree) rightSibling(node *Node, key interface{}) (*Node, int) { 448 if node.Parent != nil { 449 index, _ := tree.search(node.Parent, key) 450 index++ 451 if index < len(node.Parent.Children) { 452 return node.Parent.Children[index], index 453 } 454 } 455 return nil, -1 456 } 457 458 // delete deletes an entry in node at entries' index 459 // ref.: https://en.wikipedia.org/wiki/B-tree#Deletion 460 func (tree *Tree) delete(node *Node, index int) { 461 // deleting from a leaf node 462 if tree.isLeaf(node) { 463 deletedKey := node.Entries[index].Key 464 tree.deleteEntry(node, index) 465 tree.rebalance(node, deletedKey) 466 if len(tree.Root.Entries) == 0 { 467 tree.Root = nil 468 } 469 return 470 } 471 472 // deleting from an internal node 473 leftLargestNode := tree.right(node.Children[index]) // largest node in the left sub-tree (assumed to exist) 474 leftLargestEntryIndex := len(leftLargestNode.Entries) - 1 475 node.Entries[index] = leftLargestNode.Entries[leftLargestEntryIndex] 476 deletedKey := leftLargestNode.Entries[leftLargestEntryIndex].Key 477 tree.deleteEntry(leftLargestNode, leftLargestEntryIndex) 478 tree.rebalance(leftLargestNode, deletedKey) 479 } 480 481 // rebalance rebalances the tree after deletion if necessary and returns true, otherwise false. 482 // Note that we first delete the entry and then call rebalance, thus the passed deleted key as reference. 483 func (tree *Tree) rebalance(node *Node, deletedKey interface{}) { 484 // check if rebalancing is needed 485 if node == nil || len(node.Entries) >= tree.minEntries() { 486 return 487 } 488 489 // try to borrow from left sibling 490 leftSibling, leftSiblingIndex := tree.leftSibling(node, deletedKey) 491 if leftSibling != nil && len(leftSibling.Entries) > tree.minEntries() { 492 // rotate right 493 node.Entries = append([]*Entry{node.Parent.Entries[leftSiblingIndex]}, node.Entries...) // prepend parent's separator entry to node's entries 494 node.Parent.Entries[leftSiblingIndex] = leftSibling.Entries[len(leftSibling.Entries)-1] 495 tree.deleteEntry(leftSibling, len(leftSibling.Entries)-1) 496 if !tree.isLeaf(leftSibling) { 497 leftSiblingRightMostChild := leftSibling.Children[len(leftSibling.Children)-1] 498 leftSiblingRightMostChild.Parent = node 499 node.Children = append([]*Node{leftSiblingRightMostChild}, node.Children...) 500 tree.deleteChild(leftSibling, len(leftSibling.Children)-1) 501 } 502 return 503 } 504 505 // try to borrow from right sibling 506 rightSibling, rightSiblingIndex := tree.rightSibling(node, deletedKey) 507 if rightSibling != nil && len(rightSibling.Entries) > tree.minEntries() { 508 // rotate left 509 node.Entries = append(node.Entries, node.Parent.Entries[rightSiblingIndex-1]) // append parent's separator entry to node's entries 510 node.Parent.Entries[rightSiblingIndex-1] = rightSibling.Entries[0] 511 tree.deleteEntry(rightSibling, 0) 512 if !tree.isLeaf(rightSibling) { 513 rightSiblingLeftMostChild := rightSibling.Children[0] 514 rightSiblingLeftMostChild.Parent = node 515 node.Children = append(node.Children, rightSiblingLeftMostChild) 516 tree.deleteChild(rightSibling, 0) 517 } 518 return 519 } 520 521 // merge with siblings 522 if rightSibling != nil { 523 // merge with right sibling 524 node.Entries = append(node.Entries, node.Parent.Entries[rightSiblingIndex-1]) 525 node.Entries = append(node.Entries, rightSibling.Entries...) 526 deletedKey = node.Parent.Entries[rightSiblingIndex-1].Key 527 tree.deleteEntry(node.Parent, rightSiblingIndex-1) 528 tree.appendChildren(node.Parent.Children[rightSiblingIndex], node) 529 tree.deleteChild(node.Parent, rightSiblingIndex) 530 } else if leftSibling != nil { 531 // merge with left sibling 532 entries := append([]*Entry(nil), leftSibling.Entries...) 533 entries = append(entries, node.Parent.Entries[leftSiblingIndex]) 534 node.Entries = append(entries, node.Entries...) 535 deletedKey = node.Parent.Entries[leftSiblingIndex].Key 536 tree.deleteEntry(node.Parent, leftSiblingIndex) 537 tree.prependChildren(node.Parent.Children[leftSiblingIndex], node) 538 tree.deleteChild(node.Parent, leftSiblingIndex) 539 } 540 541 // make the merged node the root if its parent was the root and the root is empty 542 if node.Parent == tree.Root && len(tree.Root.Entries) == 0 { 543 tree.Root = node 544 node.Parent = nil 545 return 546 } 547 548 // parent might underflow, so try to rebalance if necessary 549 tree.rebalance(node.Parent, deletedKey) 550 } 551 552 func (tree *Tree) prependChildren(fromNode *Node, toNode *Node) { 553 children := append([]*Node(nil), fromNode.Children...) 554 toNode.Children = append(children, toNode.Children...) 555 setParent(fromNode.Children, toNode) 556 } 557 558 func (tree *Tree) appendChildren(fromNode *Node, toNode *Node) { 559 toNode.Children = append(toNode.Children, fromNode.Children...) 560 setParent(fromNode.Children, toNode) 561 } 562 563 func (tree *Tree) deleteEntry(node *Node, index int) { 564 copy(node.Entries[index:], node.Entries[index+1:]) 565 node.Entries[len(node.Entries)-1] = nil 566 node.Entries = node.Entries[:len(node.Entries)-1] 567 } 568 569 func (tree *Tree) deleteChild(node *Node, index int) { 570 if index >= len(node.Children) { 571 return 572 } 573 copy(node.Children[index:], node.Children[index+1:]) 574 node.Children[len(node.Children)-1] = nil 575 node.Children = node.Children[:len(node.Children)-1] 576 }