gitee.com/quant1x/num@v0.3.2/math32/atan.go (about) 1 package math32 2 3 func Atan(x float32) float32 { 4 if x == 0 { 5 return x 6 } 7 if x > 0 { 8 return satan(x) 9 } 10 return -satan(-x) 11 } 12 13 // The original C code, the long comment, and the constants below were 14 // from http://netlib.sandia.gov/cephes/cmath/atan.c, available from 15 // http://www.netlib.org/cephes/cmath.tgz. 16 // The go code is a version of the original C. 17 // 18 // atan.c 19 // Inverse circular tangent (arctangent) 20 // 21 // SYNOPSIS: 22 // double x, y, atan(); 23 // y = atan( x ); 24 // 25 // DESCRIPTION: 26 // Returns radian angle between -pi/2 and +pi/2 whose tangent is x. 27 // 28 // Range reduction is from three intervals into the interval from zero to 0.66. 29 // The approximant uses a rational function of degree 4/5 of the form 30 // x + x**3 P(x)/Q(x). 31 // 32 // ACCURACY: 33 // Relative error: 34 // arithmetic domain # trials peak rms 35 // DEC -10, 10 50000 2.4e-17 8.3e-18 36 // IEEE -10, 10 10^6 1.8e-16 5.0e-17 37 // 38 // Cephes Math Library Release 2.8: June, 2000 39 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier 40 // 41 // The readme file at http://netlib.sandia.gov/cephes/ says: 42 // Some software in this archive may be from the book _Methods and 43 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster 44 // International, 1989) or from the Cephes Mathematical Library, a 45 // commercial product. In either event, it is copyrighted by the author. 46 // What you see here may be used freely but it comes with no support or 47 // guarantee. 48 // 49 // The two known misprints in the book are repaired here in the 50 // source listings for the gamma function and the incomplete beta 51 // integral. 52 // 53 // Stephen L. Moshier 54 // moshier@na-net.ornl.gov 55 56 // xatan evaluates a series valid in the range [0, 0.66]. 57 func xatan(x float32) float32 { 58 const ( 59 P0 = -8.750608600031904122785e-01 60 P1 = -1.615753718733365076637e+01 61 P2 = -7.500855792314704667340e+01 62 P3 = -1.228866684490136173410e+02 63 P4 = -6.485021904942025371773e+01 64 Q0 = +2.485846490142306297962e+01 65 Q1 = +1.650270098316988542046e+02 66 Q2 = +4.328810604912902668951e+02 67 Q3 = +4.853903996359136964868e+02 68 Q4 = +1.945506571482613964425e+02 69 ) 70 z := x * x 71 z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4) 72 z = x*z + x 73 return z 74 } 75 76 // satan reduces its argument (known to be positive) 77 // to the range [0, 0.66] and calls xatan. 78 func satan(x float32) float32 { 79 const ( 80 Morebits float32 = 6.123233995736765886130e-17 // pi/2 = PIO2 + Morebits 81 Tan3pio8 float32 = 2.41421356237309504880 // tan(3*pi/8) 82 ) 83 if x <= 0.66 { 84 return xatan(x) 85 } 86 if x > Tan3pio8 { 87 return Pi/2 - xatan(1/x) + Morebits 88 } 89 return Pi/4 + xatan((x-1)/(x+1)) + 0.5*Morebits 90 }