gitee.com/wgliang/goreporter@v0.0.0-20180902115603-df1b20f7c5d0/linters/simpler/ssa/func.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // +build go1.5
     6  
     7  package ssa
     8  
     9  // This file implements the Function and BasicBlock types.
    10  
    11  import (
    12  	"bytes"
    13  	"fmt"
    14  	"go/ast"
    15  	"go/token"
    16  	"go/types"
    17  	"io"
    18  	"os"
    19  	"strings"
    20  )
    21  
    22  // addEdge adds a control-flow graph edge from from to to.
    23  func addEdge(from, to *BasicBlock) {
    24  	from.Succs = append(from.Succs, to)
    25  	to.Preds = append(to.Preds, from)
    26  }
    27  
    28  // Parent returns the function that contains block b.
    29  func (b *BasicBlock) Parent() *Function { return b.parent }
    30  
    31  // String returns a human-readable label of this block.
    32  // It is not guaranteed unique within the function.
    33  //
    34  func (b *BasicBlock) String() string {
    35  	return fmt.Sprintf("%d", b.Index)
    36  }
    37  
    38  // emit appends an instruction to the current basic block.
    39  // If the instruction defines a Value, it is returned.
    40  //
    41  func (b *BasicBlock) emit(i Instruction) Value {
    42  	i.setBlock(b)
    43  	b.Instrs = append(b.Instrs, i)
    44  	v, _ := i.(Value)
    45  	return v
    46  }
    47  
    48  // predIndex returns the i such that b.Preds[i] == c or panics if
    49  // there is none.
    50  func (b *BasicBlock) predIndex(c *BasicBlock) int {
    51  	for i, pred := range b.Preds {
    52  		if pred == c {
    53  			return i
    54  		}
    55  	}
    56  	panic(fmt.Sprintf("no edge %s -> %s", c, b))
    57  }
    58  
    59  // hasPhi returns true if b.Instrs contains φ-nodes.
    60  func (b *BasicBlock) hasPhi() bool {
    61  	_, ok := b.Instrs[0].(*Phi)
    62  	return ok
    63  }
    64  
    65  func (b *BasicBlock) Phis() []Instruction {
    66  	return b.phis()
    67  }
    68  
    69  // phis returns the prefix of b.Instrs containing all the block's φ-nodes.
    70  func (b *BasicBlock) phis() []Instruction {
    71  	for i, instr := range b.Instrs {
    72  		if _, ok := instr.(*Phi); !ok {
    73  			return b.Instrs[:i]
    74  		}
    75  	}
    76  	return nil // unreachable in well-formed blocks
    77  }
    78  
    79  // replacePred replaces all occurrences of p in b's predecessor list with q.
    80  // Ordinarily there should be at most one.
    81  //
    82  func (b *BasicBlock) replacePred(p, q *BasicBlock) {
    83  	for i, pred := range b.Preds {
    84  		if pred == p {
    85  			b.Preds[i] = q
    86  		}
    87  	}
    88  }
    89  
    90  // replaceSucc replaces all occurrences of p in b's successor list with q.
    91  // Ordinarily there should be at most one.
    92  //
    93  func (b *BasicBlock) replaceSucc(p, q *BasicBlock) {
    94  	for i, succ := range b.Succs {
    95  		if succ == p {
    96  			b.Succs[i] = q
    97  		}
    98  	}
    99  }
   100  
   101  func (b *BasicBlock) RemovePred(p *BasicBlock) {
   102  	b.removePred(p)
   103  }
   104  
   105  // removePred removes all occurrences of p in b's
   106  // predecessor list and φ-nodes.
   107  // Ordinarily there should be at most one.
   108  //
   109  func (b *BasicBlock) removePred(p *BasicBlock) {
   110  	phis := b.phis()
   111  
   112  	// We must preserve edge order for φ-nodes.
   113  	j := 0
   114  	for i, pred := range b.Preds {
   115  		if pred != p {
   116  			b.Preds[j] = b.Preds[i]
   117  			// Strike out φ-edge too.
   118  			for _, instr := range phis {
   119  				phi := instr.(*Phi)
   120  				phi.Edges[j] = phi.Edges[i]
   121  			}
   122  			j++
   123  		}
   124  	}
   125  	// Nil out b.Preds[j:] and φ-edges[j:] to aid GC.
   126  	for i := j; i < len(b.Preds); i++ {
   127  		b.Preds[i] = nil
   128  		for _, instr := range phis {
   129  			instr.(*Phi).Edges[i] = nil
   130  		}
   131  	}
   132  	b.Preds = b.Preds[:j]
   133  	for _, instr := range phis {
   134  		phi := instr.(*Phi)
   135  		phi.Edges = phi.Edges[:j]
   136  	}
   137  }
   138  
   139  // Destinations associated with unlabelled for/switch/select stmts.
   140  // We push/pop one of these as we enter/leave each construct and for
   141  // each BranchStmt we scan for the innermost target of the right type.
   142  //
   143  type targets struct {
   144  	tail         *targets // rest of stack
   145  	_break       *BasicBlock
   146  	_continue    *BasicBlock
   147  	_fallthrough *BasicBlock
   148  }
   149  
   150  // Destinations associated with a labelled block.
   151  // We populate these as labels are encountered in forward gotos or
   152  // labelled statements.
   153  //
   154  type lblock struct {
   155  	_goto     *BasicBlock
   156  	_break    *BasicBlock
   157  	_continue *BasicBlock
   158  }
   159  
   160  // labelledBlock returns the branch target associated with the
   161  // specified label, creating it if needed.
   162  //
   163  func (f *Function) labelledBlock(label *ast.Ident) *lblock {
   164  	lb := f.lblocks[label.Obj]
   165  	if lb == nil {
   166  		lb = &lblock{_goto: f.newBasicBlock(label.Name)}
   167  		if f.lblocks == nil {
   168  			f.lblocks = make(map[*ast.Object]*lblock)
   169  		}
   170  		f.lblocks[label.Obj] = lb
   171  	}
   172  	return lb
   173  }
   174  
   175  // addParam adds a (non-escaping) parameter to f.Params of the
   176  // specified name, type and source position.
   177  //
   178  func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter {
   179  	v := &Parameter{
   180  		name:   name,
   181  		typ:    typ,
   182  		pos:    pos,
   183  		parent: f,
   184  	}
   185  	f.Params = append(f.Params, v)
   186  	return v
   187  }
   188  
   189  func (f *Function) addParamObj(obj types.Object) *Parameter {
   190  	name := obj.Name()
   191  	if name == "" {
   192  		name = fmt.Sprintf("arg%d", len(f.Params))
   193  	}
   194  	param := f.addParam(name, obj.Type(), obj.Pos())
   195  	param.object = obj
   196  	return param
   197  }
   198  
   199  // addSpilledParam declares a parameter that is pre-spilled to the
   200  // stack; the function body will load/store the spilled location.
   201  // Subsequent lifting will eliminate spills where possible.
   202  //
   203  func (f *Function) addSpilledParam(obj types.Object) {
   204  	param := f.addParamObj(obj)
   205  	spill := &Alloc{Comment: obj.Name()}
   206  	spill.setType(types.NewPointer(obj.Type()))
   207  	spill.setPos(obj.Pos())
   208  	f.objects[obj] = spill
   209  	f.Locals = append(f.Locals, spill)
   210  	f.emit(spill)
   211  	f.emit(&Store{Addr: spill, Val: param})
   212  }
   213  
   214  // startBody initializes the function prior to generating SSA code for its body.
   215  // Precondition: f.Type() already set.
   216  //
   217  func (f *Function) startBody() {
   218  	f.currentBlock = f.newBasicBlock("entry")
   219  	f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init
   220  }
   221  
   222  // createSyntacticParams populates f.Params and generates code (spills
   223  // and named result locals) for all the parameters declared in the
   224  // syntax.  In addition it populates the f.objects mapping.
   225  //
   226  // Preconditions:
   227  // f.startBody() was called.
   228  // Postcondition:
   229  // len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
   230  //
   231  func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) {
   232  	// Receiver (at most one inner iteration).
   233  	if recv != nil {
   234  		for _, field := range recv.List {
   235  			for _, n := range field.Names {
   236  				f.addSpilledParam(f.Pkg.info.Defs[n])
   237  			}
   238  			// Anonymous receiver?  No need to spill.
   239  			if field.Names == nil {
   240  				f.addParamObj(f.Signature.Recv())
   241  			}
   242  		}
   243  	}
   244  
   245  	// Parameters.
   246  	if functype.Params != nil {
   247  		n := len(f.Params) // 1 if has recv, 0 otherwise
   248  		for _, field := range functype.Params.List {
   249  			for _, n := range field.Names {
   250  				f.addSpilledParam(f.Pkg.info.Defs[n])
   251  			}
   252  			// Anonymous parameter?  No need to spill.
   253  			if field.Names == nil {
   254  				f.addParamObj(f.Signature.Params().At(len(f.Params) - n))
   255  			}
   256  		}
   257  	}
   258  
   259  	// Named results.
   260  	if functype.Results != nil {
   261  		for _, field := range functype.Results.List {
   262  			// Implicit "var" decl of locals for named results.
   263  			for _, n := range field.Names {
   264  				f.namedResults = append(f.namedResults, f.addLocalForIdent(n))
   265  			}
   266  		}
   267  	}
   268  }
   269  
   270  // numberRegisters assigns numbers to all SSA registers
   271  // (value-defining Instructions) in f, to aid debugging.
   272  // (Non-Instruction Values are named at construction.)
   273  //
   274  func numberRegisters(f *Function) {
   275  	v := 0
   276  	for _, b := range f.Blocks {
   277  		for _, instr := range b.Instrs {
   278  			switch instr.(type) {
   279  			case Value:
   280  				instr.(interface {
   281  					setNum(int)
   282  				}).setNum(v)
   283  				v++
   284  			}
   285  		}
   286  	}
   287  }
   288  
   289  // buildReferrers populates the def/use information in all non-nil
   290  // Value.Referrers slice.
   291  // Precondition: all such slices are initially empty.
   292  func buildReferrers(f *Function) {
   293  	var rands []*Value
   294  	for _, b := range f.Blocks {
   295  		for _, instr := range b.Instrs {
   296  			rands = instr.Operands(rands[:0]) // recycle storage
   297  			for _, rand := range rands {
   298  				if r := *rand; r != nil {
   299  					if ref := r.Referrers(); ref != nil {
   300  						*ref = append(*ref, instr)
   301  					}
   302  				}
   303  			}
   304  		}
   305  	}
   306  }
   307  
   308  // finishBody() finalizes the function after SSA code generation of its body.
   309  func (f *Function) finishBody() {
   310  	f.objects = nil
   311  	f.currentBlock = nil
   312  	f.lblocks = nil
   313  
   314  	// Don't pin the AST in memory (except in debug mode).
   315  	if n := f.syntax; n != nil && !f.debugInfo() {
   316  		f.syntax = extentNode{n.Pos(), n.End()}
   317  	}
   318  
   319  	// Remove from f.Locals any Allocs that escape to the heap.
   320  	j := 0
   321  	for _, l := range f.Locals {
   322  		if !l.Heap {
   323  			f.Locals[j] = l
   324  			j++
   325  		}
   326  	}
   327  	// Nil out f.Locals[j:] to aid GC.
   328  	for i := j; i < len(f.Locals); i++ {
   329  		f.Locals[i] = nil
   330  	}
   331  	f.Locals = f.Locals[:j]
   332  
   333  	optimizeBlocks(f)
   334  
   335  	buildReferrers(f)
   336  
   337  	buildDomTree(f)
   338  
   339  	if f.Prog.mode&NaiveForm == 0 {
   340  		// For debugging pre-state of lifting pass:
   341  		// numberRegisters(f)
   342  		// f.WriteTo(os.Stderr)
   343  		lift(f)
   344  	}
   345  
   346  	f.namedResults = nil // (used by lifting)
   347  
   348  	numberRegisters(f)
   349  
   350  	if f.Prog.mode&PrintFunctions != 0 {
   351  		printMu.Lock()
   352  		f.WriteTo(os.Stdout)
   353  		printMu.Unlock()
   354  	}
   355  
   356  	if f.Prog.mode&SanityCheckFunctions != 0 {
   357  		mustSanityCheck(f, nil)
   358  	}
   359  }
   360  
   361  func (f *Function) RemoveNilBlocks() {
   362  	f.removeNilBlocks()
   363  }
   364  
   365  // removeNilBlocks eliminates nils from f.Blocks and updates each
   366  // BasicBlock.Index.  Use this after any pass that may delete blocks.
   367  //
   368  func (f *Function) removeNilBlocks() {
   369  	j := 0
   370  	for _, b := range f.Blocks {
   371  		if b != nil {
   372  			b.Index = j
   373  			f.Blocks[j] = b
   374  			j++
   375  		}
   376  	}
   377  	// Nil out f.Blocks[j:] to aid GC.
   378  	for i := j; i < len(f.Blocks); i++ {
   379  		f.Blocks[i] = nil
   380  	}
   381  	f.Blocks = f.Blocks[:j]
   382  }
   383  
   384  // SetDebugMode sets the debug mode for package pkg.  If true, all its
   385  // functions will include full debug info.  This greatly increases the
   386  // size of the instruction stream, and causes Functions to depend upon
   387  // the ASTs, potentially keeping them live in memory for longer.
   388  //
   389  func (pkg *Package) SetDebugMode(debug bool) {
   390  	// TODO(adonovan): do we want ast.File granularity?
   391  	pkg.debug = debug
   392  }
   393  
   394  // debugInfo reports whether debug info is wanted for this function.
   395  func (f *Function) debugInfo() bool {
   396  	return f.Pkg != nil && f.Pkg.debug
   397  }
   398  
   399  // addNamedLocal creates a local variable, adds it to function f and
   400  // returns it.  Its name and type are taken from obj.  Subsequent
   401  // calls to f.lookup(obj) will return the same local.
   402  //
   403  func (f *Function) addNamedLocal(obj types.Object) *Alloc {
   404  	l := f.addLocal(obj.Type(), obj.Pos())
   405  	l.Comment = obj.Name()
   406  	f.objects[obj] = l
   407  	return l
   408  }
   409  
   410  func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc {
   411  	return f.addNamedLocal(f.Pkg.info.Defs[id])
   412  }
   413  
   414  // addLocal creates an anonymous local variable of type typ, adds it
   415  // to function f and returns it.  pos is the optional source location.
   416  //
   417  func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc {
   418  	v := &Alloc{}
   419  	v.setType(types.NewPointer(typ))
   420  	v.setPos(pos)
   421  	f.Locals = append(f.Locals, v)
   422  	f.emit(v)
   423  	return v
   424  }
   425  
   426  // lookup returns the address of the named variable identified by obj
   427  // that is local to function f or one of its enclosing functions.
   428  // If escaping, the reference comes from a potentially escaping pointer
   429  // expression and the referent must be heap-allocated.
   430  //
   431  func (f *Function) lookup(obj types.Object, escaping bool) Value {
   432  	if v, ok := f.objects[obj]; ok {
   433  		if alloc, ok := v.(*Alloc); ok && escaping {
   434  			alloc.Heap = true
   435  		}
   436  		return v // function-local var (address)
   437  	}
   438  
   439  	// Definition must be in an enclosing function;
   440  	// plumb it through intervening closures.
   441  	if f.parent == nil {
   442  		panic("no ssa.Value for " + obj.String())
   443  	}
   444  	outer := f.parent.lookup(obj, true) // escaping
   445  	v := &FreeVar{
   446  		name:   obj.Name(),
   447  		typ:    outer.Type(),
   448  		pos:    outer.Pos(),
   449  		outer:  outer,
   450  		parent: f,
   451  	}
   452  	f.objects[obj] = v
   453  	f.FreeVars = append(f.FreeVars, v)
   454  	return v
   455  }
   456  
   457  // emit emits the specified instruction to function f.
   458  func (f *Function) emit(instr Instruction) Value {
   459  	return f.currentBlock.emit(instr)
   460  }
   461  
   462  // RelString returns the full name of this function, qualified by
   463  // package name, receiver type, etc.
   464  //
   465  // The specific formatting rules are not guaranteed and may change.
   466  //
   467  // Examples:
   468  //      "math.IsNaN"                  // a package-level function
   469  //      "(*bytes.Buffer).Bytes"       // a declared method or a wrapper
   470  //      "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0)
   471  //      "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure)
   472  //      "main.main$1"                 // an anonymous function in main
   473  //      "main.init#1"                 // a declared init function
   474  //      "main.init"                   // the synthesized package initializer
   475  //
   476  // When these functions are referred to from within the same package
   477  // (i.e. from == f.Pkg.Object), they are rendered without the package path.
   478  // For example: "IsNaN", "(*Buffer).Bytes", etc.
   479  //
   480  // All non-synthetic functions have distinct package-qualified names.
   481  // (But two methods may have the same name "(T).f" if one is a synthetic
   482  // wrapper promoting a non-exported method "f" from another package; in
   483  // that case, the strings are equal but the identifiers "f" are distinct.)
   484  //
   485  func (f *Function) RelString(from *types.Package) string {
   486  	// Anonymous?
   487  	if f.parent != nil {
   488  		// An anonymous function's Name() looks like "parentName$1",
   489  		// but its String() should include the type/package/etc.
   490  		parent := f.parent.RelString(from)
   491  		for i, anon := range f.parent.AnonFuncs {
   492  			if anon == f {
   493  				return fmt.Sprintf("%s$%d", parent, 1+i)
   494  			}
   495  		}
   496  
   497  		return f.name // should never happen
   498  	}
   499  
   500  	// Method (declared or wrapper)?
   501  	if recv := f.Signature.Recv(); recv != nil {
   502  		return f.relMethod(from, recv.Type())
   503  	}
   504  
   505  	// Thunk?
   506  	if f.method != nil {
   507  		return f.relMethod(from, f.method.Recv())
   508  	}
   509  
   510  	// Bound?
   511  	if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") {
   512  		return f.relMethod(from, f.FreeVars[0].Type())
   513  	}
   514  
   515  	// Package-level function?
   516  	// Prefix with package name for cross-package references only.
   517  	if p := f.pkg(); p != nil && p != from {
   518  		return fmt.Sprintf("%s.%s", p.Path(), f.name)
   519  	}
   520  
   521  	// Unknown.
   522  	return f.name
   523  }
   524  
   525  func (f *Function) relMethod(from *types.Package, recv types.Type) string {
   526  	return fmt.Sprintf("(%s).%s", relType(recv, from), f.name)
   527  }
   528  
   529  // writeSignature writes to buf the signature sig in declaration syntax.
   530  func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) {
   531  	buf.WriteString("func ")
   532  	if recv := sig.Recv(); recv != nil {
   533  		buf.WriteString("(")
   534  		if n := params[0].Name(); n != "" {
   535  			buf.WriteString(n)
   536  			buf.WriteString(" ")
   537  		}
   538  		types.WriteType(buf, params[0].Type(), types.RelativeTo(from))
   539  		buf.WriteString(") ")
   540  	}
   541  	buf.WriteString(name)
   542  	types.WriteSignature(buf, sig, types.RelativeTo(from))
   543  }
   544  
   545  func (f *Function) pkg() *types.Package {
   546  	if f.Pkg != nil {
   547  		return f.Pkg.Pkg
   548  	}
   549  	return nil
   550  }
   551  
   552  var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer
   553  
   554  func (f *Function) WriteTo(w io.Writer) (int64, error) {
   555  	var buf bytes.Buffer
   556  	WriteFunction(&buf, f)
   557  	n, err := w.Write(buf.Bytes())
   558  	return int64(n), err
   559  }
   560  
   561  // WriteFunction writes to buf a human-readable "disassembly" of f.
   562  func WriteFunction(buf *bytes.Buffer, f *Function) {
   563  	fmt.Fprintf(buf, "# Name: %s\n", f.String())
   564  	if f.Pkg != nil {
   565  		fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path())
   566  	}
   567  	if syn := f.Synthetic; syn != "" {
   568  		fmt.Fprintln(buf, "# Synthetic:", syn)
   569  	}
   570  	if pos := f.Pos(); pos.IsValid() {
   571  		fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos))
   572  	}
   573  
   574  	if f.parent != nil {
   575  		fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name())
   576  	}
   577  
   578  	if f.Recover != nil {
   579  		fmt.Fprintf(buf, "# Recover: %s\n", f.Recover)
   580  	}
   581  
   582  	from := f.pkg()
   583  
   584  	if f.FreeVars != nil {
   585  		buf.WriteString("# Free variables:\n")
   586  		for i, fv := range f.FreeVars {
   587  			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from))
   588  		}
   589  	}
   590  
   591  	if len(f.Locals) > 0 {
   592  		buf.WriteString("# Locals:\n")
   593  		for i, l := range f.Locals {
   594  			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from))
   595  		}
   596  	}
   597  	writeSignature(buf, from, f.Name(), f.Signature, f.Params)
   598  	buf.WriteString(":\n")
   599  
   600  	if f.Blocks == nil {
   601  		buf.WriteString("\t(external)\n")
   602  	}
   603  
   604  	// NB. column calculations are confused by non-ASCII
   605  	// characters and assume 8-space tabs.
   606  	const punchcard = 80 // for old time's sake.
   607  	const tabwidth = 8
   608  	for _, b := range f.Blocks {
   609  		if b == nil {
   610  			// Corrupt CFG.
   611  			fmt.Fprintf(buf, ".nil:\n")
   612  			continue
   613  		}
   614  		n, _ := fmt.Fprintf(buf, "%d:", b.Index)
   615  		bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs))
   616  		fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg)
   617  
   618  		if false { // CFG debugging
   619  			fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
   620  		}
   621  		for _, instr := range b.Instrs {
   622  			buf.WriteString("\t")
   623  			switch v := instr.(type) {
   624  			case Value:
   625  				l := punchcard - tabwidth
   626  				// Left-align the instruction.
   627  				if name := v.Name(); name != "" {
   628  					n, _ := fmt.Fprintf(buf, "%s = ", name)
   629  					l -= n
   630  				}
   631  				n, _ := buf.WriteString(instr.String())
   632  				l -= n
   633  				// Right-align the type if there's space.
   634  				if t := v.Type(); t != nil {
   635  					buf.WriteByte(' ')
   636  					ts := relType(t, from)
   637  					l -= len(ts) + len("  ") // (spaces before and after type)
   638  					if l > 0 {
   639  						fmt.Fprintf(buf, "%*s", l, "")
   640  					}
   641  					buf.WriteString(ts)
   642  				}
   643  			case nil:
   644  				// Be robust against bad transforms.
   645  				buf.WriteString("<deleted>")
   646  			default:
   647  				buf.WriteString(instr.String())
   648  			}
   649  			buf.WriteString("\n")
   650  		}
   651  	}
   652  	fmt.Fprintf(buf, "\n")
   653  }
   654  
   655  // newBasicBlock adds to f a new basic block and returns it.  It does
   656  // not automatically become the current block for subsequent calls to emit.
   657  // comment is an optional string for more readable debugging output.
   658  //
   659  func (f *Function) newBasicBlock(comment string) *BasicBlock {
   660  	b := &BasicBlock{
   661  		Index:   len(f.Blocks),
   662  		Comment: comment,
   663  		parent:  f,
   664  	}
   665  	b.Succs = b.succs2[:0]
   666  	f.Blocks = append(f.Blocks, b)
   667  	return b
   668  }
   669  
   670  // NewFunction returns a new synthetic Function instance belonging to
   671  // prog, with its name and signature fields set as specified.
   672  //
   673  // The caller is responsible for initializing the remaining fields of
   674  // the function object, e.g. Pkg, Params, Blocks.
   675  //
   676  // It is practically impossible for clients to construct well-formed
   677  // SSA functions/packages/programs directly, so we assume this is the
   678  // job of the Builder alone.  NewFunction exists to provide clients a
   679  // little flexibility.  For example, analysis tools may wish to
   680  // construct fake Functions for the root of the callgraph, a fake
   681  // "reflect" package, etc.
   682  //
   683  // TODO(adonovan): think harder about the API here.
   684  //
   685  func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function {
   686  	return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance}
   687  }
   688  
   689  type extentNode [2]token.Pos
   690  
   691  func (n extentNode) Pos() token.Pos { return n[0] }
   692  func (n extentNode) End() token.Pos { return n[1] }
   693  
   694  // Syntax returns an ast.Node whose Pos/End methods provide the
   695  // lexical extent of the function if it was defined by Go source code
   696  // (f.Synthetic==""), or nil otherwise.
   697  //
   698  // If f was built with debug information (see Package.SetDebugRef),
   699  // the result is the *ast.FuncDecl or *ast.FuncLit that declared the
   700  // function.  Otherwise, it is an opaque Node providing only position
   701  // information; this avoids pinning the AST in memory.
   702  //
   703  func (f *Function) Syntax() ast.Node { return f.syntax }