gitee.com/wgliang/goreporter@v0.0.0-20180902115603-df1b20f7c5d0/linters/simpler/ssa/ssa.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // +build go1.5
     6  
     7  package ssa
     8  
     9  // This package defines a high-level intermediate representation for
    10  // Go programs using static single-assignment (SSA) form.
    11  
    12  import (
    13  	"fmt"
    14  	"go/ast"
    15  	exact "go/constant"
    16  	"go/token"
    17  	"go/types"
    18  	"sync"
    19  
    20  	"golang.org/x/tools/go/types/typeutil"
    21  )
    22  
    23  // A Program is a partial or complete Go program converted to SSA form.
    24  type Program struct {
    25  	Fset       *token.FileSet              // position information for the files of this Program
    26  	imported   map[string]*Package         // all importable Packages, keyed by import path
    27  	packages   map[*types.Package]*Package // all loaded Packages, keyed by object
    28  	mode       BuilderMode                 // set of mode bits for SSA construction
    29  	MethodSets typeutil.MethodSetCache     // cache of type-checker's method-sets
    30  
    31  	methodsMu    sync.Mutex                 // guards the following maps:
    32  	methodSets   typeutil.Map               // maps type to its concrete methodSet
    33  	runtimeTypes typeutil.Map               // types for which rtypes are needed
    34  	canon        typeutil.Map               // type canonicalization map
    35  	bounds       map[*types.Func]*Function  // bounds for curried x.Method closures
    36  	thunks       map[selectionKey]*Function // thunks for T.Method expressions
    37  }
    38  
    39  // A Package is a single analyzed Go package containing Members for
    40  // all package-level functions, variables, constants and types it
    41  // declares.  These may be accessed directly via Members, or via the
    42  // type-specific accessor methods Func, Type, Var and Const.
    43  //
    44  // Members also contains entries for "init" (the synthetic package
    45  // initializer) and "init#%d", the nth declared init function,
    46  // and unspecified other things too.
    47  //
    48  type Package struct {
    49  	Prog    *Program               // the owning program
    50  	Pkg     *types.Package         // the corresponding go/types.Package
    51  	Members map[string]Member      // all package members keyed by name (incl. init and init#%d)
    52  	values  map[types.Object]Value // package members (incl. types and methods), keyed by object
    53  	init    *Function              // Func("init"); the package's init function
    54  	debug   bool                   // include full debug info in this package
    55  
    56  	// The following fields are set transiently, then cleared
    57  	// after building.
    58  	buildOnce sync.Once   // ensures package building occurs once
    59  	ninit     int32       // number of init functions
    60  	info      *types.Info // package type information
    61  	files     []*ast.File // package ASTs
    62  }
    63  
    64  // A Member is a member of a Go package, implemented by *NamedConst,
    65  // *Global, *Function, or *Type; they are created by package-level
    66  // const, var, func and type declarations respectively.
    67  //
    68  type Member interface {
    69  	Name() string                    // declared name of the package member
    70  	String() string                  // package-qualified name of the package member
    71  	RelString(*types.Package) string // like String, but relative refs are unqualified
    72  	Object() types.Object            // typechecker's object for this member, if any
    73  	Pos() token.Pos                  // position of member's declaration, if known
    74  	Type() types.Type                // type of the package member
    75  	Token() token.Token              // token.{VAR,FUNC,CONST,TYPE}
    76  	Package() *Package               // the containing package
    77  }
    78  
    79  // A Type is a Member of a Package representing a package-level named type.
    80  //
    81  // Type() returns a *types.Named.
    82  //
    83  type Type struct {
    84  	object *types.TypeName
    85  	pkg    *Package
    86  }
    87  
    88  // A NamedConst is a Member of a Package representing a package-level
    89  // named constant.
    90  //
    91  // Pos() returns the position of the declaring ast.ValueSpec.Names[*]
    92  // identifier.
    93  //
    94  // NB: a NamedConst is not a Value; it contains a constant Value, which
    95  // it augments with the name and position of its 'const' declaration.
    96  //
    97  type NamedConst struct {
    98  	object *types.Const
    99  	Value  *Const
   100  	pos    token.Pos
   101  	pkg    *Package
   102  }
   103  
   104  // A Value is an SSA value that can be referenced by an instruction.
   105  type Value interface {
   106  	// Name returns the name of this value, and determines how
   107  	// this Value appears when used as an operand of an
   108  	// Instruction.
   109  	//
   110  	// This is the same as the source name for Parameters,
   111  	// Builtins, Functions, FreeVars, Globals.
   112  	// For constants, it is a representation of the constant's value
   113  	// and type.  For all other Values this is the name of the
   114  	// virtual register defined by the instruction.
   115  	//
   116  	// The name of an SSA Value is not semantically significant,
   117  	// and may not even be unique within a function.
   118  	Name() string
   119  
   120  	// If this value is an Instruction, String returns its
   121  	// disassembled form; otherwise it returns unspecified
   122  	// human-readable information about the Value, such as its
   123  	// kind, name and type.
   124  	String() string
   125  
   126  	// Type returns the type of this value.  Many instructions
   127  	// (e.g. IndexAddr) change their behaviour depending on the
   128  	// types of their operands.
   129  	Type() types.Type
   130  
   131  	// Parent returns the function to which this Value belongs.
   132  	// It returns nil for named Functions, Builtin, Const and Global.
   133  	Parent() *Function
   134  
   135  	// Referrers returns the list of instructions that have this
   136  	// value as one of their operands; it may contain duplicates
   137  	// if an instruction has a repeated operand.
   138  	//
   139  	// Referrers actually returns a pointer through which the
   140  	// caller may perform mutations to the object's state.
   141  	//
   142  	// Referrers is currently only defined if Parent()!=nil,
   143  	// i.e. for the function-local values FreeVar, Parameter,
   144  	// Functions (iff anonymous) and all value-defining instructions.
   145  	// It returns nil for named Functions, Builtin, Const and Global.
   146  	//
   147  	// Instruction.Operands contains the inverse of this relation.
   148  	Referrers() *[]Instruction
   149  
   150  	// Pos returns the location of the AST token most closely
   151  	// associated with the operation that gave rise to this value,
   152  	// or token.NoPos if it was not explicit in the source.
   153  	//
   154  	// For each ast.Node type, a particular token is designated as
   155  	// the closest location for the expression, e.g. the Lparen
   156  	// for an *ast.CallExpr.  This permits a compact but
   157  	// approximate mapping from Values to source positions for use
   158  	// in diagnostic messages, for example.
   159  	//
   160  	// (Do not use this position to determine which Value
   161  	// corresponds to an ast.Expr; use Function.ValueForExpr
   162  	// instead.  NB: it requires that the function was built with
   163  	// debug information.)
   164  	Pos() token.Pos
   165  }
   166  
   167  // An Instruction is an SSA instruction that computes a new Value or
   168  // has some effect.
   169  //
   170  // An Instruction that defines a value (e.g. BinOp) also implements
   171  // the Value interface; an Instruction that only has an effect (e.g. Store)
   172  // does not.
   173  //
   174  type Instruction interface {
   175  	// String returns the disassembled form of this value.
   176  	//
   177  	// Examples of Instructions that are Values:
   178  	//       "x + y"     (BinOp)
   179  	//       "len([])"   (Call)
   180  	// Note that the name of the Value is not printed.
   181  	//
   182  	// Examples of Instructions that are not Values:
   183  	//       "return x"  (Return)
   184  	//       "*y = x"    (Store)
   185  	//
   186  	// (The separation Value.Name() from Value.String() is useful
   187  	// for some analyses which distinguish the operation from the
   188  	// value it defines, e.g., 'y = local int' is both an allocation
   189  	// of memory 'local int' and a definition of a pointer y.)
   190  	String() string
   191  
   192  	// Parent returns the function to which this instruction
   193  	// belongs.
   194  	Parent() *Function
   195  
   196  	// Block returns the basic block to which this instruction
   197  	// belongs.
   198  	Block() *BasicBlock
   199  
   200  	// setBlock sets the basic block to which this instruction belongs.
   201  	setBlock(*BasicBlock)
   202  
   203  	// Operands returns the operands of this instruction: the
   204  	// set of Values it references.
   205  	//
   206  	// Specifically, it appends their addresses to rands, a
   207  	// user-provided slice, and returns the resulting slice,
   208  	// permitting avoidance of memory allocation.
   209  	//
   210  	// The operands are appended in undefined order, but the order
   211  	// is consistent for a given Instruction; the addresses are
   212  	// always non-nil but may point to a nil Value.  Clients may
   213  	// store through the pointers, e.g. to effect a value
   214  	// renaming.
   215  	//
   216  	// Value.Referrers is a subset of the inverse of this
   217  	// relation.  (Referrers are not tracked for all types of
   218  	// Values.)
   219  	Operands(rands []*Value) []*Value
   220  
   221  	// Pos returns the location of the AST token most closely
   222  	// associated with the operation that gave rise to this
   223  	// instruction, or token.NoPos if it was not explicit in the
   224  	// source.
   225  	//
   226  	// For each ast.Node type, a particular token is designated as
   227  	// the closest location for the expression, e.g. the Go token
   228  	// for an *ast.GoStmt.  This permits a compact but approximate
   229  	// mapping from Instructions to source positions for use in
   230  	// diagnostic messages, for example.
   231  	//
   232  	// (Do not use this position to determine which Instruction
   233  	// corresponds to an ast.Expr; see the notes for Value.Pos.
   234  	// This position may be used to determine which non-Value
   235  	// Instruction corresponds to some ast.Stmts, but not all: If
   236  	// and Jump instructions have no Pos(), for example.)
   237  	Pos() token.Pos
   238  }
   239  
   240  // A Node is a node in the SSA value graph.  Every concrete type that
   241  // implements Node is also either a Value, an Instruction, or both.
   242  //
   243  // Node contains the methods common to Value and Instruction, plus the
   244  // Operands and Referrers methods generalized to return nil for
   245  // non-Instructions and non-Values, respectively.
   246  //
   247  // Node is provided to simplify SSA graph algorithms.  Clients should
   248  // use the more specific and informative Value or Instruction
   249  // interfaces where appropriate.
   250  //
   251  type Node interface {
   252  	// Common methods:
   253  	String() string
   254  	Pos() token.Pos
   255  	Parent() *Function
   256  
   257  	// Partial methods:
   258  	Operands(rands []*Value) []*Value // nil for non-Instructions
   259  	Referrers() *[]Instruction        // nil for non-Values
   260  }
   261  
   262  // Function represents the parameters, results, and code of a function
   263  // or method.
   264  //
   265  // If Blocks is nil, this indicates an external function for which no
   266  // Go source code is available.  In this case, FreeVars and Locals
   267  // are nil too.  Clients performing whole-program analysis must
   268  // handle external functions specially.
   269  //
   270  // Blocks contains the function's control-flow graph (CFG).
   271  // Blocks[0] is the function entry point; block order is not otherwise
   272  // semantically significant, though it may affect the readability of
   273  // the disassembly.
   274  // To iterate over the blocks in dominance order, use DomPreorder().
   275  //
   276  // Recover is an optional second entry point to which control resumes
   277  // after a recovered panic.  The Recover block may contain only a return
   278  // statement, preceded by a load of the function's named return
   279  // parameters, if any.
   280  //
   281  // A nested function (Parent()!=nil) that refers to one or more
   282  // lexically enclosing local variables ("free variables") has FreeVars.
   283  // Such functions cannot be called directly but require a
   284  // value created by MakeClosure which, via its Bindings, supplies
   285  // values for these parameters.
   286  //
   287  // If the function is a method (Signature.Recv() != nil) then the first
   288  // element of Params is the receiver parameter.
   289  //
   290  // A Go package may declare many functions called "init".
   291  // For each one, Object().Name() returns "init" but Name() returns
   292  // "init#1", etc, in declaration order.
   293  //
   294  // Pos() returns the declaring ast.FuncLit.Type.Func or the position
   295  // of the ast.FuncDecl.Name, if the function was explicit in the
   296  // source.  Synthetic wrappers, for which Synthetic != "", may share
   297  // the same position as the function they wrap.
   298  // Syntax.Pos() always returns the position of the declaring "func" token.
   299  //
   300  // Type() returns the function's Signature.
   301  //
   302  type Function struct {
   303  	name      string
   304  	object    types.Object     // a declared *types.Func or one of its wrappers
   305  	method    *types.Selection // info about provenance of synthetic methods
   306  	Signature *types.Signature
   307  	pos       token.Pos
   308  
   309  	Synthetic string        // provenance of synthetic function; "" for true source functions
   310  	syntax    ast.Node      // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode
   311  	parent    *Function     // enclosing function if anon; nil if global
   312  	Pkg       *Package      // enclosing package; nil for shared funcs (wrappers and error.Error)
   313  	Prog      *Program      // enclosing program
   314  	Params    []*Parameter  // function parameters; for methods, includes receiver
   315  	FreeVars  []*FreeVar    // free variables whose values must be supplied by closure
   316  	Locals    []*Alloc      // local variables of this function
   317  	Blocks    []*BasicBlock // basic blocks of the function; nil => external
   318  	Recover   *BasicBlock   // optional; control transfers here after recovered panic
   319  	AnonFuncs []*Function   // anonymous functions directly beneath this one
   320  	referrers []Instruction // referring instructions (iff Parent() != nil)
   321  
   322  	// The following fields are set transiently during building,
   323  	// then cleared.
   324  	currentBlock *BasicBlock             // where to emit code
   325  	objects      map[types.Object]Value  // addresses of local variables
   326  	namedResults []*Alloc                // tuple of named results
   327  	targets      *targets                // linked stack of branch targets
   328  	lblocks      map[*ast.Object]*lblock // labelled blocks
   329  }
   330  
   331  // BasicBlock represents an SSA basic block.
   332  //
   333  // The final element of Instrs is always an explicit transfer of
   334  // control (If, Jump, Return, or Panic).
   335  //
   336  // A block may contain no Instructions only if it is unreachable,
   337  // i.e., Preds is nil.  Empty blocks are typically pruned.
   338  //
   339  // BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
   340  // graph independent of the SSA Value graph: the control-flow graph or
   341  // CFG.  It is illegal for multiple edges to exist between the same
   342  // pair of blocks.
   343  //
   344  // Each BasicBlock is also a node in the dominator tree of the CFG.
   345  // The tree may be navigated using Idom()/Dominees() and queried using
   346  // Dominates().
   347  //
   348  // The order of Preds and Succs is significant (to Phi and If
   349  // instructions, respectively).
   350  //
   351  type BasicBlock struct {
   352  	Index        int            // index of this block within Parent().Blocks
   353  	Comment      string         // optional label; no semantic significance
   354  	parent       *Function      // parent function
   355  	Instrs       []Instruction  // instructions in order
   356  	Preds, Succs []*BasicBlock  // predecessors and successors
   357  	succs2       [2]*BasicBlock // initial space for Succs
   358  	dom          domInfo        // dominator tree info
   359  	gaps         int            // number of nil Instrs (transient)
   360  	rundefers    int            // number of rundefers (transient)
   361  }
   362  
   363  // Pure values ----------------------------------------
   364  
   365  // A FreeVar represents a free variable of the function to which it
   366  // belongs.
   367  //
   368  // FreeVars are used to implement anonymous functions, whose free
   369  // variables are lexically captured in a closure formed by
   370  // MakeClosure.  The value of such a free var is an Alloc or another
   371  // FreeVar and is considered a potentially escaping heap address, with
   372  // pointer type.
   373  //
   374  // FreeVars are also used to implement bound method closures.  Such a
   375  // free var represents the receiver value and may be of any type that
   376  // has concrete methods.
   377  //
   378  // Pos() returns the position of the value that was captured, which
   379  // belongs to an enclosing function.
   380  //
   381  type FreeVar struct {
   382  	name      string
   383  	typ       types.Type
   384  	pos       token.Pos
   385  	parent    *Function
   386  	referrers []Instruction
   387  
   388  	// Transiently needed during building.
   389  	outer Value // the Value captured from the enclosing context.
   390  }
   391  
   392  // A Parameter represents an input parameter of a function.
   393  //
   394  type Parameter struct {
   395  	name      string
   396  	object    types.Object // a *types.Var; nil for non-source locals
   397  	typ       types.Type
   398  	pos       token.Pos
   399  	parent    *Function
   400  	referrers []Instruction
   401  }
   402  
   403  // A Const represents the value of a constant expression.
   404  //
   405  // The underlying type of a constant may be any boolean, numeric, or
   406  // string type.  In addition, a Const may represent the nil value of
   407  // any reference type---interface, map, channel, pointer, slice, or
   408  // function---but not "untyped nil".
   409  //
   410  // All source-level constant expressions are represented by a Const
   411  // of the same type and value.
   412  //
   413  // Value holds the exact value of the constant, independent of its
   414  // Type(), using the same representation as package go/exact uses for
   415  // constants, or nil for a typed nil value.
   416  //
   417  // Pos() returns token.NoPos.
   418  //
   419  // Example printed form:
   420  // 	42:int
   421  //	"hello":untyped string
   422  //	3+4i:MyComplex
   423  //
   424  type Const struct {
   425  	typ   types.Type
   426  	Value exact.Value
   427  }
   428  
   429  // A Global is a named Value holding the address of a package-level
   430  // variable.
   431  //
   432  // Pos() returns the position of the ast.ValueSpec.Names[*]
   433  // identifier.
   434  //
   435  type Global struct {
   436  	name   string
   437  	object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
   438  	typ    types.Type
   439  	pos    token.Pos
   440  
   441  	Pkg *Package
   442  }
   443  
   444  // A Builtin represents a specific use of a built-in function, e.g. len.
   445  //
   446  // Builtins are immutable values.  Builtins do not have addresses.
   447  // Builtins can only appear in CallCommon.Func.
   448  //
   449  // Name() indicates the function: one of the built-in functions from the
   450  // Go spec (excluding "make" and "new") or one of these ssa-defined
   451  // intrinsics:
   452  //
   453  //   // wrapnilchk returns ptr if non-nil, panics otherwise.
   454  //   // (For use in indirection wrappers.)
   455  //   func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
   456  //
   457  // Object() returns a *types.Builtin for built-ins defined by the spec,
   458  // nil for others.
   459  //
   460  // Type() returns a *types.Signature representing the effective
   461  // signature of the built-in for this call.
   462  //
   463  type Builtin struct {
   464  	name string
   465  	sig  *types.Signature
   466  }
   467  
   468  // Value-defining instructions  ----------------------------------------
   469  
   470  // The Alloc instruction reserves space for a variable of the given type,
   471  // zero-initializes it, and yields its address.
   472  //
   473  // Alloc values are always addresses, and have pointer types, so the
   474  // type of the allocated variable is actually
   475  // Type().Underlying().(*types.Pointer).Elem().
   476  //
   477  // If Heap is false, Alloc allocates space in the function's
   478  // activation record (frame); we refer to an Alloc(Heap=false) as a
   479  // "local" alloc.  Each local Alloc returns the same address each time
   480  // it is executed within the same activation; the space is
   481  // re-initialized to zero.
   482  //
   483  // If Heap is true, Alloc allocates space in the heap; we
   484  // refer to an Alloc(Heap=true) as a "new" alloc.  Each new Alloc
   485  // returns a different address each time it is executed.
   486  //
   487  // When Alloc is applied to a channel, map or slice type, it returns
   488  // the address of an uninitialized (nil) reference of that kind; store
   489  // the result of MakeSlice, MakeMap or MakeChan in that location to
   490  // instantiate these types.
   491  //
   492  // Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
   493  // or the ast.CallExpr.Rparen for a call to new() or for a call that
   494  // allocates a varargs slice.
   495  //
   496  // Example printed form:
   497  // 	t0 = local int
   498  // 	t1 = new int
   499  //
   500  type Alloc struct {
   501  	register
   502  	Comment string
   503  	Heap    bool
   504  	index   int // dense numbering; for lifting
   505  }
   506  
   507  var _ Instruction = (*Sigma)(nil)
   508  var _ Value = (*Sigma)(nil)
   509  
   510  type Sigma struct {
   511  	register
   512  	X      Value
   513  	Branch bool
   514  }
   515  
   516  func (p *Sigma) Value() Value {
   517  	v := p.X
   518  	for {
   519  		sigma, ok := v.(*Sigma)
   520  		if !ok {
   521  			break
   522  		}
   523  		v = sigma
   524  	}
   525  	return v
   526  }
   527  
   528  func (p *Sigma) String() string {
   529  	return fmt.Sprintf("σ [%s.%t]", relName(p.X, p), p.Branch)
   530  }
   531  
   532  // The Phi instruction represents an SSA φ-node, which combines values
   533  // that differ across incoming control-flow edges and yields a new
   534  // value.  Within a block, all φ-nodes must appear before all non-φ
   535  // nodes.
   536  //
   537  // Pos() returns the position of the && or || for short-circuit
   538  // control-flow joins, or that of the *Alloc for φ-nodes inserted
   539  // during SSA renaming.
   540  //
   541  // Example printed form:
   542  // 	t2 = phi [0: t0, 1: t1]
   543  //
   544  type Phi struct {
   545  	register
   546  	Comment string  // a hint as to its purpose
   547  	Edges   []Value // Edges[i] is value for Block().Preds[i]
   548  }
   549  
   550  // The Call instruction represents a function or method call.
   551  //
   552  // The Call instruction yields the function result if there is exactly
   553  // one.  Otherwise it returns a tuple, the components of which are
   554  // accessed via Extract.
   555  //
   556  // See CallCommon for generic function call documentation.
   557  //
   558  // Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
   559  //
   560  // Example printed form:
   561  // 	t2 = println(t0, t1)
   562  // 	t4 = t3()
   563  // 	t7 = invoke t5.Println(...t6)
   564  //
   565  type Call struct {
   566  	register
   567  	Call CallCommon
   568  }
   569  
   570  // The BinOp instruction yields the result of binary operation X Op Y.
   571  //
   572  // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
   573  //
   574  // Example printed form:
   575  // 	t1 = t0 + 1:int
   576  //
   577  type BinOp struct {
   578  	register
   579  	// One of:
   580  	// ADD SUB MUL QUO REM          + - * / %
   581  	// AND OR XOR SHL SHR AND_NOT   & | ^ << >> &~
   582  	// EQL LSS GTR NEQ LEQ GEQ      == != < <= < >=
   583  	Op   token.Token
   584  	X, Y Value
   585  }
   586  
   587  // The UnOp instruction yields the result of Op X.
   588  // ARROW is channel receive.
   589  // MUL is pointer indirection (load).
   590  // XOR is bitwise complement.
   591  // SUB is negation.
   592  // NOT is logical negation.
   593  //
   594  // If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
   595  // and a boolean indicating the success of the receive.  The
   596  // components of the tuple are accessed using Extract.
   597  //
   598  // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
   599  // For receive operations (ARROW) implicit in ranging over a channel,
   600  // Pos() returns the ast.RangeStmt.For.
   601  // For implicit memory loads (STAR), Pos() returns the position of the
   602  // most closely associated source-level construct; the details are not
   603  // specified.
   604  //
   605  // Example printed form:
   606  // 	t0 = *x
   607  // 	t2 = <-t1,ok
   608  //
   609  type UnOp struct {
   610  	register
   611  	Op      token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
   612  	X       Value
   613  	CommaOk bool
   614  }
   615  
   616  // The ChangeType instruction applies to X a value-preserving type
   617  // change to Type().
   618  //
   619  // Type changes are permitted:
   620  //    - between a named type and its underlying type.
   621  //    - between two named types of the same underlying type.
   622  //    - between (possibly named) pointers to identical base types.
   623  //    - from a bidirectional channel to a read- or write-channel,
   624  //      optionally adding/removing a name.
   625  //
   626  // This operation cannot fail dynamically.
   627  //
   628  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   629  // from an explicit conversion in the source.
   630  //
   631  // Example printed form:
   632  // 	t1 = changetype *int <- IntPtr (t0)
   633  //
   634  type ChangeType struct {
   635  	register
   636  	X Value
   637  }
   638  
   639  // The Convert instruction yields the conversion of value X to type
   640  // Type().  One or both of those types is basic (but possibly named).
   641  //
   642  // A conversion may change the value and representation of its operand.
   643  // Conversions are permitted:
   644  //    - between real numeric types.
   645  //    - between complex numeric types.
   646  //    - between string and []byte or []rune.
   647  //    - between pointers and unsafe.Pointer.
   648  //    - between unsafe.Pointer and uintptr.
   649  //    - from (Unicode) integer to (UTF-8) string.
   650  // A conversion may imply a type name change also.
   651  //
   652  // This operation cannot fail dynamically.
   653  //
   654  // Conversions of untyped string/number/bool constants to a specific
   655  // representation are eliminated during SSA construction.
   656  //
   657  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   658  // from an explicit conversion in the source.
   659  //
   660  // Example printed form:
   661  // 	t1 = convert []byte <- string (t0)
   662  //
   663  type Convert struct {
   664  	register
   665  	X Value
   666  }
   667  
   668  // ChangeInterface constructs a value of one interface type from a
   669  // value of another interface type known to be assignable to it.
   670  // This operation cannot fail.
   671  //
   672  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
   673  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
   674  // instruction arose from an explicit e.(T) operation; or token.NoPos
   675  // otherwise.
   676  //
   677  // Example printed form:
   678  // 	t1 = change interface interface{} <- I (t0)
   679  //
   680  type ChangeInterface struct {
   681  	register
   682  	X Value
   683  }
   684  
   685  // MakeInterface constructs an instance of an interface type from a
   686  // value of a concrete type.
   687  //
   688  // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
   689  // of X, and Program.Method(m) to find the implementation of a method.
   690  //
   691  // To construct the zero value of an interface type T, use:
   692  // 	NewConst(exact.MakeNil(), T, pos)
   693  //
   694  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   695  // from an explicit conversion in the source.
   696  //
   697  // Example printed form:
   698  // 	t1 = make interface{} <- int (42:int)
   699  // 	t2 = make Stringer <- t0
   700  //
   701  type MakeInterface struct {
   702  	register
   703  	X Value
   704  }
   705  
   706  // The MakeClosure instruction yields a closure value whose code is
   707  // Fn and whose free variables' values are supplied by Bindings.
   708  //
   709  // Type() returns a (possibly named) *types.Signature.
   710  //
   711  // Pos() returns the ast.FuncLit.Type.Func for a function literal
   712  // closure or the ast.SelectorExpr.Sel for a bound method closure.
   713  //
   714  // Example printed form:
   715  // 	t0 = make closure anon@1.2 [x y z]
   716  // 	t1 = make closure bound$(main.I).add [i]
   717  //
   718  type MakeClosure struct {
   719  	register
   720  	Fn       Value   // always a *Function
   721  	Bindings []Value // values for each free variable in Fn.FreeVars
   722  }
   723  
   724  // The MakeMap instruction creates a new hash-table-based map object
   725  // and yields a value of kind map.
   726  //
   727  // Type() returns a (possibly named) *types.Map.
   728  //
   729  // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
   730  // the ast.CompositeLit.Lbrack if created by a literal.
   731  //
   732  // Example printed form:
   733  // 	t1 = make map[string]int t0
   734  // 	t1 = make StringIntMap t0
   735  //
   736  type MakeMap struct {
   737  	register
   738  	Reserve Value // initial space reservation; nil => default
   739  }
   740  
   741  // The MakeChan instruction creates a new channel object and yields a
   742  // value of kind chan.
   743  //
   744  // Type() returns a (possibly named) *types.Chan.
   745  //
   746  // Pos() returns the ast.CallExpr.Lparen for the make(chan) that
   747  // created it.
   748  //
   749  // Example printed form:
   750  // 	t0 = make chan int 0
   751  // 	t0 = make IntChan 0
   752  //
   753  type MakeChan struct {
   754  	register
   755  	Size Value // int; size of buffer; zero => synchronous.
   756  }
   757  
   758  // The MakeSlice instruction yields a slice of length Len backed by a
   759  // newly allocated array of length Cap.
   760  //
   761  // Both Len and Cap must be non-nil Values of integer type.
   762  //
   763  // (Alloc(types.Array) followed by Slice will not suffice because
   764  // Alloc can only create arrays of constant length.)
   765  //
   766  // Type() returns a (possibly named) *types.Slice.
   767  //
   768  // Pos() returns the ast.CallExpr.Lparen for the make([]T) that
   769  // created it.
   770  //
   771  // Example printed form:
   772  // 	t1 = make []string 1:int t0
   773  // 	t1 = make StringSlice 1:int t0
   774  //
   775  type MakeSlice struct {
   776  	register
   777  	Len Value
   778  	Cap Value
   779  }
   780  
   781  // The Slice instruction yields a slice of an existing string, slice
   782  // or *array X between optional integer bounds Low and High.
   783  //
   784  // Dynamically, this instruction panics if X evaluates to a nil *array
   785  // pointer.
   786  //
   787  // Type() returns string if the type of X was string, otherwise a
   788  // *types.Slice with the same element type as X.
   789  //
   790  // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
   791  // operation, the ast.CompositeLit.Lbrace if created by a literal, or
   792  // NoPos if not explicit in the source (e.g. a variadic argument slice).
   793  //
   794  // Example printed form:
   795  // 	t1 = slice t0[1:]
   796  //
   797  type Slice struct {
   798  	register
   799  	X              Value // slice, string, or *array
   800  	Low, High, Max Value // each may be nil
   801  }
   802  
   803  // The FieldAddr instruction yields the address of Field of *struct X.
   804  //
   805  // The field is identified by its index within the field list of the
   806  // struct type of X.
   807  //
   808  // Dynamically, this instruction panics if X evaluates to a nil
   809  // pointer.
   810  //
   811  // Type() returns a (possibly named) *types.Pointer.
   812  //
   813  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   814  // field, if explicit in the source.
   815  //
   816  // Example printed form:
   817  // 	t1 = &t0.name [#1]
   818  //
   819  type FieldAddr struct {
   820  	register
   821  	X     Value // *struct
   822  	Field int   // index into X.Type().Deref().(*types.Struct).Fields
   823  }
   824  
   825  // The Field instruction yields the Field of struct X.
   826  //
   827  // The field is identified by its index within the field list of the
   828  // struct type of X; by using numeric indices we avoid ambiguity of
   829  // package-local identifiers and permit compact representations.
   830  //
   831  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   832  // field, if explicit in the source.
   833  //
   834  // Example printed form:
   835  // 	t1 = t0.name [#1]
   836  //
   837  type Field struct {
   838  	register
   839  	X     Value // struct
   840  	Field int   // index into X.Type().(*types.Struct).Fields
   841  }
   842  
   843  // The IndexAddr instruction yields the address of the element at
   844  // index Index of collection X.  Index is an integer expression.
   845  //
   846  // The elements of maps and strings are not addressable; use Lookup or
   847  // MapUpdate instead.
   848  //
   849  // Dynamically, this instruction panics if X evaluates to a nil *array
   850  // pointer.
   851  //
   852  // Type() returns a (possibly named) *types.Pointer.
   853  //
   854  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   855  // explicit in the source.
   856  //
   857  // Example printed form:
   858  // 	t2 = &t0[t1]
   859  //
   860  type IndexAddr struct {
   861  	register
   862  	X     Value // slice or *array,
   863  	Index Value // numeric index
   864  }
   865  
   866  // The Index instruction yields element Index of array X.
   867  //
   868  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   869  // explicit in the source.
   870  //
   871  // Example printed form:
   872  // 	t2 = t0[t1]
   873  //
   874  type Index struct {
   875  	register
   876  	X     Value // array
   877  	Index Value // integer index
   878  }
   879  
   880  // The Lookup instruction yields element Index of collection X, a map
   881  // or string.  Index is an integer expression if X is a string or the
   882  // appropriate key type if X is a map.
   883  //
   884  // If CommaOk, the result is a 2-tuple of the value above and a
   885  // boolean indicating the result of a map membership test for the key.
   886  // The components of the tuple are accessed using Extract.
   887  //
   888  // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
   889  //
   890  // Example printed form:
   891  // 	t2 = t0[t1]
   892  // 	t5 = t3[t4],ok
   893  //
   894  type Lookup struct {
   895  	register
   896  	X       Value // string or map
   897  	Index   Value // numeric or key-typed index
   898  	CommaOk bool  // return a value,ok pair
   899  }
   900  
   901  // SelectState is a helper for Select.
   902  // It represents one goal state and its corresponding communication.
   903  //
   904  type SelectState struct {
   905  	Dir       types.ChanDir // direction of case (SendOnly or RecvOnly)
   906  	Chan      Value         // channel to use (for send or receive)
   907  	Send      Value         // value to send (for send)
   908  	Pos       token.Pos     // position of token.ARROW
   909  	DebugNode ast.Node      // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
   910  }
   911  
   912  // The Select instruction tests whether (or blocks until) one
   913  // of the specified sent or received states is entered.
   914  //
   915  // Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
   916  // be the element type of each such state's Chan.
   917  // Select returns an n+2-tuple
   918  //    (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
   919  // The tuple's components, described below, must be accessed via the
   920  // Extract instruction.
   921  //
   922  // If Blocking, select waits until exactly one state holds, i.e. a
   923  // channel becomes ready for the designated operation of sending or
   924  // receiving; select chooses one among the ready states
   925  // pseudorandomly, performs the send or receive operation, and sets
   926  // 'index' to the index of the chosen channel.
   927  //
   928  // If !Blocking, select doesn't block if no states hold; instead it
   929  // returns immediately with index equal to -1.
   930  //
   931  // If the chosen channel was used for a receive, the r_i component is
   932  // set to the received value, where i is the index of that state among
   933  // all n receive states; otherwise r_i has the zero value of type T_i.
   934  // Note that the receive index i is not the same as the state
   935  // index index.
   936  //
   937  // The second component of the triple, recvOk, is a boolean whose value
   938  // is true iff the selected operation was a receive and the receive
   939  // successfully yielded a value.
   940  //
   941  // Pos() returns the ast.SelectStmt.Select.
   942  //
   943  // Example printed form:
   944  // 	t3 = select nonblocking [<-t0, t1<-t2]
   945  // 	t4 = select blocking []
   946  //
   947  type Select struct {
   948  	register
   949  	States   []*SelectState
   950  	Blocking bool
   951  }
   952  
   953  // The Range instruction yields an iterator over the domain and range
   954  // of X, which must be a string or map.
   955  //
   956  // Elements are accessed via Next.
   957  //
   958  // Type() returns an opaque and degenerate "rangeIter" type.
   959  //
   960  // Pos() returns the ast.RangeStmt.For.
   961  //
   962  // Example printed form:
   963  // 	t0 = range "hello":string
   964  //
   965  type Range struct {
   966  	register
   967  	X Value // string or map
   968  }
   969  
   970  // The Next instruction reads and advances the (map or string)
   971  // iterator Iter and returns a 3-tuple value (ok, k, v).  If the
   972  // iterator is not exhausted, ok is true and k and v are the next
   973  // elements of the domain and range, respectively.  Otherwise ok is
   974  // false and k and v are undefined.
   975  //
   976  // Components of the tuple are accessed using Extract.
   977  //
   978  // The IsString field distinguishes iterators over strings from those
   979  // over maps, as the Type() alone is insufficient: consider
   980  // map[int]rune.
   981  //
   982  // Type() returns a *types.Tuple for the triple (ok, k, v).
   983  // The types of k and/or v may be types.Invalid.
   984  //
   985  // Example printed form:
   986  // 	t1 = next t0
   987  //
   988  type Next struct {
   989  	register
   990  	Iter     Value
   991  	IsString bool // true => string iterator; false => map iterator.
   992  }
   993  
   994  // The TypeAssert instruction tests whether interface value X has type
   995  // AssertedType.
   996  //
   997  // If !CommaOk, on success it returns v, the result of the conversion
   998  // (defined below); on failure it panics.
   999  //
  1000  // If CommaOk: on success it returns a pair (v, true) where v is the
  1001  // result of the conversion; on failure it returns (z, false) where z
  1002  // is AssertedType's zero value.  The components of the pair must be
  1003  // accessed using the Extract instruction.
  1004  //
  1005  // If AssertedType is a concrete type, TypeAssert checks whether the
  1006  // dynamic type in interface X is equal to it, and if so, the result
  1007  // of the conversion is a copy of the value in the interface.
  1008  //
  1009  // If AssertedType is an interface, TypeAssert checks whether the
  1010  // dynamic type of the interface is assignable to it, and if so, the
  1011  // result of the conversion is a copy of the interface value X.
  1012  // If AssertedType is a superinterface of X.Type(), the operation will
  1013  // fail iff the operand is nil.  (Contrast with ChangeInterface, which
  1014  // performs no nil-check.)
  1015  //
  1016  // Type() reflects the actual type of the result, possibly a
  1017  // 2-types.Tuple; AssertedType is the asserted type.
  1018  //
  1019  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
  1020  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
  1021  // instruction arose from an explicit e.(T) operation; or the
  1022  // ast.CaseClause.Case if the instruction arose from a case of a
  1023  // type-switch statement.
  1024  //
  1025  // Example printed form:
  1026  // 	t1 = typeassert t0.(int)
  1027  // 	t3 = typeassert,ok t2.(T)
  1028  //
  1029  type TypeAssert struct {
  1030  	register
  1031  	X            Value
  1032  	AssertedType types.Type
  1033  	CommaOk      bool
  1034  }
  1035  
  1036  // The Extract instruction yields component Index of Tuple.
  1037  //
  1038  // This is used to access the results of instructions with multiple
  1039  // return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
  1040  // IndexExpr(Map).
  1041  //
  1042  // Example printed form:
  1043  // 	t1 = extract t0 #1
  1044  //
  1045  type Extract struct {
  1046  	register
  1047  	Tuple Value
  1048  	Index int
  1049  }
  1050  
  1051  // Instructions executed for effect.  They do not yield a value. --------------------
  1052  
  1053  // The Jump instruction transfers control to the sole successor of its
  1054  // owning block.
  1055  //
  1056  // A Jump must be the last instruction of its containing BasicBlock.
  1057  //
  1058  // Pos() returns NoPos.
  1059  //
  1060  // Example printed form:
  1061  // 	jump done
  1062  //
  1063  type Jump struct {
  1064  	anInstruction
  1065  }
  1066  
  1067  // The If instruction transfers control to one of the two successors
  1068  // of its owning block, depending on the boolean Cond: the first if
  1069  // true, the second if false.
  1070  //
  1071  // An If instruction must be the last instruction of its containing
  1072  // BasicBlock.
  1073  //
  1074  // Pos() returns NoPos.
  1075  //
  1076  // Example printed form:
  1077  // 	if t0 goto done else body
  1078  //
  1079  type If struct {
  1080  	anInstruction
  1081  	Cond Value
  1082  }
  1083  
  1084  // The Return instruction returns values and control back to the calling
  1085  // function.
  1086  //
  1087  // len(Results) is always equal to the number of results in the
  1088  // function's signature.
  1089  //
  1090  // If len(Results) > 1, Return returns a tuple value with the specified
  1091  // components which the caller must access using Extract instructions.
  1092  //
  1093  // There is no instruction to return a ready-made tuple like those
  1094  // returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
  1095  // a tail-call to a function with multiple result parameters.
  1096  //
  1097  // Return must be the last instruction of its containing BasicBlock.
  1098  // Such a block has no successors.
  1099  //
  1100  // Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
  1101  //
  1102  // Example printed form:
  1103  // 	return
  1104  // 	return nil:I, 2:int
  1105  //
  1106  type Return struct {
  1107  	anInstruction
  1108  	Results []Value
  1109  	pos     token.Pos
  1110  }
  1111  
  1112  // The RunDefers instruction pops and invokes the entire stack of
  1113  // procedure calls pushed by Defer instructions in this function.
  1114  //
  1115  // It is legal to encounter multiple 'rundefers' instructions in a
  1116  // single control-flow path through a function; this is useful in
  1117  // the combined init() function, for example.
  1118  //
  1119  // Pos() returns NoPos.
  1120  //
  1121  // Example printed form:
  1122  //	rundefers
  1123  //
  1124  type RunDefers struct {
  1125  	anInstruction
  1126  }
  1127  
  1128  // The Panic instruction initiates a panic with value X.
  1129  //
  1130  // A Panic instruction must be the last instruction of its containing
  1131  // BasicBlock, which must have no successors.
  1132  //
  1133  // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
  1134  // they are treated as calls to a built-in function.
  1135  //
  1136  // Pos() returns the ast.CallExpr.Lparen if this panic was explicit
  1137  // in the source.
  1138  //
  1139  // Example printed form:
  1140  // 	panic t0
  1141  //
  1142  type Panic struct {
  1143  	anInstruction
  1144  	X   Value // an interface{}
  1145  	pos token.Pos
  1146  }
  1147  
  1148  // The Go instruction creates a new goroutine and calls the specified
  1149  // function within it.
  1150  //
  1151  // See CallCommon for generic function call documentation.
  1152  //
  1153  // Pos() returns the ast.GoStmt.Go.
  1154  //
  1155  // Example printed form:
  1156  // 	go println(t0, t1)
  1157  // 	go t3()
  1158  // 	go invoke t5.Println(...t6)
  1159  //
  1160  type Go struct {
  1161  	anInstruction
  1162  	Call CallCommon
  1163  	pos  token.Pos
  1164  }
  1165  
  1166  // The Defer instruction pushes the specified call onto a stack of
  1167  // functions to be called by a RunDefers instruction or by a panic.
  1168  //
  1169  // See CallCommon for generic function call documentation.
  1170  //
  1171  // Pos() returns the ast.DeferStmt.Defer.
  1172  //
  1173  // Example printed form:
  1174  // 	defer println(t0, t1)
  1175  // 	defer t3()
  1176  // 	defer invoke t5.Println(...t6)
  1177  //
  1178  type Defer struct {
  1179  	anInstruction
  1180  	Call CallCommon
  1181  	pos  token.Pos
  1182  }
  1183  
  1184  // The Send instruction sends X on channel Chan.
  1185  //
  1186  // Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
  1187  //
  1188  // Example printed form:
  1189  // 	send t0 <- t1
  1190  //
  1191  type Send struct {
  1192  	anInstruction
  1193  	Chan, X Value
  1194  	pos     token.Pos
  1195  }
  1196  
  1197  // The Store instruction stores Val at address Addr.
  1198  // Stores can be of arbitrary types.
  1199  //
  1200  // Pos() returns the position of the source-level construct most closely
  1201  // associated with the memory store operation.
  1202  // Since implicit memory stores are numerous and varied and depend upon
  1203  // implementation choices, the details are not specified.
  1204  //
  1205  // Example printed form:
  1206  // 	*x = y
  1207  //
  1208  type Store struct {
  1209  	anInstruction
  1210  	Addr Value
  1211  	Val  Value
  1212  	pos  token.Pos
  1213  }
  1214  
  1215  // The BlankStore instruction is emitted for assignments to the blank
  1216  // identifier.
  1217  //
  1218  // BlankStore is a pseudo-instruction: it has no dynamic effect.
  1219  //
  1220  // Pos() returns NoPos.
  1221  //
  1222  // Example printed form:
  1223  //	_ = t0
  1224  //
  1225  type BlankStore struct {
  1226  	anInstruction
  1227  	Val Value
  1228  }
  1229  
  1230  // The MapUpdate instruction updates the association of Map[Key] to
  1231  // Value.
  1232  //
  1233  // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
  1234  // if explicit in the source.
  1235  //
  1236  // Example printed form:
  1237  //	t0[t1] = t2
  1238  //
  1239  type MapUpdate struct {
  1240  	anInstruction
  1241  	Map   Value
  1242  	Key   Value
  1243  	Value Value
  1244  	pos   token.Pos
  1245  }
  1246  
  1247  // A DebugRef instruction maps a source-level expression Expr to the
  1248  // SSA value X that represents the value (!IsAddr) or address (IsAddr)
  1249  // of that expression.
  1250  //
  1251  // DebugRef is a pseudo-instruction: it has no dynamic effect.
  1252  //
  1253  // Pos() returns Expr.Pos(), the start position of the source-level
  1254  // expression.  This is not the same as the "designated" token as
  1255  // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
  1256  // position of the ("designated") Lparen token.
  1257  //
  1258  // If Expr is an *ast.Ident denoting a var or func, Object() returns
  1259  // the object; though this information can be obtained from the type
  1260  // checker, including it here greatly facilitates debugging.
  1261  // For non-Ident expressions, Object() returns nil.
  1262  //
  1263  // DebugRefs are generated only for functions built with debugging
  1264  // enabled; see Package.SetDebugMode() and the GlobalDebug builder
  1265  // mode flag.
  1266  //
  1267  // DebugRefs are not emitted for ast.Idents referring to constants or
  1268  // predeclared identifiers, since they are trivial and numerous.
  1269  // Nor are they emitted for ast.ParenExprs.
  1270  //
  1271  // (By representing these as instructions, rather than out-of-band,
  1272  // consistency is maintained during transformation passes by the
  1273  // ordinary SSA renaming machinery.)
  1274  //
  1275  // Example printed form:
  1276  //      ; *ast.CallExpr @ 102:9 is t5
  1277  //      ; var x float64 @ 109:72 is x
  1278  //      ; address of *ast.CompositeLit @ 216:10 is t0
  1279  //
  1280  type DebugRef struct {
  1281  	anInstruction
  1282  	Expr   ast.Expr     // the referring expression (never *ast.ParenExpr)
  1283  	object types.Object // the identity of the source var/func
  1284  	IsAddr bool         // Expr is addressable and X is the address it denotes
  1285  	X      Value        // the value or address of Expr
  1286  }
  1287  
  1288  // Embeddable mix-ins and helpers for common parts of other structs. -----------
  1289  
  1290  // register is a mix-in embedded by all SSA values that are also
  1291  // instructions, i.e. virtual registers, and provides a uniform
  1292  // implementation of most of the Value interface: Value.Name() is a
  1293  // numbered register (e.g. "t0"); the other methods are field accessors.
  1294  //
  1295  // Temporary names are automatically assigned to each register on
  1296  // completion of building a function in SSA form.
  1297  //
  1298  // Clients must not assume that the 'id' value (and the Name() derived
  1299  // from it) is unique within a function.  As always in this API,
  1300  // semantics are determined only by identity; names exist only to
  1301  // facilitate debugging.
  1302  //
  1303  type register struct {
  1304  	anInstruction
  1305  	num       int        // "name" of virtual register, e.g. "t0".  Not guaranteed unique.
  1306  	typ       types.Type // type of virtual register
  1307  	pos       token.Pos  // position of source expression, or NoPos
  1308  	referrers []Instruction
  1309  }
  1310  
  1311  // anInstruction is a mix-in embedded by all Instructions.
  1312  // It provides the implementations of the Block and setBlock methods.
  1313  type anInstruction struct {
  1314  	block *BasicBlock // the basic block of this instruction
  1315  }
  1316  
  1317  // CallCommon is contained by Go, Defer and Call to hold the
  1318  // common parts of a function or method call.
  1319  //
  1320  // Each CallCommon exists in one of two modes, function call and
  1321  // interface method invocation, or "call" and "invoke" for short.
  1322  //
  1323  // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
  1324  // represents an ordinary function call of the value in Value,
  1325  // which may be a *Builtin, a *Function or any other value of kind
  1326  // 'func'.
  1327  //
  1328  // Value may be one of:
  1329  //    (a) a *Function, indicating a statically dispatched call
  1330  //        to a package-level function, an anonymous function, or
  1331  //        a method of a named type.
  1332  //    (b) a *MakeClosure, indicating an immediately applied
  1333  //        function literal with free variables.
  1334  //    (c) a *Builtin, indicating a statically dispatched call
  1335  //        to a built-in function.
  1336  //    (d) any other value, indicating a dynamically dispatched
  1337  //        function call.
  1338  // StaticCallee returns the identity of the callee in cases
  1339  // (a) and (b), nil otherwise.
  1340  //
  1341  // Args contains the arguments to the call.  If Value is a method,
  1342  // Args[0] contains the receiver parameter.
  1343  //
  1344  // Example printed form:
  1345  // 	t2 = println(t0, t1)
  1346  // 	go t3()
  1347  //	defer t5(...t6)
  1348  //
  1349  // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
  1350  // represents a dynamically dispatched call to an interface method.
  1351  // In this mode, Value is the interface value and Method is the
  1352  // interface's abstract method.  Note: an abstract method may be
  1353  // shared by multiple interfaces due to embedding; Value.Type()
  1354  // provides the specific interface used for this call.
  1355  //
  1356  // Value is implicitly supplied to the concrete method implementation
  1357  // as the receiver parameter; in other words, Args[0] holds not the
  1358  // receiver but the first true argument.
  1359  //
  1360  // Example printed form:
  1361  // 	t1 = invoke t0.String()
  1362  // 	go invoke t3.Run(t2)
  1363  // 	defer invoke t4.Handle(...t5)
  1364  //
  1365  // For all calls to variadic functions (Signature().Variadic()),
  1366  // the last element of Args is a slice.
  1367  //
  1368  type CallCommon struct {
  1369  	Value  Value       // receiver (invoke mode) or func value (call mode)
  1370  	Method *types.Func // abstract method (invoke mode)
  1371  	Args   []Value     // actual parameters (in static method call, includes receiver)
  1372  	pos    token.Pos   // position of CallExpr.Lparen, iff explicit in source
  1373  }
  1374  
  1375  // IsInvoke returns true if this call has "invoke" (not "call") mode.
  1376  func (c *CallCommon) IsInvoke() bool {
  1377  	return c.Method != nil
  1378  }
  1379  
  1380  func (c *CallCommon) Pos() token.Pos { return c.pos }
  1381  
  1382  // Signature returns the signature of the called function.
  1383  //
  1384  // For an "invoke"-mode call, the signature of the interface method is
  1385  // returned.
  1386  //
  1387  // In either "call" or "invoke" mode, if the callee is a method, its
  1388  // receiver is represented by sig.Recv, not sig.Params().At(0).
  1389  //
  1390  func (c *CallCommon) Signature() *types.Signature {
  1391  	if c.Method != nil {
  1392  		return c.Method.Type().(*types.Signature)
  1393  	}
  1394  	return c.Value.Type().Underlying().(*types.Signature)
  1395  }
  1396  
  1397  // StaticCallee returns the callee if this is a trivially static
  1398  // "call"-mode call to a function.
  1399  func (c *CallCommon) StaticCallee() *Function {
  1400  	switch fn := c.Value.(type) {
  1401  	case *Function:
  1402  		return fn
  1403  	case *MakeClosure:
  1404  		return fn.Fn.(*Function)
  1405  	}
  1406  	return nil
  1407  }
  1408  
  1409  // Description returns a description of the mode of this call suitable
  1410  // for a user interface, e.g., "static method call".
  1411  func (c *CallCommon) Description() string {
  1412  	switch fn := c.Value.(type) {
  1413  	case *Builtin:
  1414  		return "built-in function call"
  1415  	case *MakeClosure:
  1416  		return "static function closure call"
  1417  	case *Function:
  1418  		if fn.Signature.Recv() != nil {
  1419  			return "static method call"
  1420  		}
  1421  		return "static function call"
  1422  	}
  1423  	if c.IsInvoke() {
  1424  		return "dynamic method call" // ("invoke" mode)
  1425  	}
  1426  	return "dynamic function call"
  1427  }
  1428  
  1429  // The CallInstruction interface, implemented by *Go, *Defer and *Call,
  1430  // exposes the common parts of function-calling instructions,
  1431  // yet provides a way back to the Value defined by *Call alone.
  1432  //
  1433  type CallInstruction interface {
  1434  	Instruction
  1435  	Common() *CallCommon // returns the common parts of the call
  1436  	Value() *Call        // returns the result value of the call (*Call) or nil (*Go, *Defer)
  1437  }
  1438  
  1439  func (s *Call) Common() *CallCommon  { return &s.Call }
  1440  func (s *Defer) Common() *CallCommon { return &s.Call }
  1441  func (s *Go) Common() *CallCommon    { return &s.Call }
  1442  
  1443  func (s *Call) Value() *Call  { return s }
  1444  func (s *Defer) Value() *Call { return nil }
  1445  func (s *Go) Value() *Call    { return nil }
  1446  
  1447  func (v *Builtin) Type() types.Type        { return v.sig }
  1448  func (v *Builtin) Name() string            { return v.name }
  1449  func (*Builtin) Referrers() *[]Instruction { return nil }
  1450  func (v *Builtin) Pos() token.Pos          { return token.NoPos }
  1451  func (v *Builtin) Object() types.Object    { return types.Universe.Lookup(v.name) }
  1452  func (v *Builtin) Parent() *Function       { return nil }
  1453  
  1454  func (v *FreeVar) Type() types.Type          { return v.typ }
  1455  func (v *FreeVar) Name() string              { return v.name }
  1456  func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
  1457  func (v *FreeVar) Pos() token.Pos            { return v.pos }
  1458  func (v *FreeVar) Parent() *Function         { return v.parent }
  1459  
  1460  func (v *Global) Type() types.Type                     { return v.typ }
  1461  func (v *Global) Name() string                         { return v.name }
  1462  func (v *Global) Parent() *Function                    { return nil }
  1463  func (v *Global) Pos() token.Pos                       { return v.pos }
  1464  func (v *Global) Referrers() *[]Instruction            { return nil }
  1465  func (v *Global) Token() token.Token                   { return token.VAR }
  1466  func (v *Global) Object() types.Object                 { return v.object }
  1467  func (v *Global) String() string                       { return v.RelString(nil) }
  1468  func (v *Global) Package() *Package                    { return v.Pkg }
  1469  func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
  1470  
  1471  func (v *Function) Name() string         { return v.name }
  1472  func (v *Function) Type() types.Type     { return v.Signature }
  1473  func (v *Function) Pos() token.Pos       { return v.pos }
  1474  func (v *Function) Token() token.Token   { return token.FUNC }
  1475  func (v *Function) Object() types.Object { return v.object }
  1476  func (v *Function) String() string       { return v.RelString(nil) }
  1477  func (v *Function) Package() *Package    { return v.Pkg }
  1478  func (v *Function) Parent() *Function    { return v.parent }
  1479  func (v *Function) Referrers() *[]Instruction {
  1480  	if v.parent != nil {
  1481  		return &v.referrers
  1482  	}
  1483  	return nil
  1484  }
  1485  
  1486  func (v *Parameter) Type() types.Type          { return v.typ }
  1487  func (v *Parameter) Name() string              { return v.name }
  1488  func (v *Parameter) Object() types.Object      { return v.object }
  1489  func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
  1490  func (v *Parameter) Pos() token.Pos            { return v.pos }
  1491  func (v *Parameter) Parent() *Function         { return v.parent }
  1492  
  1493  func (v *Alloc) Type() types.Type          { return v.typ }
  1494  func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
  1495  func (v *Alloc) Pos() token.Pos            { return v.pos }
  1496  
  1497  func (v *register) Type() types.Type          { return v.typ }
  1498  func (v *register) setType(typ types.Type)    { v.typ = typ }
  1499  func (v *register) Name() string              { return fmt.Sprintf("t%d", v.num) }
  1500  func (v *register) setNum(num int)            { v.num = num }
  1501  func (v *register) Referrers() *[]Instruction { return &v.referrers }
  1502  func (v *register) Pos() token.Pos            { return v.pos }
  1503  func (v *register) setPos(pos token.Pos)      { v.pos = pos }
  1504  
  1505  func (v *anInstruction) Parent() *Function          { return v.block.parent }
  1506  func (v *anInstruction) Block() *BasicBlock         { return v.block }
  1507  func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
  1508  func (v *anInstruction) Referrers() *[]Instruction  { return nil }
  1509  
  1510  func (t *Type) Name() string                         { return t.object.Name() }
  1511  func (t *Type) Pos() token.Pos                       { return t.object.Pos() }
  1512  func (t *Type) Type() types.Type                     { return t.object.Type() }
  1513  func (t *Type) Token() token.Token                   { return token.TYPE }
  1514  func (t *Type) Object() types.Object                 { return t.object }
  1515  func (t *Type) String() string                       { return t.RelString(nil) }
  1516  func (t *Type) Package() *Package                    { return t.pkg }
  1517  func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
  1518  
  1519  func (c *NamedConst) Name() string                         { return c.object.Name() }
  1520  func (c *NamedConst) Pos() token.Pos                       { return c.object.Pos() }
  1521  func (c *NamedConst) String() string                       { return c.RelString(nil) }
  1522  func (c *NamedConst) Type() types.Type                     { return c.object.Type() }
  1523  func (c *NamedConst) Token() token.Token                   { return token.CONST }
  1524  func (c *NamedConst) Object() types.Object                 { return c.object }
  1525  func (c *NamedConst) Package() *Package                    { return c.pkg }
  1526  func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
  1527  
  1528  // Func returns the package-level function of the specified name,
  1529  // or nil if not found.
  1530  //
  1531  func (p *Package) Func(name string) (f *Function) {
  1532  	f, _ = p.Members[name].(*Function)
  1533  	return
  1534  }
  1535  
  1536  // Var returns the package-level variable of the specified name,
  1537  // or nil if not found.
  1538  //
  1539  func (p *Package) Var(name string) (g *Global) {
  1540  	g, _ = p.Members[name].(*Global)
  1541  	return
  1542  }
  1543  
  1544  // Const returns the package-level constant of the specified name,
  1545  // or nil if not found.
  1546  //
  1547  func (p *Package) Const(name string) (c *NamedConst) {
  1548  	c, _ = p.Members[name].(*NamedConst)
  1549  	return
  1550  }
  1551  
  1552  // Type returns the package-level type of the specified name,
  1553  // or nil if not found.
  1554  //
  1555  func (p *Package) Type(name string) (t *Type) {
  1556  	t, _ = p.Members[name].(*Type)
  1557  	return
  1558  }
  1559  
  1560  func (v *Call) Pos() token.Pos       { return v.Call.pos }
  1561  func (s *Defer) Pos() token.Pos      { return s.pos }
  1562  func (s *Go) Pos() token.Pos         { return s.pos }
  1563  func (s *MapUpdate) Pos() token.Pos  { return s.pos }
  1564  func (s *Panic) Pos() token.Pos      { return s.pos }
  1565  func (s *Return) Pos() token.Pos     { return s.pos }
  1566  func (s *Send) Pos() token.Pos       { return s.pos }
  1567  func (s *Store) Pos() token.Pos      { return s.pos }
  1568  func (s *BlankStore) Pos() token.Pos { return token.NoPos }
  1569  func (s *If) Pos() token.Pos         { return token.NoPos }
  1570  func (s *Jump) Pos() token.Pos       { return token.NoPos }
  1571  func (s *RunDefers) Pos() token.Pos  { return token.NoPos }
  1572  func (s *DebugRef) Pos() token.Pos   { return s.Expr.Pos() }
  1573  
  1574  // Operands.
  1575  
  1576  func (v *Alloc) Operands(rands []*Value) []*Value {
  1577  	return rands
  1578  }
  1579  
  1580  func (v *BinOp) Operands(rands []*Value) []*Value {
  1581  	return append(rands, &v.X, &v.Y)
  1582  }
  1583  
  1584  func (c *CallCommon) Operands(rands []*Value) []*Value {
  1585  	rands = append(rands, &c.Value)
  1586  	for i := range c.Args {
  1587  		rands = append(rands, &c.Args[i])
  1588  	}
  1589  	return rands
  1590  }
  1591  
  1592  func (s *Go) Operands(rands []*Value) []*Value {
  1593  	return s.Call.Operands(rands)
  1594  }
  1595  
  1596  func (s *Call) Operands(rands []*Value) []*Value {
  1597  	return s.Call.Operands(rands)
  1598  }
  1599  
  1600  func (s *Defer) Operands(rands []*Value) []*Value {
  1601  	return s.Call.Operands(rands)
  1602  }
  1603  
  1604  func (v *ChangeInterface) Operands(rands []*Value) []*Value {
  1605  	return append(rands, &v.X)
  1606  }
  1607  
  1608  func (v *ChangeType) Operands(rands []*Value) []*Value {
  1609  	return append(rands, &v.X)
  1610  }
  1611  
  1612  func (v *Convert) Operands(rands []*Value) []*Value {
  1613  	return append(rands, &v.X)
  1614  }
  1615  
  1616  func (s *DebugRef) Operands(rands []*Value) []*Value {
  1617  	return append(rands, &s.X)
  1618  }
  1619  
  1620  func (v *Extract) Operands(rands []*Value) []*Value {
  1621  	return append(rands, &v.Tuple)
  1622  }
  1623  
  1624  func (v *Field) Operands(rands []*Value) []*Value {
  1625  	return append(rands, &v.X)
  1626  }
  1627  
  1628  func (v *FieldAddr) Operands(rands []*Value) []*Value {
  1629  	return append(rands, &v.X)
  1630  }
  1631  
  1632  func (s *If) Operands(rands []*Value) []*Value {
  1633  	return append(rands, &s.Cond)
  1634  }
  1635  
  1636  func (v *Index) Operands(rands []*Value) []*Value {
  1637  	return append(rands, &v.X, &v.Index)
  1638  }
  1639  
  1640  func (v *IndexAddr) Operands(rands []*Value) []*Value {
  1641  	return append(rands, &v.X, &v.Index)
  1642  }
  1643  
  1644  func (*Jump) Operands(rands []*Value) []*Value {
  1645  	return rands
  1646  }
  1647  
  1648  func (v *Lookup) Operands(rands []*Value) []*Value {
  1649  	return append(rands, &v.X, &v.Index)
  1650  }
  1651  
  1652  func (v *MakeChan) Operands(rands []*Value) []*Value {
  1653  	return append(rands, &v.Size)
  1654  }
  1655  
  1656  func (v *MakeClosure) Operands(rands []*Value) []*Value {
  1657  	rands = append(rands, &v.Fn)
  1658  	for i := range v.Bindings {
  1659  		rands = append(rands, &v.Bindings[i])
  1660  	}
  1661  	return rands
  1662  }
  1663  
  1664  func (v *MakeInterface) Operands(rands []*Value) []*Value {
  1665  	return append(rands, &v.X)
  1666  }
  1667  
  1668  func (v *MakeMap) Operands(rands []*Value) []*Value {
  1669  	return append(rands, &v.Reserve)
  1670  }
  1671  
  1672  func (v *MakeSlice) Operands(rands []*Value) []*Value {
  1673  	return append(rands, &v.Len, &v.Cap)
  1674  }
  1675  
  1676  func (v *MapUpdate) Operands(rands []*Value) []*Value {
  1677  	return append(rands, &v.Map, &v.Key, &v.Value)
  1678  }
  1679  
  1680  func (v *Next) Operands(rands []*Value) []*Value {
  1681  	return append(rands, &v.Iter)
  1682  }
  1683  
  1684  func (s *Panic) Operands(rands []*Value) []*Value {
  1685  	return append(rands, &s.X)
  1686  }
  1687  
  1688  func (v *Sigma) Operands(rands []*Value) []*Value {
  1689  	return append(rands, &v.X)
  1690  }
  1691  
  1692  func (v *Phi) Operands(rands []*Value) []*Value {
  1693  	for i := range v.Edges {
  1694  		rands = append(rands, &v.Edges[i])
  1695  	}
  1696  	return rands
  1697  }
  1698  
  1699  func (v *Range) Operands(rands []*Value) []*Value {
  1700  	return append(rands, &v.X)
  1701  }
  1702  
  1703  func (s *Return) Operands(rands []*Value) []*Value {
  1704  	for i := range s.Results {
  1705  		rands = append(rands, &s.Results[i])
  1706  	}
  1707  	return rands
  1708  }
  1709  
  1710  func (*RunDefers) Operands(rands []*Value) []*Value {
  1711  	return rands
  1712  }
  1713  
  1714  func (v *Select) Operands(rands []*Value) []*Value {
  1715  	for i := range v.States {
  1716  		rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
  1717  	}
  1718  	return rands
  1719  }
  1720  
  1721  func (s *Send) Operands(rands []*Value) []*Value {
  1722  	return append(rands, &s.Chan, &s.X)
  1723  }
  1724  
  1725  func (v *Slice) Operands(rands []*Value) []*Value {
  1726  	return append(rands, &v.X, &v.Low, &v.High, &v.Max)
  1727  }
  1728  
  1729  func (s *Store) Operands(rands []*Value) []*Value {
  1730  	return append(rands, &s.Addr, &s.Val)
  1731  }
  1732  
  1733  func (s *BlankStore) Operands(rands []*Value) []*Value {
  1734  	return append(rands, &s.Val)
  1735  }
  1736  
  1737  func (v *TypeAssert) Operands(rands []*Value) []*Value {
  1738  	return append(rands, &v.X)
  1739  }
  1740  
  1741  func (v *UnOp) Operands(rands []*Value) []*Value {
  1742  	return append(rands, &v.X)
  1743  }
  1744  
  1745  // Non-Instruction Values:
  1746  func (v *Builtin) Operands(rands []*Value) []*Value   { return rands }
  1747  func (v *FreeVar) Operands(rands []*Value) []*Value   { return rands }
  1748  func (v *Const) Operands(rands []*Value) []*Value     { return rands }
  1749  func (v *Function) Operands(rands []*Value) []*Value  { return rands }
  1750  func (v *Global) Operands(rands []*Value) []*Value    { return rands }
  1751  func (v *Parameter) Operands(rands []*Value) []*Value { return rands }