github.1485827954.workers.dev/ethereum/go-ethereum@v1.14.3/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "fmt" 24 "math/big" 25 26 "github.com/consensys/gnark-crypto/ecc" 27 bls12381 "github.com/consensys/gnark-crypto/ecc/bls12-381" 28 "github.com/consensys/gnark-crypto/ecc/bls12-381/fp" 29 "github.com/consensys/gnark-crypto/ecc/bls12-381/fr" 30 "github.com/ethereum/go-ethereum/common" 31 "github.com/ethereum/go-ethereum/common/math" 32 "github.com/ethereum/go-ethereum/core/tracing" 33 "github.com/ethereum/go-ethereum/crypto" 34 "github.com/ethereum/go-ethereum/crypto/blake2b" 35 "github.com/ethereum/go-ethereum/crypto/bn256" 36 "github.com/ethereum/go-ethereum/crypto/kzg4844" 37 "github.com/ethereum/go-ethereum/params" 38 "golang.org/x/crypto/ripemd160" 39 ) 40 41 // PrecompiledContract is the basic interface for native Go contracts. The implementation 42 // requires a deterministic gas count based on the input size of the Run method of the 43 // contract. 44 type PrecompiledContract interface { 45 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 46 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 47 } 48 49 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 50 // contracts used in the Frontier and Homestead releases. 51 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 52 common.BytesToAddress([]byte{0x1}): &ecrecover{}, 53 common.BytesToAddress([]byte{0x2}): &sha256hash{}, 54 common.BytesToAddress([]byte{0x3}): &ripemd160hash{}, 55 common.BytesToAddress([]byte{0x4}): &dataCopy{}, 56 } 57 58 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 59 // contracts used in the Byzantium release. 60 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 61 common.BytesToAddress([]byte{0x1}): &ecrecover{}, 62 common.BytesToAddress([]byte{0x2}): &sha256hash{}, 63 common.BytesToAddress([]byte{0x3}): &ripemd160hash{}, 64 common.BytesToAddress([]byte{0x4}): &dataCopy{}, 65 common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: false}, 66 common.BytesToAddress([]byte{0x6}): &bn256AddByzantium{}, 67 common.BytesToAddress([]byte{0x7}): &bn256ScalarMulByzantium{}, 68 common.BytesToAddress([]byte{0x8}): &bn256PairingByzantium{}, 69 } 70 71 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 72 // contracts used in the Istanbul release. 73 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 74 common.BytesToAddress([]byte{0x1}): &ecrecover{}, 75 common.BytesToAddress([]byte{0x2}): &sha256hash{}, 76 common.BytesToAddress([]byte{0x3}): &ripemd160hash{}, 77 common.BytesToAddress([]byte{0x4}): &dataCopy{}, 78 common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: false}, 79 common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{}, 80 common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{}, 81 common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{}, 82 common.BytesToAddress([]byte{0x9}): &blake2F{}, 83 } 84 85 // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum 86 // contracts used in the Berlin release. 87 var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{ 88 common.BytesToAddress([]byte{0x1}): &ecrecover{}, 89 common.BytesToAddress([]byte{0x2}): &sha256hash{}, 90 common.BytesToAddress([]byte{0x3}): &ripemd160hash{}, 91 common.BytesToAddress([]byte{0x4}): &dataCopy{}, 92 common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: true}, 93 common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{}, 94 common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{}, 95 common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{}, 96 common.BytesToAddress([]byte{0x9}): &blake2F{}, 97 } 98 99 // PrecompiledContractsCancun contains the default set of pre-compiled Ethereum 100 // contracts used in the Cancun release. 101 var PrecompiledContractsCancun = map[common.Address]PrecompiledContract{ 102 common.BytesToAddress([]byte{0x1}): &ecrecover{}, 103 common.BytesToAddress([]byte{0x2}): &sha256hash{}, 104 common.BytesToAddress([]byte{0x3}): &ripemd160hash{}, 105 common.BytesToAddress([]byte{0x4}): &dataCopy{}, 106 common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: true}, 107 common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{}, 108 common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{}, 109 common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{}, 110 common.BytesToAddress([]byte{0x9}): &blake2F{}, 111 common.BytesToAddress([]byte{0xa}): &kzgPointEvaluation{}, 112 } 113 114 // PrecompiledContractsPrague contains the set of pre-compiled Ethereum 115 // contracts used in the Prague release. 116 var PrecompiledContractsPrague = map[common.Address]PrecompiledContract{ 117 common.BytesToAddress([]byte{0x01}): &ecrecover{}, 118 common.BytesToAddress([]byte{0x02}): &sha256hash{}, 119 common.BytesToAddress([]byte{0x03}): &ripemd160hash{}, 120 common.BytesToAddress([]byte{0x04}): &dataCopy{}, 121 common.BytesToAddress([]byte{0x05}): &bigModExp{eip2565: true}, 122 common.BytesToAddress([]byte{0x06}): &bn256AddIstanbul{}, 123 common.BytesToAddress([]byte{0x07}): &bn256ScalarMulIstanbul{}, 124 common.BytesToAddress([]byte{0x08}): &bn256PairingIstanbul{}, 125 common.BytesToAddress([]byte{0x09}): &blake2F{}, 126 common.BytesToAddress([]byte{0x0a}): &kzgPointEvaluation{}, 127 common.BytesToAddress([]byte{0x0b}): &bls12381G1Add{}, 128 common.BytesToAddress([]byte{0x0c}): &bls12381G1Mul{}, 129 common.BytesToAddress([]byte{0x0d}): &bls12381G1MultiExp{}, 130 common.BytesToAddress([]byte{0x0e}): &bls12381G2Add{}, 131 common.BytesToAddress([]byte{0x0f}): &bls12381G2Mul{}, 132 common.BytesToAddress([]byte{0x10}): &bls12381G2MultiExp{}, 133 common.BytesToAddress([]byte{0x11}): &bls12381Pairing{}, 134 common.BytesToAddress([]byte{0x12}): &bls12381MapG1{}, 135 common.BytesToAddress([]byte{0x13}): &bls12381MapG2{}, 136 } 137 138 var PrecompiledContractsBLS = PrecompiledContractsPrague 139 140 var ( 141 PrecompiledAddressesPrague []common.Address 142 PrecompiledAddressesCancun []common.Address 143 PrecompiledAddressesBerlin []common.Address 144 PrecompiledAddressesIstanbul []common.Address 145 PrecompiledAddressesByzantium []common.Address 146 PrecompiledAddressesHomestead []common.Address 147 ) 148 149 func init() { 150 for k := range PrecompiledContractsHomestead { 151 PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k) 152 } 153 for k := range PrecompiledContractsByzantium { 154 PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k) 155 } 156 for k := range PrecompiledContractsIstanbul { 157 PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k) 158 } 159 for k := range PrecompiledContractsBerlin { 160 PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k) 161 } 162 for k := range PrecompiledContractsCancun { 163 PrecompiledAddressesCancun = append(PrecompiledAddressesCancun, k) 164 } 165 for k := range PrecompiledContractsPrague { 166 PrecompiledAddressesPrague = append(PrecompiledAddressesPrague, k) 167 } 168 } 169 170 // ActivePrecompiles returns the precompiles enabled with the current configuration. 171 func ActivePrecompiles(rules params.Rules) []common.Address { 172 switch { 173 case rules.IsPrague: 174 return PrecompiledAddressesPrague 175 case rules.IsCancun: 176 return PrecompiledAddressesCancun 177 case rules.IsBerlin: 178 return PrecompiledAddressesBerlin 179 case rules.IsIstanbul: 180 return PrecompiledAddressesIstanbul 181 case rules.IsByzantium: 182 return PrecompiledAddressesByzantium 183 default: 184 return PrecompiledAddressesHomestead 185 } 186 } 187 188 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 189 // It returns 190 // - the returned bytes, 191 // - the _remaining_ gas, 192 // - any error that occurred 193 func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64, logger *tracing.Hooks) (ret []byte, remainingGas uint64, err error) { 194 gasCost := p.RequiredGas(input) 195 if suppliedGas < gasCost { 196 return nil, 0, ErrOutOfGas 197 } 198 if logger != nil && logger.OnGasChange != nil { 199 logger.OnGasChange(suppliedGas, suppliedGas-gasCost, tracing.GasChangeCallPrecompiledContract) 200 } 201 suppliedGas -= gasCost 202 output, err := p.Run(input) 203 return output, suppliedGas, err 204 } 205 206 // ecrecover implemented as a native contract. 207 type ecrecover struct{} 208 209 func (c *ecrecover) RequiredGas(input []byte) uint64 { 210 return params.EcrecoverGas 211 } 212 213 func (c *ecrecover) Run(input []byte) ([]byte, error) { 214 const ecRecoverInputLength = 128 215 216 input = common.RightPadBytes(input, ecRecoverInputLength) 217 // "input" is (hash, v, r, s), each 32 bytes 218 // but for ecrecover we want (r, s, v) 219 220 r := new(big.Int).SetBytes(input[64:96]) 221 s := new(big.Int).SetBytes(input[96:128]) 222 v := input[63] - 27 223 224 // tighter sig s values input homestead only apply to tx sigs 225 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 226 return nil, nil 227 } 228 // We must make sure not to modify the 'input', so placing the 'v' along with 229 // the signature needs to be done on a new allocation 230 sig := make([]byte, 65) 231 copy(sig, input[64:128]) 232 sig[64] = v 233 // v needs to be at the end for libsecp256k1 234 pubKey, err := crypto.Ecrecover(input[:32], sig) 235 // make sure the public key is a valid one 236 if err != nil { 237 return nil, nil 238 } 239 240 // the first byte of pubkey is bitcoin heritage 241 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 242 } 243 244 // SHA256 implemented as a native contract. 245 type sha256hash struct{} 246 247 // RequiredGas returns the gas required to execute the pre-compiled contract. 248 // 249 // This method does not require any overflow checking as the input size gas costs 250 // required for anything significant is so high it's impossible to pay for. 251 func (c *sha256hash) RequiredGas(input []byte) uint64 { 252 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 253 } 254 func (c *sha256hash) Run(input []byte) ([]byte, error) { 255 h := sha256.Sum256(input) 256 return h[:], nil 257 } 258 259 // RIPEMD160 implemented as a native contract. 260 type ripemd160hash struct{} 261 262 // RequiredGas returns the gas required to execute the pre-compiled contract. 263 // 264 // This method does not require any overflow checking as the input size gas costs 265 // required for anything significant is so high it's impossible to pay for. 266 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 267 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 268 } 269 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 270 ripemd := ripemd160.New() 271 ripemd.Write(input) 272 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 273 } 274 275 // data copy implemented as a native contract. 276 type dataCopy struct{} 277 278 // RequiredGas returns the gas required to execute the pre-compiled contract. 279 // 280 // This method does not require any overflow checking as the input size gas costs 281 // required for anything significant is so high it's impossible to pay for. 282 func (c *dataCopy) RequiredGas(input []byte) uint64 { 283 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 284 } 285 func (c *dataCopy) Run(in []byte) ([]byte, error) { 286 return common.CopyBytes(in), nil 287 } 288 289 // bigModExp implements a native big integer exponential modular operation. 290 type bigModExp struct { 291 eip2565 bool 292 } 293 294 var ( 295 big1 = big.NewInt(1) 296 big3 = big.NewInt(3) 297 big4 = big.NewInt(4) 298 big7 = big.NewInt(7) 299 big8 = big.NewInt(8) 300 big16 = big.NewInt(16) 301 big20 = big.NewInt(20) 302 big32 = big.NewInt(32) 303 big64 = big.NewInt(64) 304 big96 = big.NewInt(96) 305 big480 = big.NewInt(480) 306 big1024 = big.NewInt(1024) 307 big3072 = big.NewInt(3072) 308 big199680 = big.NewInt(199680) 309 ) 310 311 // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198 312 // 313 // def mult_complexity(x): 314 // if x <= 64: return x ** 2 315 // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072 316 // else: return x ** 2 // 16 + 480 * x - 199680 317 // 318 // where is x is max(length_of_MODULUS, length_of_BASE) 319 func modexpMultComplexity(x *big.Int) *big.Int { 320 switch { 321 case x.Cmp(big64) <= 0: 322 x.Mul(x, x) // x ** 2 323 case x.Cmp(big1024) <= 0: 324 // (x ** 2 // 4 ) + ( 96 * x - 3072) 325 x = new(big.Int).Add( 326 new(big.Int).Div(new(big.Int).Mul(x, x), big4), 327 new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072), 328 ) 329 default: 330 // (x ** 2 // 16) + (480 * x - 199680) 331 x = new(big.Int).Add( 332 new(big.Int).Div(new(big.Int).Mul(x, x), big16), 333 new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680), 334 ) 335 } 336 return x 337 } 338 339 // RequiredGas returns the gas required to execute the pre-compiled contract. 340 func (c *bigModExp) RequiredGas(input []byte) uint64 { 341 var ( 342 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 343 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 344 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 345 ) 346 if len(input) > 96 { 347 input = input[96:] 348 } else { 349 input = input[:0] 350 } 351 // Retrieve the head 32 bytes of exp for the adjusted exponent length 352 var expHead *big.Int 353 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 354 expHead = new(big.Int) 355 } else { 356 if expLen.Cmp(big32) > 0 { 357 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 358 } else { 359 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 360 } 361 } 362 // Calculate the adjusted exponent length 363 var msb int 364 if bitlen := expHead.BitLen(); bitlen > 0 { 365 msb = bitlen - 1 366 } 367 adjExpLen := new(big.Int) 368 if expLen.Cmp(big32) > 0 { 369 adjExpLen.Sub(expLen, big32) 370 adjExpLen.Mul(big8, adjExpLen) 371 } 372 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 373 // Calculate the gas cost of the operation 374 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 375 if c.eip2565 { 376 // EIP-2565 has three changes 377 // 1. Different multComplexity (inlined here) 378 // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565): 379 // 380 // def mult_complexity(x): 381 // ceiling(x/8)^2 382 // 383 //where is x is max(length_of_MODULUS, length_of_BASE) 384 gas = gas.Add(gas, big7) 385 gas = gas.Div(gas, big8) 386 gas.Mul(gas, gas) 387 388 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 389 // 2. Different divisor (`GQUADDIVISOR`) (3) 390 gas.Div(gas, big3) 391 if gas.BitLen() > 64 { 392 return math.MaxUint64 393 } 394 // 3. Minimum price of 200 gas 395 if gas.Uint64() < 200 { 396 return 200 397 } 398 return gas.Uint64() 399 } 400 gas = modexpMultComplexity(gas) 401 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 402 gas.Div(gas, big20) 403 404 if gas.BitLen() > 64 { 405 return math.MaxUint64 406 } 407 return gas.Uint64() 408 } 409 410 func (c *bigModExp) Run(input []byte) ([]byte, error) { 411 var ( 412 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 413 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 414 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 415 ) 416 if len(input) > 96 { 417 input = input[96:] 418 } else { 419 input = input[:0] 420 } 421 // Handle a special case when both the base and mod length is zero 422 if baseLen == 0 && modLen == 0 { 423 return []byte{}, nil 424 } 425 // Retrieve the operands and execute the exponentiation 426 var ( 427 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 428 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 429 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 430 v []byte 431 ) 432 switch { 433 case mod.BitLen() == 0: 434 // Modulo 0 is undefined, return zero 435 return common.LeftPadBytes([]byte{}, int(modLen)), nil 436 case base.BitLen() == 1: // a bit length of 1 means it's 1 (or -1). 437 //If base == 1, then we can just return base % mod (if mod >= 1, which it is) 438 v = base.Mod(base, mod).Bytes() 439 default: 440 v = base.Exp(base, exp, mod).Bytes() 441 } 442 return common.LeftPadBytes(v, int(modLen)), nil 443 } 444 445 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 446 // returning it, or an error if the point is invalid. 447 func newCurvePoint(blob []byte) (*bn256.G1, error) { 448 p := new(bn256.G1) 449 if _, err := p.Unmarshal(blob); err != nil { 450 return nil, err 451 } 452 return p, nil 453 } 454 455 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 456 // returning it, or an error if the point is invalid. 457 func newTwistPoint(blob []byte) (*bn256.G2, error) { 458 p := new(bn256.G2) 459 if _, err := p.Unmarshal(blob); err != nil { 460 return nil, err 461 } 462 return p, nil 463 } 464 465 // runBn256Add implements the Bn256Add precompile, referenced by both 466 // Byzantium and Istanbul operations. 467 func runBn256Add(input []byte) ([]byte, error) { 468 x, err := newCurvePoint(getData(input, 0, 64)) 469 if err != nil { 470 return nil, err 471 } 472 y, err := newCurvePoint(getData(input, 64, 64)) 473 if err != nil { 474 return nil, err 475 } 476 res := new(bn256.G1) 477 res.Add(x, y) 478 return res.Marshal(), nil 479 } 480 481 // bn256AddIstanbul implements a native elliptic curve point addition conforming to 482 // Istanbul consensus rules. 483 type bn256AddIstanbul struct{} 484 485 // RequiredGas returns the gas required to execute the pre-compiled contract. 486 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 487 return params.Bn256AddGasIstanbul 488 } 489 490 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 491 return runBn256Add(input) 492 } 493 494 // bn256AddByzantium implements a native elliptic curve point addition 495 // conforming to Byzantium consensus rules. 496 type bn256AddByzantium struct{} 497 498 // RequiredGas returns the gas required to execute the pre-compiled contract. 499 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 500 return params.Bn256AddGasByzantium 501 } 502 503 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 504 return runBn256Add(input) 505 } 506 507 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 508 // both Byzantium and Istanbul operations. 509 func runBn256ScalarMul(input []byte) ([]byte, error) { 510 p, err := newCurvePoint(getData(input, 0, 64)) 511 if err != nil { 512 return nil, err 513 } 514 res := new(bn256.G1) 515 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 516 return res.Marshal(), nil 517 } 518 519 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 520 // multiplication conforming to Istanbul consensus rules. 521 type bn256ScalarMulIstanbul struct{} 522 523 // RequiredGas returns the gas required to execute the pre-compiled contract. 524 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 525 return params.Bn256ScalarMulGasIstanbul 526 } 527 528 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 529 return runBn256ScalarMul(input) 530 } 531 532 // bn256ScalarMulByzantium implements a native elliptic curve scalar 533 // multiplication conforming to Byzantium consensus rules. 534 type bn256ScalarMulByzantium struct{} 535 536 // RequiredGas returns the gas required to execute the pre-compiled contract. 537 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 538 return params.Bn256ScalarMulGasByzantium 539 } 540 541 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 542 return runBn256ScalarMul(input) 543 } 544 545 var ( 546 // true32Byte is returned if the bn256 pairing check succeeds. 547 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 548 549 // false32Byte is returned if the bn256 pairing check fails. 550 false32Byte = make([]byte, 32) 551 552 // errBadPairingInput is returned if the bn256 pairing input is invalid. 553 errBadPairingInput = errors.New("bad elliptic curve pairing size") 554 ) 555 556 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 557 // Byzantium and Istanbul operations. 558 func runBn256Pairing(input []byte) ([]byte, error) { 559 // Handle some corner cases cheaply 560 if len(input)%192 > 0 { 561 return nil, errBadPairingInput 562 } 563 // Convert the input into a set of coordinates 564 var ( 565 cs []*bn256.G1 566 ts []*bn256.G2 567 ) 568 for i := 0; i < len(input); i += 192 { 569 c, err := newCurvePoint(input[i : i+64]) 570 if err != nil { 571 return nil, err 572 } 573 t, err := newTwistPoint(input[i+64 : i+192]) 574 if err != nil { 575 return nil, err 576 } 577 cs = append(cs, c) 578 ts = append(ts, t) 579 } 580 // Execute the pairing checks and return the results 581 if bn256.PairingCheck(cs, ts) { 582 return true32Byte, nil 583 } 584 return false32Byte, nil 585 } 586 587 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 588 // conforming to Istanbul consensus rules. 589 type bn256PairingIstanbul struct{} 590 591 // RequiredGas returns the gas required to execute the pre-compiled contract. 592 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 593 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 594 } 595 596 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 597 return runBn256Pairing(input) 598 } 599 600 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 601 // conforming to Byzantium consensus rules. 602 type bn256PairingByzantium struct{} 603 604 // RequiredGas returns the gas required to execute the pre-compiled contract. 605 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 606 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 607 } 608 609 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 610 return runBn256Pairing(input) 611 } 612 613 type blake2F struct{} 614 615 func (c *blake2F) RequiredGas(input []byte) uint64 { 616 // If the input is malformed, we can't calculate the gas, return 0 and let the 617 // actual call choke and fault. 618 if len(input) != blake2FInputLength { 619 return 0 620 } 621 return uint64(binary.BigEndian.Uint32(input[0:4])) 622 } 623 624 const ( 625 blake2FInputLength = 213 626 blake2FFinalBlockBytes = byte(1) 627 blake2FNonFinalBlockBytes = byte(0) 628 ) 629 630 var ( 631 errBlake2FInvalidInputLength = errors.New("invalid input length") 632 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 633 ) 634 635 func (c *blake2F) Run(input []byte) ([]byte, error) { 636 // Make sure the input is valid (correct length and final flag) 637 if len(input) != blake2FInputLength { 638 return nil, errBlake2FInvalidInputLength 639 } 640 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 641 return nil, errBlake2FInvalidFinalFlag 642 } 643 // Parse the input into the Blake2b call parameters 644 var ( 645 rounds = binary.BigEndian.Uint32(input[0:4]) 646 final = input[212] == blake2FFinalBlockBytes 647 648 h [8]uint64 649 m [16]uint64 650 t [2]uint64 651 ) 652 for i := 0; i < 8; i++ { 653 offset := 4 + i*8 654 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 655 } 656 for i := 0; i < 16; i++ { 657 offset := 68 + i*8 658 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 659 } 660 t[0] = binary.LittleEndian.Uint64(input[196:204]) 661 t[1] = binary.LittleEndian.Uint64(input[204:212]) 662 663 // Execute the compression function, extract and return the result 664 blake2b.F(&h, m, t, final, rounds) 665 666 output := make([]byte, 64) 667 for i := 0; i < 8; i++ { 668 offset := i * 8 669 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 670 } 671 return output, nil 672 } 673 674 var ( 675 errBLS12381InvalidInputLength = errors.New("invalid input length") 676 errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes") 677 errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup") 678 errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup") 679 ) 680 681 // bls12381G1Add implements EIP-2537 G1Add precompile. 682 type bls12381G1Add struct{} 683 684 // RequiredGas returns the gas required to execute the pre-compiled contract. 685 func (c *bls12381G1Add) RequiredGas(input []byte) uint64 { 686 return params.Bls12381G1AddGas 687 } 688 689 func (c *bls12381G1Add) Run(input []byte) ([]byte, error) { 690 // Implements EIP-2537 G1Add precompile. 691 // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each). 692 // > Output is an encoding of addition operation result - single G1 point (`128` bytes). 693 if len(input) != 256 { 694 return nil, errBLS12381InvalidInputLength 695 } 696 var err error 697 var p0, p1 *bls12381.G1Affine 698 699 // Decode G1 point p_0 700 if p0, err = decodePointG1(input[:128]); err != nil { 701 return nil, err 702 } 703 // Decode G1 point p_1 704 if p1, err = decodePointG1(input[128:]); err != nil { 705 return nil, err 706 } 707 708 // No need to check the subgroup here, as specified by EIP-2537 709 710 // Compute r = p_0 + p_1 711 p0.Add(p0, p1) 712 713 // Encode the G1 point result into 128 bytes 714 return encodePointG1(p0), nil 715 } 716 717 // bls12381G1Mul implements EIP-2537 G1Mul precompile. 718 type bls12381G1Mul struct{} 719 720 // RequiredGas returns the gas required to execute the pre-compiled contract. 721 func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 { 722 return params.Bls12381G1MulGas 723 } 724 725 func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) { 726 // Implements EIP-2537 G1Mul precompile. 727 // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 728 // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes). 729 if len(input) != 160 { 730 return nil, errBLS12381InvalidInputLength 731 } 732 var err error 733 var p0 *bls12381.G1Affine 734 735 // Decode G1 point 736 if p0, err = decodePointG1(input[:128]); err != nil { 737 return nil, err 738 } 739 // 'point is on curve' check already done, 740 // Here we need to apply subgroup checks. 741 if !p0.IsInSubGroup() { 742 return nil, errBLS12381G1PointSubgroup 743 } 744 // Decode scalar value 745 e := new(big.Int).SetBytes(input[128:]) 746 747 // Compute r = e * p_0 748 r := new(bls12381.G1Affine) 749 r.ScalarMultiplication(p0, e) 750 751 // Encode the G1 point into 128 bytes 752 return encodePointG1(r), nil 753 } 754 755 // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile. 756 type bls12381G1MultiExp struct{} 757 758 // RequiredGas returns the gas required to execute the pre-compiled contract. 759 func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 { 760 // Calculate G1 point, scalar value pair length 761 k := len(input) / 160 762 if k == 0 { 763 // Return 0 gas for small input length 764 return 0 765 } 766 // Lookup discount value for G1 point, scalar value pair length 767 var discount uint64 768 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 769 discount = params.Bls12381MultiExpDiscountTable[k-1] 770 } else { 771 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 772 } 773 // Calculate gas and return the result 774 return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000 775 } 776 777 func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) { 778 // Implements EIP-2537 G1MultiExp precompile. 779 // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 780 // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes). 781 k := len(input) / 160 782 if len(input) == 0 || len(input)%160 != 0 { 783 return nil, errBLS12381InvalidInputLength 784 } 785 points := make([]bls12381.G1Affine, k) 786 scalars := make([]fr.Element, k) 787 788 // Decode point scalar pairs 789 for i := 0; i < k; i++ { 790 off := 160 * i 791 t0, t1, t2 := off, off+128, off+160 792 // Decode G1 point 793 p, err := decodePointG1(input[t0:t1]) 794 if err != nil { 795 return nil, err 796 } 797 // 'point is on curve' check already done, 798 // Here we need to apply subgroup checks. 799 if !p.IsInSubGroup() { 800 return nil, errBLS12381G1PointSubgroup 801 } 802 points[i] = *p 803 // Decode scalar value 804 scalars[i] = *new(fr.Element).SetBytes(input[t1:t2]) 805 } 806 807 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 808 r := new(bls12381.G1Affine) 809 r.MultiExp(points, scalars, ecc.MultiExpConfig{}) 810 811 // Encode the G1 point to 128 bytes 812 return encodePointG1(r), nil 813 } 814 815 // bls12381G2Add implements EIP-2537 G2Add precompile. 816 type bls12381G2Add struct{} 817 818 // RequiredGas returns the gas required to execute the pre-compiled contract. 819 func (c *bls12381G2Add) RequiredGas(input []byte) uint64 { 820 return params.Bls12381G2AddGas 821 } 822 823 func (c *bls12381G2Add) Run(input []byte) ([]byte, error) { 824 // Implements EIP-2537 G2Add precompile. 825 // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each). 826 // > Output is an encoding of addition operation result - single G2 point (`256` bytes). 827 if len(input) != 512 { 828 return nil, errBLS12381InvalidInputLength 829 } 830 var err error 831 var p0, p1 *bls12381.G2Affine 832 833 // Decode G2 point p_0 834 if p0, err = decodePointG2(input[:256]); err != nil { 835 return nil, err 836 } 837 // Decode G2 point p_1 838 if p1, err = decodePointG2(input[256:]); err != nil { 839 return nil, err 840 } 841 842 // No need to check the subgroup here, as specified by EIP-2537 843 844 // Compute r = p_0 + p_1 845 r := new(bls12381.G2Affine) 846 r.Add(p0, p1) 847 848 // Encode the G2 point into 256 bytes 849 return encodePointG2(r), nil 850 } 851 852 // bls12381G2Mul implements EIP-2537 G2Mul precompile. 853 type bls12381G2Mul struct{} 854 855 // RequiredGas returns the gas required to execute the pre-compiled contract. 856 func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 { 857 return params.Bls12381G2MulGas 858 } 859 860 func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) { 861 // Implements EIP-2537 G2MUL precompile logic. 862 // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 863 // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes). 864 if len(input) != 288 { 865 return nil, errBLS12381InvalidInputLength 866 } 867 var err error 868 var p0 *bls12381.G2Affine 869 870 // Decode G2 point 871 if p0, err = decodePointG2(input[:256]); err != nil { 872 return nil, err 873 } 874 // 'point is on curve' check already done, 875 // Here we need to apply subgroup checks. 876 if !p0.IsInSubGroup() { 877 return nil, errBLS12381G2PointSubgroup 878 } 879 // Decode scalar value 880 e := new(big.Int).SetBytes(input[256:]) 881 882 // Compute r = e * p_0 883 r := new(bls12381.G2Affine) 884 r.ScalarMultiplication(p0, e) 885 886 // Encode the G2 point into 256 bytes 887 return encodePointG2(r), nil 888 } 889 890 // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile. 891 type bls12381G2MultiExp struct{} 892 893 // RequiredGas returns the gas required to execute the pre-compiled contract. 894 func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 { 895 // Calculate G2 point, scalar value pair length 896 k := len(input) / 288 897 if k == 0 { 898 // Return 0 gas for small input length 899 return 0 900 } 901 // Lookup discount value for G2 point, scalar value pair length 902 var discount uint64 903 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 904 discount = params.Bls12381MultiExpDiscountTable[k-1] 905 } else { 906 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 907 } 908 // Calculate gas and return the result 909 return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000 910 } 911 912 func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) { 913 // Implements EIP-2537 G2MultiExp precompile logic 914 // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 915 // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes). 916 k := len(input) / 288 917 if len(input) == 0 || len(input)%288 != 0 { 918 return nil, errBLS12381InvalidInputLength 919 } 920 points := make([]bls12381.G2Affine, k) 921 scalars := make([]fr.Element, k) 922 923 // Decode point scalar pairs 924 for i := 0; i < k; i++ { 925 off := 288 * i 926 t0, t1, t2 := off, off+256, off+288 927 // Decode G2 point 928 p, err := decodePointG2(input[t0:t1]) 929 if err != nil { 930 return nil, err 931 } 932 // 'point is on curve' check already done, 933 // Here we need to apply subgroup checks. 934 if !p.IsInSubGroup() { 935 return nil, errBLS12381G2PointSubgroup 936 } 937 points[i] = *p 938 // Decode scalar value 939 scalars[i] = *new(fr.Element).SetBytes(input[t1:t2]) 940 } 941 942 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 943 r := new(bls12381.G2Affine) 944 r.MultiExp(points, scalars, ecc.MultiExpConfig{}) 945 946 // Encode the G2 point to 256 bytes. 947 return encodePointG2(r), nil 948 } 949 950 // bls12381Pairing implements EIP-2537 Pairing precompile. 951 type bls12381Pairing struct{} 952 953 // RequiredGas returns the gas required to execute the pre-compiled contract. 954 func (c *bls12381Pairing) RequiredGas(input []byte) uint64 { 955 return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas 956 } 957 958 func (c *bls12381Pairing) Run(input []byte) ([]byte, error) { 959 // Implements EIP-2537 Pairing precompile logic. 960 // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure: 961 // > - `128` bytes of G1 point encoding 962 // > - `256` bytes of G2 point encoding 963 // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise 964 // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively). 965 k := len(input) / 384 966 if len(input) == 0 || len(input)%384 != 0 { 967 return nil, errBLS12381InvalidInputLength 968 } 969 970 var ( 971 p []bls12381.G1Affine 972 q []bls12381.G2Affine 973 ) 974 975 // Decode pairs 976 for i := 0; i < k; i++ { 977 off := 384 * i 978 t0, t1, t2 := off, off+128, off+384 979 980 // Decode G1 point 981 p1, err := decodePointG1(input[t0:t1]) 982 if err != nil { 983 return nil, err 984 } 985 // Decode G2 point 986 p2, err := decodePointG2(input[t1:t2]) 987 if err != nil { 988 return nil, err 989 } 990 991 // 'point is on curve' check already done, 992 // Here we need to apply subgroup checks. 993 if !p1.IsInSubGroup() { 994 return nil, errBLS12381G1PointSubgroup 995 } 996 if !p2.IsInSubGroup() { 997 return nil, errBLS12381G2PointSubgroup 998 } 999 p = append(p, *p1) 1000 q = append(q, *p2) 1001 } 1002 // Prepare 32 byte output 1003 out := make([]byte, 32) 1004 1005 // Compute pairing and set the result 1006 ok, err := bls12381.PairingCheck(p, q) 1007 if err == nil && ok { 1008 out[31] = 1 1009 } 1010 return out, nil 1011 } 1012 1013 func decodePointG1(in []byte) (*bls12381.G1Affine, error) { 1014 if len(in) != 128 { 1015 return nil, errors.New("invalid g1 point length") 1016 } 1017 // decode x 1018 x, err := decodeBLS12381FieldElement(in[:64]) 1019 if err != nil { 1020 return nil, err 1021 } 1022 // decode y 1023 y, err := decodeBLS12381FieldElement(in[64:]) 1024 if err != nil { 1025 return nil, err 1026 } 1027 elem := bls12381.G1Affine{X: x, Y: y} 1028 if !elem.IsOnCurve() { 1029 return nil, errors.New("invalid point: not on curve") 1030 } 1031 1032 return &elem, nil 1033 } 1034 1035 // decodePointG2 given encoded (x, y) coordinates in 256 bytes returns a valid G2 Point. 1036 func decodePointG2(in []byte) (*bls12381.G2Affine, error) { 1037 if len(in) != 256 { 1038 return nil, errors.New("invalid g2 point length") 1039 } 1040 x0, err := decodeBLS12381FieldElement(in[:64]) 1041 if err != nil { 1042 return nil, err 1043 } 1044 x1, err := decodeBLS12381FieldElement(in[64:128]) 1045 if err != nil { 1046 return nil, err 1047 } 1048 y0, err := decodeBLS12381FieldElement(in[128:192]) 1049 if err != nil { 1050 return nil, err 1051 } 1052 y1, err := decodeBLS12381FieldElement(in[192:]) 1053 if err != nil { 1054 return nil, err 1055 } 1056 1057 p := bls12381.G2Affine{X: bls12381.E2{A0: x0, A1: x1}, Y: bls12381.E2{A0: y0, A1: y1}} 1058 if !p.IsOnCurve() { 1059 return nil, errors.New("invalid point: not on curve") 1060 } 1061 return &p, err 1062 } 1063 1064 // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element. 1065 // Removes top 16 bytes of 64 byte input. 1066 func decodeBLS12381FieldElement(in []byte) (fp.Element, error) { 1067 if len(in) != 64 { 1068 return fp.Element{}, errors.New("invalid field element length") 1069 } 1070 // check top bytes 1071 for i := 0; i < 16; i++ { 1072 if in[i] != byte(0x00) { 1073 return fp.Element{}, errBLS12381InvalidFieldElementTopBytes 1074 } 1075 } 1076 var res [48]byte 1077 copy(res[:], in[16:]) 1078 1079 return fp.BigEndian.Element(&res) 1080 } 1081 1082 // encodePointG1 encodes a point into 128 bytes. 1083 func encodePointG1(p *bls12381.G1Affine) []byte { 1084 out := make([]byte, 128) 1085 fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[16:]), p.X) 1086 fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[64+16:]), p.Y) 1087 return out 1088 } 1089 1090 // encodePointG2 encodes a point into 256 bytes. 1091 func encodePointG2(p *bls12381.G2Affine) []byte { 1092 out := make([]byte, 256) 1093 // encode x 1094 fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[16:16+48]), p.X.A0) 1095 fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[80:80+48]), p.X.A1) 1096 // encode y 1097 fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[144:144+48]), p.Y.A0) 1098 fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[208:208+48]), p.Y.A1) 1099 return out 1100 } 1101 1102 // bls12381MapG1 implements EIP-2537 MapG1 precompile. 1103 type bls12381MapG1 struct{} 1104 1105 // RequiredGas returns the gas required to execute the pre-compiled contract. 1106 func (c *bls12381MapG1) RequiredGas(input []byte) uint64 { 1107 return params.Bls12381MapG1Gas 1108 } 1109 1110 func (c *bls12381MapG1) Run(input []byte) ([]byte, error) { 1111 // Implements EIP-2537 Map_To_G1 precompile. 1112 // > Field-to-curve call expects an `64` bytes input that is interpreted as an element of the base field. 1113 // > Output of this call is `128` bytes and is G1 point following respective encoding rules. 1114 if len(input) != 64 { 1115 return nil, errBLS12381InvalidInputLength 1116 } 1117 1118 // Decode input field element 1119 fe, err := decodeBLS12381FieldElement(input) 1120 if err != nil { 1121 return nil, err 1122 } 1123 1124 // Compute mapping 1125 r := bls12381.MapToG1(fe) 1126 1127 // Encode the G1 point to 128 bytes 1128 return encodePointG1(&r), nil 1129 } 1130 1131 // bls12381MapG2 implements EIP-2537 MapG2 precompile. 1132 type bls12381MapG2 struct{} 1133 1134 // RequiredGas returns the gas required to execute the pre-compiled contract. 1135 func (c *bls12381MapG2) RequiredGas(input []byte) uint64 { 1136 return params.Bls12381MapG2Gas 1137 } 1138 1139 func (c *bls12381MapG2) Run(input []byte) ([]byte, error) { 1140 // Implements EIP-2537 Map_FP2_TO_G2 precompile logic. 1141 // > Field-to-curve call expects an `128` bytes input that is interpreted as an element of the quadratic extension field. 1142 // > Output of this call is `256` bytes and is G2 point following respective encoding rules. 1143 if len(input) != 128 { 1144 return nil, errBLS12381InvalidInputLength 1145 } 1146 1147 // Decode input field element 1148 c0, err := decodeBLS12381FieldElement(input[:64]) 1149 if err != nil { 1150 return nil, err 1151 } 1152 c1, err := decodeBLS12381FieldElement(input[64:]) 1153 if err != nil { 1154 return nil, err 1155 } 1156 1157 // Compute mapping 1158 r := bls12381.MapToG2(bls12381.E2{A0: c0, A1: c1}) 1159 1160 // Encode the G2 point to 256 bytes 1161 return encodePointG2(&r), nil 1162 } 1163 1164 // kzgPointEvaluation implements the EIP-4844 point evaluation precompile. 1165 type kzgPointEvaluation struct{} 1166 1167 // RequiredGas estimates the gas required for running the point evaluation precompile. 1168 func (b *kzgPointEvaluation) RequiredGas(input []byte) uint64 { 1169 return params.BlobTxPointEvaluationPrecompileGas 1170 } 1171 1172 const ( 1173 blobVerifyInputLength = 192 // Max input length for the point evaluation precompile. 1174 blobCommitmentVersionKZG uint8 = 0x01 // Version byte for the point evaluation precompile. 1175 blobPrecompileReturnValue = "000000000000000000000000000000000000000000000000000000000000100073eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001" 1176 ) 1177 1178 var ( 1179 errBlobVerifyInvalidInputLength = errors.New("invalid input length") 1180 errBlobVerifyMismatchedVersion = errors.New("mismatched versioned hash") 1181 errBlobVerifyKZGProof = errors.New("error verifying kzg proof") 1182 ) 1183 1184 // Run executes the point evaluation precompile. 1185 func (b *kzgPointEvaluation) Run(input []byte) ([]byte, error) { 1186 if len(input) != blobVerifyInputLength { 1187 return nil, errBlobVerifyInvalidInputLength 1188 } 1189 // versioned hash: first 32 bytes 1190 var versionedHash common.Hash 1191 copy(versionedHash[:], input[:]) 1192 1193 var ( 1194 point kzg4844.Point 1195 claim kzg4844.Claim 1196 ) 1197 // Evaluation point: next 32 bytes 1198 copy(point[:], input[32:]) 1199 // Expected output: next 32 bytes 1200 copy(claim[:], input[64:]) 1201 1202 // input kzg point: next 48 bytes 1203 var commitment kzg4844.Commitment 1204 copy(commitment[:], input[96:]) 1205 if kZGToVersionedHash(commitment) != versionedHash { 1206 return nil, errBlobVerifyMismatchedVersion 1207 } 1208 1209 // Proof: next 48 bytes 1210 var proof kzg4844.Proof 1211 copy(proof[:], input[144:]) 1212 1213 if err := kzg4844.VerifyProof(commitment, point, claim, proof); err != nil { 1214 return nil, fmt.Errorf("%w: %v", errBlobVerifyKZGProof, err) 1215 } 1216 1217 return common.Hex2Bytes(blobPrecompileReturnValue), nil 1218 } 1219 1220 // kZGToVersionedHash implements kzg_to_versioned_hash from EIP-4844 1221 func kZGToVersionedHash(kzg kzg4844.Commitment) common.Hash { 1222 h := sha256.Sum256(kzg[:]) 1223 h[0] = blobCommitmentVersionKZG 1224 1225 return h 1226 }